
Homework 8 Solutions

CAS CS 132: Geometric Algorithms

Due: Thursday November 9, 2023 at 11:59PM

Submission Instructions

• Make the answer in your solution to each problem abundantly clear (e.g.,
put a box around your answer or used a colored font if there is a lot of
text which is not part of the answer).

• Choose the correct pages corresponding to each problem in Gradescope.
Note that Gradescope registers your submission as soon as you submit it,
so you don’t need to rush to choose corresponding pages. For multipart
questions, please make sure each part is accounted for.

Graders have license to dock points if either of the above instructions are not
properly followed.

Note. Solutions written here may be lengthy because they are expository, and
may not reflect that amount of detail that you were expected to write in your
own solutions.

Practice Problems

The following list of problems comes from Linear Algebra and its Application
5th Ed by David C. Lay, Steven R. Lay, and Judi J. McDonald. They may
be useful for solidifying your understanding of the material and for studying in
general. They are optional, so please don’t submit anything for them.

• 2.8.1-5, 2.8.11-12, 2.8.15-16, 2.8.21-22, 2.8.25, 2.8.31-32, 2.8.35

• 2.9.3-6, 2.9.12, 2.9.17-21



1 Subspaces and Matrices (Basics)

For each of the following parts, justify your answer.

A. (2 points) If A ∈ R3×6, then for what value of n is NulA is a subspace of
Rn?

B. (4 points) If A ∈ R10×13 matrix then what is the minimum dimension of
NulA?

C. (3 points) If A ∈ R7×5 matrix and dim(ColA) = 4, what is dim(NulA)?

D. (3 points) Determine if v is in NulA where

v =

 2
−1
2

 A =

−1 0 1
3 6 0
5 7 2


E. (4 points) Determine if v is in ColA, where v and A are as in the previous

part.

F. (4 points) Determine rankA where

A =


2 1 −8 3
−1 3 4 2
3 2 −12 5
1 −2 −4 −1


Hint. Attempt to do this without performing any calculations.

Solution.

A. The null space consists of solutions to the equation Ax = 0, and solutions
lie in R6 (Remember that x defines weights a linear combination of the
columns of A, and A has 6 columns).

B. The dimension of the null space is determined by the number of free
variables in a general form solution to the equation Ax = 0. There can
be at most 10 pivots in A, which leaves at least 3 free variables. Another
way: by the rank theorem, we know that rankA+ dim(NulA) = 13, and
rankA ≤ 10 since ColA ⊂ R10, so dim(NulA) ≥ 3.

C. By the rank theorem, rankA+ dim(NulA) = 5, so dim(NulA) = 1.

D. v is in NulA if Av = 0. But Av = [ 0 0 1 ]T , so v ̸∈ NulA.

E. To say that v is in ColA is to say that v lies in the span of the columns
of A, something we know how to do: find a solution to the system with
the augmented matrix [A | v]. However, it is also somewhat clear that the
columns of A are linearly independent. Without doing any row operations:
the previous part tells us that e3 ∈ ColA, but then e1 = a3 − 2e3 and
6e2 = (a2 − 7e3).



F. Per the hint, we might notice that a3 = 4a1 and a4 = a1 + a2. So there
are two linearly independent vectors which span ColA, making the rank
2.



2 Bases for Null Spaces and Column Spaces

Consider the following matrix.
1 2 4 3 −4 1
−3 −4 −10 −8 13 −3
5 6 16 10 −13 9
−7 −8 −22 −12 13 −9
13 18 44 32 −47 11


A. (2 points) Find the reduced echelon form of A. You may (should) use

Python. Describe the process you used. For your convenience:

1 np.array ([[1., 2, 4, 3, -4, 1], [-3, -4, -10, -8, 13, -3], [5,

6, 16, 10, -13, 9], [-7, -8, -22, -12, 13, -9], [13, 18,

44, 32, -47, 11]])

B. (6 points) Find a basis for ColA.

C. (6 points) Find a basis for NulA.

Solution.

A. The reduced echelon form of A can be obtained using code we’ve written
in this course, like cs132lib.reduced echelon form(a):

1 0 2 0 1 0
0 1 1 0 2 0
0 0 0 1 −3 0
0 0 0 0 0 1
0 0 0 0 0 0


B. We can build a basis for ColA by looking at the pivot columns of A:


1
−3
5
−7
13

 ,


2
−4
6
−8
18

 ,


3
−8
10
−12
32

 ,


1
−3
9
−9
11




C. First we have to find a general form solution for the equation Ax = 0.

x1 = −2x3 − x5

x2 = −x3 − 2x5

x3 is free

x4 = 3x5

x5 is free

x6 = 0



We can think of this a linear transformation

[
s
t

]
7→


−2s− t
−s− 2t

s
3t
t
0


The columns of the matrix implementing this tranformation form a basis
for NulA. 


−2
−1
1
0
0
0

 ,


−1
−2
0
3
1
0







3 Affine Spaces

Let A be an m× n matrix and let v be a vector in Rn.

