
Homework 6 Solutions

CAS CS 132: Geometric Algorithms

Due: Thursday October 26, 2023 at 11:59PM

Submission Instructions

• Make the answer in your solution to each problem abundantly clear (e.g.,
put a box around your answer or used a colored font if there is a lot of
text which is not part of the answer).

• Choose the correct pages corresponding to each problem in Gradescope.
Note that Gradescope registers your submission as soon as you submit it,
so you don’t need to rush to choose corresponding pages. For multipart
questions, please make sure each part is accounted for.

Graders have license to dock points if either of the above instructions are not
properly followed.

Note. Solutions written here may be lengthy because they are expository, and
may not reflect that amount of detail that you were expected to write in your
own solutions.

Practice Problems

The following list of problems comes from Linear Algebra and its Application
5th Ed by David C. Lay, Steven R. Lay, and Judi J. McDonald. They may
be useful for solidifying your understanding of the material and for studying in
general. They are optional, so please don’t submit anything for them.

• 2.3.1-8, 2.3.13, 2.3.15, 2.3.17, 2.3.21, 2.3.26

• 4.9.4, 4.9.5-8, 4.9.16, 4.9.19, 4.9.20



1 Matrix Algebra

A. (5 points) Suppose A and B are invertible matrices and ABTXA−1B = I.
Solve for X in terms of A and B.

B. (5 points) Show that A+AT is symmetric for any square matrix A. That
is, show that (A+AT )T = A+AT .

C. (5 points) Show that if A and B are symmetric and AB = BA then AB
is symmetric.

Solution.

A. Solving for X is a matter of multiplying both sides of the equation by
matrices until X is isolated:

ABTXA−1B = I

A−1ABTXA−1B = A−1I

BTXA−1B = A−1

(B−1)TBTXA−1B = (B−1)TA−1

(BT )−1BTXA−1B = (B−1)TA−1

XA−1B = (B−1)TA−1

XA−1BB−1 = (B−1)TA−1B−1

XA−1 = (B−1)TA−1B−1

XA−1A = (B−1)TA−1B−1A

X = (B−1)TA−1B−1A

It is not necessary for you have explicitly included the 5th line.

B. As noted in the problem statement, we need to show that (A + AT )T =
A + AT . We have to use the equalities we know about transposes to do
this.

(A+AT )T = AT + (AT )T = AT +A = A+AT

C. Same idea as the previous part:

(AB)T = BTAT = BA = AB

We can replace BT with B and AT with A because they are both sym-
metric.



2 Invertible Matrices

For each of the following statements, argue that they are true or give a coun-
terexample in R2×2 showing they are false. All matrices are assumed to be
square.

A. (3 points) If A is invertible and B is invertible then A+B is invertible.

B. (3 points) If A1 = 0, then A not invertible.

C. (3 points) If A has zeros along it’s diagonal, that is

A11 = A22 = · · · = Ann = 0

then A is not invertible.

D. (3 points) If Ax = Bx holds only when x = 0, then A−B is invertible.

E. (3 points) If A has a row of all zeros, then A is not invertible.

Solution.

A. False. I + (−I) is a counterexample.

B. True. Invertible matrix theorem, Ax = 0 has a nontrivial solution.

C. False. The matrix [
0 1
1 0

]
is a countexample.

D. True. Invertible matrix theorem (A−B)x = 0 has only the trivial solution.

E. True. Invertible matrix theorem, an all zeros row implies an all zeros
column in AT , which implies the columns of AT are linearly dependent
and, hence, AT is not invertible. IMT then implies A is not invertible
either.



3 Counting Triangles

Consider the following undirected unweighted graph.1 For this problem, you
may use NumPy or solve by hand. If you use NumPy, you must include the
code you used to compute each part.

A. (4 points) Write down the adjacency matrix A for this graph.

B. (4 points) Compute A2 and A3.

C. (5 points)The Hadamard product of two m×n matrices (denoted by A◦B)
is entry-wise multiplication (like ‘*’ in NumPy). So (A ◦B)ij = Aij ∗Bij

for any indices i and j. Compute the value of

1

6

(
1T (A2 ◦A)1

)
(Recall that 1 is the all-ones vector. In the case of this problem, it must
be in R6.)

D. (5 points) The trace of a n × n matrix (denoted by tr(A)) is the sum of
the entries along it’s diagonal. So

tr(A) = A11 +A22 + · · ·+Ann.

Compute the value of 1
6 tr(A

3).

1Image generated with Graph Editor (https://csacademy.com/app/graph editor/)



Solution.

