Homework 7 Solutions

CAS CS 132: Geometric Algorithms
Due: Thursday November 2, 2023 at 11:59PM

Submission Instructions

e Make the answer in your solution to each problem abundantly clear (e.g.,
put a box around your answer or used a colored font if there is a lot of
text which is not part of the answer).

e Choose the correct pages corresponding to each problem in Gradescope.
Note that Gradescope registers your submission as soon as you submit it,
so you don’t need to rush to choose corresponding pages. For multipart
questions, please make sure each part is accounted for.

Graders have license to dock points if either of the above instructions are not
properly followed.

Note. Solutions written here may be lengthy because they are expository, and
may not reflect that amount of detail that you were expected to write in your
own solutions.

Practice Problems

The following list of problems comes from Linear Algebra and its Application
5th Ed by David C. Lay, Steven R. Lay, and Judi J. McDonald. They may
be useful for solidifying your understanding of the material and for studying in
general. They are optional, so please don’t submit anything for them.

e 2.5.1-3, 2.5.14, 2.5.26

e Example 8 (useful for Problem 2), 2.7.2, 2.7.3-8, 2.7.12, 2.7.15, 2.7.16.
2.7.17

1 Sparse Factorizations

In this problem, you will use the provided code in sparse.py to benchmark LU
factorization and matrix inversion.

A. (2 points) The provided code includes a function testmatrix which
builds a matrix given a positive integer parameter. Write down the matrix
returned by this function applied to 4.

B. (8 points) There is a function in the scipy library called 1u which returns
the LU factorization of a matrix. Use this to construct the LU factoration
of A = testmatrix(10 ** 3). This function returns a 3-tuple of matri-
ces. The 2nd and 3rd entries are L and U, respectively, where A = LU.

Then use the function np.linalg.inv to construct the inverse A~! of this
matrix.

Finally, you can use the expression len(np.nonzero(mat) [0]) to deter-
mine the number of nonzero entries in a 2D numpy array mat. Write
down the number of nonzero entires of L, U, and A~!, where A
is the matrix testmatrix(10 ** 3), as well as the lines of code
you used.

C. (5 points) Uncomment the code at the end of the file sparse.py and run it.
Write down the printed values and discuss what they mean. In particular,
is the amount of time that it takes to factor versus invert consistent with
our discussion in lecture?*

1You’ll note that solving systems with the matrix inverse is faster than with the LU fac-
torization. Even though the two have roughly the same theoretical guarantees, matrix-vector
multiplication implementations tend to be better optimized.

Solution.

A. -
4 -1 -1 0 0 0 0 0
-1 4 0O -1 0 0 0 0
-1 0 4 -1 -1 0 0 0
o -1 -1 4 0 -1 0 0
0 0 -1 0 4 -1 -1 0
0 0 0o -1 -1 4 0 -1
0 0 0 0 -1 0 4 -1
(0 0 0 0 0 -1 -1 4]
B. The code
1 a = test_matrix (10 *xx 3)
> p, 1, u = lu(a)
3 a_inv = np.linalg.inv(a)
4 print (f’# entries in L: {len(np.nonzero(l)[0])3}’)

print (f’# entries in U: {len(np.nonzero(u) [0])}’)
6 print (f’# entries in A inverse: {len(np.nonzero(a_inv) [0])}’)

gives us

1 # entries in L: 5997
entries in U: 5997
3 # entries in A inverse: 3792976

N

C. Runnning the given code gives us

1 building test matrix...

> factoring m...

3 time: 9.96743106842041 seconds

4+ solving with LU...

5 time: 7.4140448570251465 seconds
6 inverting m...

7 time: 35.37879991531372 seconds
s solving with inv...

o time: 2.086169958114624 seconds

This is relatively consistent with what we discussed in class. The time it
takes to invert a matrix should be roughly 3 times longer than factoring.

2 3D Graphics (Programming)

This week you will be building an interactive matplotlib widget which can ma-
nipulate 2D renderings of 3D wireframes. Once you are done, it should look
something like this, and you should be able to rotate and translate a wireframe
object on screen using provided sliders.

