
Homework 9 Solutions

CAS CS 132: Geometric Algorithms

Due: Thursday November 16, 2023 at 11:59PM

Submission Instructions

• Make the answer in your solution to each problem abundantly clear (e.g.,
put a box around your answer or used a colored font if there is a lot of
text which is not part of the answer).

• Choose the correct pages corresponding to each problem in Gradescope.
Note that Gradescope registers your submission as soon as you submit it,
so you don’t need to rush to choose corresponding pages. For multipart
questions, please make sure each part is accounted for.

Graders have license to dock points if either of the above instructions are not
properly followed.

Note. Solutions written here may be lengthy because they are expository, and
may not reflect that amount of detail that you were expected to write in your
own solutions.

Practice Problems

The following list of problems comes from Linear Algebra and its Application
5th Ed by David C. Lay, Steven R. Lay, and Judi J. McDonald. They may
be useful for solidifying your understanding of the material and for studying in
general. They are optional, so please don’t submit anything for them.

• 5.1.1, 5.1.3, 5.1.8, 5.1.13, 5.1.23, 5.1.30

• 5.2.1, 5.2.3, 5.2.7, 5.2.17, 5.2.18



1 Eigenvalues and Eigenvectors

Consider the following matrix.

A =

−17 28 14
−7 11 7
−7 14 4


A. (5 points) Determine if the following vectors are eigenvectors of A. For

the ones that are, find their associated eigenvalues. Show your work. You
may use Python, but if you do, you must include the lines of code you
used.

v1 =

11
1

 v2 =

22
0

 v3 =

21
1


B. (6 points) Show that −3 is an eigenvalue of A without doing any row

operations. Use the invertible matrix theorem to justify your answer.

C. (6 points) Find a basis for the eigenspace of A corresponding to the eigen-
value −3.

Solution.

A. Av1 computes to [25 11 11]T , so v1 is not an eigenvector. Av2 computes
to [22 8 14]T , so v2 is not an eigenvector. Av3 computes to [8 4 4]T , so
v3 is an eigenvector for the eigenvalue 4.

B. We need to determine if A+ 3I is invertible. We have

A+ 3I =

−14 28 24
−7 14 7
−7 14 7


Note that the second and third columns are linearly dependent, so by the
invertible matrix theorem, (A + 3I)x = 0 has nontrivial solutions, which
implies −3 is an eigenvalue of A.

C. The reduced echelon form of this matrix is1 −2 −1
0 0 0
0 0 0


Writing the solution set as a linear combination of vectors with free vari-
ables as weights gives us

x2

21
0

+ x3

10
1





so 
21
0

 ,

10
1


is a basis for the eigenspace of −3.



2 Determinants

A. (4 points) Compute the determinant of3 −3 0
0 3 −1
2 0 −1


B. (5 points) Given detA = 3.5 and detB = −2, find the determinant of the

matrix B(AB)−1(AB)TA.

C. (6 points) Consider the following reduction sequence

R1 ← R1 +R2

swap(R2, R3)

R3 ← R3 + 5R4

R2 ← −3R2

R5 ← R5 − 10R3

R5 ← R5/11

swap(R5, R3)

swap(R1, R2)

R4 ← R4 +R1

R2 ← 5R2

R1 ← −R1

Suppose that A ∈ R5×5 reduces to U by this reduction sequence, where U
is in reduced echelon form. If rankA = 5, what is detA?

D. (2 points) What is detA from the previous part if rankA = 4?

Solution.

A. One possible sequence of row operations to convert the given matrix to
echelon form is

R3 ← 3R3

R3 ← R3 − 2R1

R3 ← R3 − 2R2

This required no swaps (s = 0) and one scaling (c = 3). So

detA =
(−1)0

3
(3)(3)(−1) = −3



B. Note that we already know that A and B are invertible since they have
nonzero determinant. First, we can say that

B(AB)−1(AB)TA = BB−1A−1BTATA

Then

det(BB−1A−1BTATA) = det(B) det(B−1) det(A−1) det(BT ) det(AT ) det(A)

Finally since det(C−1) = det(C) and det(CT ) = det(C), we can simplify
this to det(B) det(A) which is −7.

C. If U is in reduced echelon from and A has full rank, then U = I, and the
product of it’s diagonals is 1. The above sequence uses three swaps, so
s = 3, and the scalings −3, 1

11 , 5 and −1, so c = 15
11 . So the determinant

is (−1)3 11
15 (1), which is −11

15 .

D. If A does not have full rank, then det(A) = 0.



3 Properties of Determinants

For each of the statements, either argue that it is true for any choice of matrices
or give counterexamples in R2 showing it is false. All matrices are assumed to
be square.

A. (3 points) If A ∼ B (A is row equivalent to B) then det(A) = det(B).

B. (3 points) det(5A) = 5 detA

C. (3 points) det(ATA) ≥ 0

D. (3 points) det(A+B) = det(A) + det(B)

E. (3 points) If A is invertible, then det(ABA−1) = det(B).

Solution.

A. False. I ∼ [e2 e1]
T by a single row swap, but row swapping negates the

determinant, i.e., det(I) = 1 and det[e2 e1] = −1.

B. False. det(5I) = 25 whereas 5 det(I) = 5.

C. True. Since det(AT ) = det(A), we just need to show that det(A)2 ≥ 0.
This is true because squared numbers must be nonnegative.

D. False. det(I) = 1 and det(−I) = 1, but det(I − I) = 0.

E. True. Since det(ABA−1) = det(A) det(B) det(A−1) and det(A−1) =
det(A)−1, the left side of the equation reduces to det(B).



4 Characteristic Polynomials

A. (3 points) Find the characteristic polynomial of

A =

[
1 −1
−1 3

]
and use it in order to determine the eigenvalues A.