A. (6 points) Show that if Av = b and w ∈ NulA, then v +w is a solution
to the equation Ax = b.

B. (5 points) Show that if b ̸= 0, then the solution set of Ax = b is not a
subspace of Rn.

C. (5 points) (Extra Credit) A set H is an affine subspace of Rn if there
is a subspace U of Rn and a vector o such that

H = {u+ o | u is in U}

Show that if the solution set of Ax = b is nonempty then it is an
affine subspace. This means choosing a vector o and subspace U .

Solution.

A. We need to show that A(v +w) = b:

A(v +w) = Av +Aw = b+ 0 = b

B. The vector 0 is not a solution to Ax = b, so this solution set is not a
subspace of Rn.

C. Let v be a solution to the equation Ax = b. Then we can take o to
be v and U to be NulA. Part A shows that every element in the set
H = {u+ v | u ∈ NulA} is a solution to Ax = b. In order to show that
every solution can be written in this form, we have to recognize that for
any solution w, we have w − v ∈ NulA. This is because

A(w − v) = Aw −Av = b− b = 0

Then w = v + (w − v), so it is H.



4 Complement of the Column Space

A. (2 points) Find a vector which is not in ColA, where

A =


1 0 0 0
0 1 2 0
0 0 0 1
0 0 0 0


B. (5 points) Find a vector which is not in ColA, where

A =

 1 1 5
−1 0 −1
1 2 9


C. (8 points) Let A be a 5 × n matrix such that rankA = 4, which has an

LU decomposition where

L =


1 0 0 0 0
−1 1 0 0 0
0 4 1 0 0
2 0 0 1 0
0 3 −3 0 1


Determine if v in ColA, where

v =


2
−5
−11
5
−12


Solution.

A. A vector v is not in the column space if Ax = v has no solution. A simple
choice of vector for which this equation does not have a solution is e4.

B. We can determine this by reducing a matrix of the form 1 1 5 b1
−1 0 −1 b2
1 2 9 b3


to reduced echelon form:1 1 5 b1

0 1 4 b1 + b2
0 0 0 b3 − b1 − (b1 + b2)


We can then take b3 − 2b1 − b2 = 1, which mean e3 is such a vector.



C. Since rankA = 4, every echelon form of A has exactly one row of all zeros.
We have to verify that the matrix [A v] does not have an inconsistent last
row. We can read from L a sequence of row operations which takes A to
echelon form.

R2 ← R2 +R1

R4 ← R4 − 2R1

R3 ← R3 − 4R2

R5 ← R5 − 3R2

R5 ← R5 + 3R3

If we apply these operations to v, we get the vector [2 − 3 1 1 0]T , which
means the equation Ax = v has a solution (since the last row doesn’t
represent an inconsistent equation).



5 Problem (Programming)

(15 points) A lot of what doing computational linear algebra entails is building
and manipulating matrices. NumPy provides a powerful interface for doing this,
but it takes some time to become familiar with. In this problem, you will be
constructing NumPy arrays using functions from the NumPy standard library.
You are required to complete each part with a single line of code.

You are given starter code in the file hw08prog.py. Don’t change the
name of this file when you submit. Also don’t change the names of any
functions or variables provided in the starter code. The only changes you
should make are to fill in the provided TODO items. You will upload a
single file hw08prog.py to Gradescope.

For each of the following parts, fill in (at the corresponding TODO item in
hwprog08.py) a single line (fewer than 100 characters)) of Python code
which builds the 2D NumPy arrays representing each matrix. In particular,
you can’t hardcode the arrays. This may require reading through some of the
NumPy documentation.

A. 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


B. 

4 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 4


C. Hint. Look at some of the examples in the documentation for np.eye.

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0





D. Hint. Look at np.arange and np.diag.

1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 6 0 0
0 0 0 0 0 0 7 0
0 0 0 0 0 0 0 8


E. Hint. Use matrix addition.

2 1 0 0 0 0 0 0
3 4 1 0 0 0 0 0
0 3 6 1 0 0 0 0
0 0 3 8 1 0 0 0
0 0 0 3 10 1 0 0
0 0 0 0 3 12 1 0
0 0 0 0 0 3 14 1
0 0 0 0 0 0 3 16


F. Hint. Look at some of the examples in the documentation for np.arange.

8 1 0 0 0 0 0 0
0 7 2 0 0 0 0 0
0 0 6 3 0 0 0 0
0 0 0 5 4 0 0 0
0 0 0 0 4 5 0 0
0 0 0 0 0 3 6 0
0 0 0 0 0 0 2 7
0 0 0 0 0 0 0 1


G. 

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





H. Hint. Look at np.ones.

2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2


I. Hint. Look at np.hstack.

3 3 3 3 1 0 0 0
3 3 3 3 0 1 0 0
3 3 3 3 0 0 1 0
3 3 3 3 0 0 0 1


J. Hint. Look also at np.vstack.

1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 0 0 0 −2 −2 −2 −2
0 1 0 0 −2 −2 −2 −2
0 0 1 0 −2 −2 −2 −2
0 0 0 1 −2 −2 −2 −2


K. Hint. Remember you can index matrices on lists.

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0


L. 

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0





M. Hint. Look at np.tril.

2 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0
2 2 2 0 0 0 0 0
2 2 2 2 0 0 0 0
2 2 2 2 2 0 0 0
2 2 2 2 2 2 0 0
2 2 2 2 2 2 2 0
2 2 2 2 2 2 2 2




