
Homework 8

CAS CS 132: Geometric Algorithms

Due: Thursday November 9, 2023 at 11:59PM

Submission Instructions

• Make the answer in your solution to each problem abundantly clear (e.g.,
put a box around your answer or used a colored font if there is a lot of
text which is not part of the answer).

• Choose the correct pages corresponding to each problem in Gradescope.
Note that Gradescope registers your submission as soon as you submit it,
so you don’t need to rush to choose corresponding pages. For multipart
questions, please make sure each part is accounted for.

Graders have license to dock points if either of the above instructions are not
properly followed.

Practice Problems

The following list of problems comes from Linear Algebra and its Application
5th Ed by David C. Lay, Steven R. Lay, and Judi J. McDonald. They may
be useful for solidifying your understanding of the material and for studying in
general. They are optional, so please don’t submit anything for them.

• 2.8.1-5, 2.8.11-12, 2.8.15-16, 2.8.21-22, 2.8.25, 2.8.31-32, 2.8.35

• 2.9.3-6, 2.9.12, 2.9.17-21



1 Subspaces and Matrices (Basics)

For each of the following parts, justify your answer.

A. (2 points) If A ∈ R3×6, then for what value of n is NulA is a subspace of
Rn?

B. (4 points) If A ∈ R10×13 matrix then what is the minimum dimension of
NulA?

C. (3 points) If A ∈ R7×5 matrix and dim(ColA) = 4, what is dim(NulA)?

D. (3 points) Determine if v is in NulA where

v =

 2
−1
2

 A =

−1 0 1
3 6 0
5 7 2


E. (4 points) Determine if v is in ColA, where v and A are as in the previous

part.

F. (4 points) Determine rankA where

A =


2 1 −8 3
−1 3 4 2
3 2 −12 5
1 −2 −4 −1


Hint. Attempt to do this without performing any calculations.

Solution.



2 Bases for Null Spaces and Column Spaces

Consider the following matrix.
1 2 4 3 −4 1
−3 −4 −10 −8 13 −3
5 6 16 10 −13 9
−7 −8 −22 −12 13 −9
13 18 44 32 −47 11


A. (2 points) Find the reduced echelon form of A. You may (should) use

Python. Describe the process you used. For your convenience:

1 np.array ([[1., 2, 4, 3, -4, 1], [-3, -4, -10, -8, 13, -3], [5,

6, 16, 10, -13, 9], [-7, -8, -22, -12, 13, -9], [13, 18,

44, 32, -47, 11]])

B. (6 points) Find a basis for ColA.

C. (6 points) Find a basis for NulA.

Solution.



3 Affine Spaces

Let A be an m× n matrix and let v be a vector in Rn.

A. (6 points) Show that if Av = b and w ∈ NulA, then v +w is a solution
to the equation Ax = b.

B. (5 points) Show that if b ̸= 0, then the solution set of Ax = b is not a
subspace of Rn.

C. (5 points) (Extra Credit) A set H is an affine subspace of Rn if there
is a subspace U of Rn and a vector o such that

H = {u+ o | u is in U}

Show that if the solution set of Ax = b is nonempty then it is an
affine subspace. This means choosing a vector o and subspace U .

Solution.



4 Complement of the Column Space

A. (2 points) Find a vector which is not in ColA, where

A =


1 0 0 0
0 1 2 0
0 0 0 1
0 0 0 0


B. (5 points) Find a vector which is not in ColA, where

A =

 1 1 5
−1 0 −1
1 2 9


C. (8 points) Let A be a 5 × n matrix such that rankA = 4, which has an

LU decomposition where

L =


1 0 0 0 0
−1 1 0 0 0
0 4 1 0 0
2 0 0 1 0
0 3 −3 0 1


Determine if v in ColA, where

v =


2
−5
−11
5

−12



Solution.



5 Problem (Programming)

(15 points) A lot of what doing computational linear algebra entails is building
and manipulating matrices. NumPy provides a powerful interface for doing this,
but it takes some time to become familiar with. In this problem, you will be
constructing NumPy arrays using functions from the NumPy standard library.
You are required to complete each part with a single line of code.

You are given starter code in the file hw08prog.py. Don’t change the
name of this file when you submit. Also don’t change the names of any
functions or variables provided in the starter code. The only changes you
should make are to fill in the provided TODO items. You will upload a
single file hw08prog.py to Gradescope.

For each of the following parts, fill in (at the corresponding TODO item in
hwprog08.py) a single line (fewer than 100 characters)) of Python code
which builds the 2D NumPy arrays representing each matrix. In particular,
you can’t hardcode the arrays. This may require reading through some of the
NumPy documentation.

A. 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


B. 

4 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 4


C. Hint. Look at some of the examples in the documentation for np.eye.

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0





D. Hint. Look at np.arange and np.diag.

1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 6 0 0
0 0 0 0 0 0 7 0
0 0 0 0 0 0 0 8


E. Hint. Use matrix addition.

2 1 0 0 0 0 0 0
3 4 1 0 0 0 0 0
0 3 6 1 0 0 0 0
0 0 3 8 1 0 0 0
0 0 0 3 10 1 0 0
0 0 0 0 3 12 1 0
0 0 0 0 0 3 14 1
0 0 0 0 0 0 3 16


F. Hint. Look at some of the examples in the documentation for np.arange.

8 1 0 0 0 0 0 0
0 7 2 0 0 0 0 0
0 0 6 3 0 0 0 0
0 0 0 5 4 0 0 0
0 0 0 0 4 5 0 0
0 0 0 0 0 3 6 0
0 0 0 0 0 0 2 7
0 0 0 0 0 0 0 1


G. 

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





H. Hint. Look at np.ones.

2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2


I. Hint. Look at np.hstack.

3 3 3 3 1 0 0 0
3 3 3 3 0 1 0 0
3 3 3 3 0 0 1 0
3 3 3 3 0 0 0 1


J. Hint. Look also at np.vstack.

1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 0 0 0 −2 −2 −2 −2
0 1 0 0 −2 −2 −2 −2
0 0 1 0 −2 −2 −2 −2
0 0 0 1 −2 −2 −2 −2


K. Hint. Remember you can index matrices on lists.

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0


L. 

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0





M. Hint. Look at np.tril.

2 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0
2 2 2 0 0 0 0 0
2 2 2 2 0 0 0 0
2 2 2 2 2 0 0 0
2 2 2 2 2 2 0 0
2 2 2 2 2 2 2 0
2 2 2 2 2 2 2 2