B. (4 points) Find the characteristic polynomial of

A =


1 0 0 0 0
−1 5 0 0 0
2 6 3 0 0
10 −15 3 4 0
−1 5 2 5 5


and use it to determine the eigenvalues of A.

C. (5 points) Find the characteristic polynomial of
1 0 2 10 5
0 0 5 −3 15
0 0 16 6 −1
0 0 0 1 5
0 0 0 7 4


You do not have to factor the polynomial, but your expression should not
contain any fractions.

D. (6 points) Find the characterstic polynomial of1 0 0
1 2 5
0 1 3


You do not have to factor the polynomial, but your expression should not
contain any fractions. Hint. Try to row reduce A − λI as usual, scaling
rows before zeroing out entries. At the end, the scalings you performed
will divide the final polynomial.

Solution.

A. The characteristic polynomial is the determinant of the matrix[
1− λ −1
−1 3− λ

]
which is (1 − λ)(3 − λ) + 1 = λ2 − 4λ + 2. This has roots 2 +

√
2 and

2−
√
2, which are the eigenvalues of hte matrix.



B. The determinant of a triangular matrix is the product of its entries, so the
characteristic polynomial of A is (1−λ)(5−λ)2(3−λ)(4−λ). Therefore,
the eigenvalues of A are 1, 5, 3, and 4.

C. This matrix is not quite triangular, but it is one row reduction away. We
need to find the determinant of

1− λ 0 2 10 5
0 −λ 5 −3 15
0 0 16− λ 6 −1
0 0 0 1− λ 5
0 0 0 7 4− λ


We use the row operations R5 ← (1− λ)R5 and then R5 ← R5 − 7R4 to
get the matrix

1− λ 0 2 10 5
0 −λ 5 −3 15
0 0 16− λ 6 −1
0 0 0 1− λ 5
0 0 0 0 (4− λ)(1− λ)− 35


This is in echelon form and we scaled once by 1− λ so the determinant is

(λ− 1)λ(16− λ)(1− λ)((4− λ)(1− λ)− 35)

1− λ

which is equal to (λ− 1)λ(16− λ)((4− λ)(1− λ)− 35) after cancellation.

D. Using the same process as the previous problem, we have to find the
determinant of 1− λ 0 0

1 2− λ 5
0 1 (3− λ)


If we follow the process of forward elimination, we can use the row oper-
ations R2 ← (1− λ)R2 and R2 ← R2 −R1 to get1− λ 0 0

0 (2− λ)(1− λ) 5(1− λ)
0 1 (3− λ)


Then we can use the row operations R3 ← (2 − λ)(1 − λ)R2 and R3 ←
R3 −R2 to get1− λ 0 0

0 (2− λ)(1− λ) 5(1− λ)
0 0 (3− λ)(2− λ)(1− λ)− 5(1− λ)


We had to do two scalings, so the determinant is

(1− λ)2(2− λ)((3− λ)(2− λ)(1− λ)− 5(1− λ))

(1− λ)2(2− λ)

which reduces to ((3− λ)(2− λ)− 5)(1− λ).



5 Closed-Form Solution for Fibonacci

Consider the matrix

A =

[
1 1
1 0

]
A. (3 points) Verify that

v1 =

[
1+

√
5

2
1

]
v2 =

[
1−

√
5

2
1

]
form an eigenbasis of A (recall that this means showing they are eigen-
vectors of A, and form a basis of R2). Also determine the eigenvalues for
each eigenvector.

B. (3 points) Write the vector [1 0]T in terms of the eigenbasis you found. In
other words, determine α1 and α2 such that[

1
0

]
= α1v1 + α2v2

Hint. Don’t try to do any row reductions, this will be a messy calculation.
Calcuate v1 − v2.

C. (4 points) Write down a closed-form solution for the linear dynamical
system determined by A with initial vector [1 0]T .

D. (3 points) If you look at the formula given by the second component of
your closed-form solution from the previous part, this gives a non-recursive
definition for Fibonacci numbers. Write down this formula and use it (and
Python or a calculator) to calculate F20, the 20th fibonacci number (where
F0 = 0 and F1 = 1).1

Solution. Let φ = 1+
√
5

2 and φ′ = 1−
√
5

2 .

A. [
1 1
1 0

] [
φ
1

]
=

[
φ+ 1
φ

]
= φ

[
φ
1

]
Note that

1 +
√
5

2

(
1 +
√
5

2

)
=

1 + 2
√
5 + 5

4
=

3 +
√
5

2
= 1 +

1 +
√
5

2

Likewise, [
1 1
1 0

] [
φ′

1

]
=

[
φ′ + 1
φ′

]
= φ′

[
φ′

1

]
1You should verify that this is correct by writing a Python function which computes Fi-

bonacci numbers in the usual way, but you do not have to do this.



again noting that

1−
√
5

2

(
1−
√
5

2

)
=

1−
√
5 + 5

4
=

3−
√
5

2
= 1 +

1−
√
5

2

B. Note that

v1 − v2 =

[
φ− φ′

0

]
and φ− φ′ =

√
5, so [

1
0

]
=

1√
5
v1 −

1√
5
v2

C. As we discussed in lecture, the closed-form solution for a linear dynamical
system when we can write a vector as a linear combination of the others
is

uk =
φk

√
5
v1 +

φ′k
√
5
+ v2

D. Looking at the formula given by the second component, since both second
components of v1 and v2 are 1, we get

Fk =
1√
5

(1 +
√
5

2

)k

−

(
1−
√
5

2

)k


Using Python to compute the value, we get the value 6765.000000000005,
so after accounting floating-point error, F20 = 6765.