3D Graphics Demo

06932717 -0.91328111 0.4013868 1.7 1
19776115 0.14232396 0.15498182 1.4 1
]
1

. o 0. o
01986693 ~0.03816559 -0.09027011 0.73

Shapes

e cube

o pyramid

o TODO

ol X
pirch 02
yaw - Ls

. 17
1.4

-
- 27

You are given starter code in the file hwO7prog.py. Don’t change the name
of this file when you submit. Also don’t change the names of any functions
included in the starter code. The only changes you should make are to fill
in the provided TODO items. At a high level, the code works as follows.

e Wireframes are represented as lists of line segments, which are represented
as 2-element lists of 3-tuples of floats (in other words, points in R?). You
are provided with two simple wireframes, cube and pyramid. You will
have an opportunity, for a small amount of extra credit, to build your own
wireframe. You can use the structure of these two examples as a guide.

e These wireframes are transformed into matrices whose columns are homo-
geneous coordinates of the endpoints of each segment in the wireframe.
This is done by the function shape_to_hom matrix, which is implemented
for you. At this point, red, green, and blue guide axes are included in
the wireframe. So if the wireframe has 12 line segments, then this func-
tion returns a 4 x (2 % (12 4+ 3)) = 4 x 30 matrix. In later steps we will
call this matrix W. These matrices are collected in a dictionary called
shape matrices which is used by the latter parts of the program. You

do not need to change any part of this code (that is, the code
under the header “SHAPES”) except for potentially the extra credit
wireframe.

The next step is to build the transformation that will ultimately augment
the wireframe (in other words, the transform that will be applied to the
matrix W). There are a number of basic matrix constructions you have
to fill in:

— perspective
— hom_rotate_x
— hom_rotate_y
— hom_rotate_z

— translate

Once you fill in these functions, you will combine them into a single prod-
uct of matrices which represent the transformation to the wireframe that
will be rendered on screen. You will implement this in the func-
tion full transform matrix. Since this will be a multiplication, you are
required to use the function numpy.linalg.multi_dot. Please see the
NumPy documentation for information on how to use this function.

The matrix returned by this function should rotate and then translate
the given wireframe, and then apply the perspective projection. It is
important to remember that the order of multiplications matters.
As a guide, when you finish, the roll axis should be red, and when you
translate your shape, rotation should keep its center fixed. I will call the
matrix returned by full transform matrix 7T in latter steps.

The last step it to construct a collection of 2D line segments from the ma-
trix TW. You will be implementing this in matrix_to_projection.
Because of the perpsective projection which occurs in 7', the columns of
TW should have the form [z y 0 h]T. You need to convert each column
to a point in R? of the form (z/h,y/h). You then need combine every
two points into a 2-element list representing a line segment. Remember
that they points are transformed versions of the endpoints of the given
wireframe, and we build the matrix in first step by combining every end-
point into a single matrix. All of these line segments should be collected
into a single list which is then returned. See the provided example in the
docstring.

As usual there is a long way and a short way to do this. If you want to try
to give a more concise implementation, look at the function in the NumPy
documentation called numpy.linalg.apply_along_ axis.

The rest of the code passes the output of the above two steps into mat-
plotlib to be displayed, and connects all the radio buttons and sliders.
You do not need to change any part of this code but I recommend
looking through it if you’re interested in how to build matplotlib widgets.

All together, there are 7 functions to fill in:

e (6 points) perspective

6 points) hom_rotate_x

)
)
6 points) hom_rotate_y
)
)

6 points) translate

(
(
(
(6 points) hom_rotate_z
(
(15 points) full_transformmatrix
(

20 points) matrix_to_projection

Extra credit (5 points). Build a wireframe (of some reasonable complexity)
which you can use in the program. In order to get any credit you must include
in the analytical part of your submission an image of your rendered wire-
frame produced by matplotlib, translated and rotates some amount (like in the
example image above). In particular, you have to first complete the required
parts of the assignment. The credit you recieve will be determined in part by
how complex the wireframe is. Also, please state along with your image if you
are comfortable making the image public (in case I collected the results on a
public-facing webpage).

You will upload a single file hwO7prog.py to Gradescope, where you can
verify that it passes some (but not all) autograder tests. Please test your
system early. There may be system dependent issues that we’d like to address
as early as possible.