A. 
0 0 1 0 1 1
0 0 0 0 1 1
1 0 0 1 1 1
0 0 1 0 0 0
1 1 1 0 0 1
1 1 1 0 1 0


B. To compute these, we use a @ a and a @ a @ a, respectively.

A2 =


3 2 2 1 2 2
2 2 2 0 1 1
2 2 4 0 2 2
1 0 0 1 1 1
2 1 2 1 4 3
2 1 2 1 3 4

 A3 =


6 4 8 2 9 9
4 2 4 2 7 7
8 4 6 4 10 10
2 2 4 0 2 2
9 7 10 2 8 9
9 7 10 2 9 8


C. We can use (np.ones(6).T @ ((a @ a) * a) @ np.ones(6)) / 6 to

get the value 5. This matches with the count of triangles in the graph.

D. We can use np.trace(a @ a @ a) / 6 to get the value 5 again.



4 Regular Stochastic Matrices

For each of the following stochastic matrices:

• Determine if it is regular.

• Write down a general form solution solution to the homogenous matrix
equation (A− I)x = 0).

• If it is possible, find a steady state vector from this solution.

For this problem, you may use NumPy as well as code from previous parts of
the course.

A. (6 points) 1 1/2 1/3
0 1/2 1/3
0 0 1/3


B. (6 points) [

0.9 0.9
0.1 0.1

]
C. (6 points) 0.2 0 0.3

0.8 0.5 0
0 0.5 0.7


Solution.

A. This matrix is irregular. It was sufficient for you to have argued this
somewhat informally, but if you wanted to do this more formally, you
could show that if the first column of a matrix is e1, then the first column
of Ak is e1. The reduced echelon form of (A− I) is0 1 0

0 0 1
0 0 0


so the equation (A− I)x = 0 has as a general form solution

x1 is free

x2 = 0

x3 = 0

The only choice of x1 such that x1 + x2 + x3 = 1 (and they are all non-
negative) is x1 = 1. So the steady-state vector of this system is [1 0 0]T .



B. This matrix is regular since A1 has all postive entries. The reduced echelon
form of A− I is [

1 −9
0 0

]
so (A− I)x = 0 has as a general form solution

x1 = 9x2

x2 is free

The steady-state vector is then [0.9 0.1]T .

C. This matrix is regular since

A2 =

0.04 0.15 0.27
0.56 0.25 0.24
0.4 0.6 0.49


The reduced echelon from of A− I is1 0 −0.375

0 1 −0.6
0 0 0


so the general form solution is

x1 = (0.375)x3

x2 = (0.6)x2

x3 is free

and the steady-state vector is approximately [0.19 0.3 0.51]T .



5 Sonnet Generator (Programming)

(15 points) In this problem you will be filling in an implementation of a program
which uses random walks to generate poetry. This is based on the idea of the
disocciated press, a piece of software which does this for arbitrary texts (and
which is avaiable in emacs by default).

Large language models like GPT use fancy techniques to predict what word
or sequence of words should follow a given piece of text. It’s possible to build
a very unfancy version of this using random walks. Given a corpus of text,
we can build a weighted directed graph whose nodes are words, and whose edge
indicate word adjacency in the corpus. Each edge can further be labeled with
the number of word adjacencies in the corpus. So words which tend to be next
to each other will have larger weights on their edges.

As an example, suppose we used the statement “a dog and a cat and a bird”
as our corpus. We can build a graph with nodes for each word (“a”, “dog”,
“and”, “cat” and “bird”) and with edges for each pair of adjacent words (“a”
to “dog”, “dog” to “and”, “and” to “a”, and so on). When we look at the edge
from “and” to “a”, it should have weight 2 because “and a” appears twice in
the statement.

Rather than using a single statement for our corpus, we’ll use the entirety of
Shakespeare’s sonnets. We will then use this to generate new (nonsense) sonnets
by taking a random walk on this graph and collecting words along the way.

The process is roughly as follows:

• Read in the text of Shakespeare’s sonnets and build the adjacency matrix
for the graph described above.

• Convert this matrix into a stochastic matrix by dividing each column by
its sum. This will make the rest of the implementation easier.

• Perform a random walk on this matrix, keeping track of the nodes you’ve
visited so far.

• Use that list of nodes to generate a list of words which will make up the
poem. Then format that poem so that it can be nicely printed.

You are given starter code in the file hw06prog.py. Don’t change the
name of this file when you submit. Also don’t change any of the names of
functions included in the starter code. The only changes you should make
are to fill in the TODO items in the starter code. Most of the above
process in implemented for you. All together you have to fill in two functions:

• adjacency to stochastic which converts an adjacency matrix into a
stochastic matrix by dividing its columns by their sums (Hint. Make sure
to look at and understand numpy.sum).

• random walk which performs a random walk of a given length and returns
the list of nodes visited. There is already an implementation of a single



random step in the function random step. You should use this function
and collect the outputs into a list.

You will upload a single file hw06prog.py. You will also be provided with a
text file sonnets.txt which contains the text of the entirety of Shakespeare’s
sonnets. You do not need to upload this when you submit, you just need
to upload hw06prog.py.


