
Homework 10 Solutions

CAS CS 132: Geometric Algorithms

Due: Thursday November 23, 2023 at 11:59PM

Submission Instructions

• Make the answer in your solution to each problem abundantly clear (e.g.,
put a box around your answer or used a colored font if there is a lot of
text which is not part of the answer).

• Choose the correct pages corresponding to each problem in Gradescope.
Note that Gradescope registers your submission as soon as you submit it,
so you don’t need to rush to choose corresponding pages. For multipart
questions, please make sure each part is accounted for.

Graders have license to dock points if either of the above instructions are not
properly followed.

Note. Solutions written here may be lengthy because they are expository, and
may not reflect that amount of detail that you were expected to write in your
own solutions.

Practice Problems

The following list of problems comes from Linear Algebra and its Application
5th Ed by David C. Lay, Steven R. Lay, and Judi J. McDonald. They may
be useful for solidifying your understanding of the material and for studying in
general. They are optional, so please don’t submit anything for them.

• 5.3.1, 5.3.3, 5.3.6, 5.3.9, 5.3.11, 5.3.26, 5.3.27, 5.3.28



1 Diagonalization by Computation

(20 points) Find a diagonalization PDP−1 of the following matrix 0 2 2
5 −6 −5
−9 12 11


You should use Python to do this, and you should include the lines of code you
used. Furthermore, the diagonal entries of D should be in decreasing order from
left to right and the entries of P should be integers. In particular, you can’t
directly use the eigenvectors given to you by numpy.linalg.eig (though you
can use the eigenvalues).

Solution. First we can use np.linalg.eig(a) to determine the eigenvalues 4,
2, and −1, which means

D =

4 0 0
0 2 0
0 0 −1


Then we can use reduced echelon form(a - 4 * np.eye(3)) (or other equiv-
alent methods) to get the form 1 0 −1/3

0 1 1/3
0 0 0


which implies [1 (−1) 3]T forms a basis for Nul(A−4I). Next, reduced echelon form(a

- 2 * np.eye(3)) gives us 1 0 −1
0 1 0
0 0 0


which implies [1 0 1]T forms a basis for Nul(A−2I). Finally, reduced echelon form(a

+ np.eye(3)) gives us 1 0 0
0 1 1
0 0 0


which implies [0 (−1) 1]T form a basis for Nul(A+ I). We can collect these into
a matrix so that

P =

 1 1 0
−1 0 −1
3 1 1


Using np.linalg.inv(p) we get

P−1

−1 1 1
2 −1 −1
1 −2 −1


This completes the diagonalization.



2 2× 2 Matrices and Diagonalization

Consider an arbitrary 2× 2 matrix

A =

[
a b
c d

]
A. (8 points) Find an expression for the characteristic polynomial of A. In

other words, supposing that iλ2 + jλ+ k is the characteristic polynomial
of A, find expressions for i, j, and k in terms of a, b, c, and d.

B. (8 points) Recall that for a quadratic polynomial p(x) = ix2 + jx+ k, the
discriminant j2−4ik tells us how many roots p has: p has 0, 1 or 2 roots if
the discriminant is less than 0, equal to 0, or greater than 0, respectively.
Use this to derive an expression E in terms of a, b, c, and d where A has
0, 1, or 2 eigenvalues if E < 0, E = 0, or E > 0, respectively.

C. (4 points) Using your expression in part B, argue that every 2× 2 matrix
with positive entries has two distinct eigenvalues. Note that this implies
every 2 × 2 matrix with positive entries is diagonalizable. Hint. Try to
write your expression in Part B so that it is of the form ‘(□−□)2 +4□□’
and reason about why this must be positive.

Solution.

A. The characteristic polynomial of A is given by

(a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ ad− bc

Therefore, i = 1, j = a+ d and k = ad− bc = det(A).

B. In the previous part we derived expressions for i, j and k in terms of a, b,
c, and d. We can plug these expressions into the discriminant equation:

j2 − 4ik = (a+ d)2 − 4(ad− bc)

= a2 + 2ad+ d2 − 4ad+ 4bc

= a2 − 2ad+ d2 + 4bc

= (a− d)2 + 4bc

C. This is pretty much immediate from the hint. Squares of numbers are
positive and 4bc is positive because b and c are. This discriminant is
positive, so the number of eigenvalues is 2. Since eigenvectors for distinct
eigenvalues are linearly independent, A must be diagonalizable.



3 PageRank (Programming)

(40 points) There is no fun (at least in my opinion) in learning about PageRank
and never trying it out on really big graphs, where naive implementations don’t
work. In this problem, you’ll be filling in some of the core functionality of an
implementation of PageRank that can be applied to graphs with millions of
edges.

I understand that these instructions are long, but please read through
them carefully and entirely. They are formatted so that you could build
this program from the ground up if you wanted to, but a lot of it is implemented
for you. There are Tasks associated with step which detail the actual code you
need to write.

Part 0: Setting Up

When doing “real world” computational linear algebra it is often better to de-
pend on libraries written by experts. We will be using two Python packages in
addition to SciPy and NumPy:

• NetworkX1 is a package for working with and analyzing graphs. It is
very fast and has a nice interface for turning graphs into matrices.

• scikit-learn2 is a package for machine learning. Perhaps unsurprisingly, it
has a lot of very useful functions for working with matrices. It is certainly
worth exploring, but we will only need one function from it.

Task. You will have to install these packages in order to use them. I would
recommend using pip via the following commands:

1 python3 -m pip install networkx

2 python3 -m pip install scikit -learn

You may have to replace python3 with python or py depending your system.
You should then be able to verify that they are install by opening a Python
interpreter and typing

1 import networkx

2 import sklearn

Please try this early. The course staff is willing to help you in office hours,
but it will be hard to manage the closer we get to the deadline. Also note there
are many Stack Overflow and blog posts about install packages with pip for
IDEs like Spyder,3 so don’t hesitate to do some Googling.

1https://networkx.org
2https://scikit-learn.org/stable/
3https://stackoverflow.com/questions/63109860/how-to-install-python-packages-for-spyder



Part 1: Loading Graphs

We will be loading textual representations of graphs in adjacency list format
(.adjlist) into our program. The format is simple, each line represents an
edge and contains two numbers, each representing the nodes connected by the
edge. A line of the form

1 i j

represents an edge from node i to j. So a file containing

1 0 1

2 1 2

3 2 0

represents a directed triangle graph (note that nodes are 0-indexed). See the
NetworkX documentation for more details.4 There is a NetworkX function
called read adjlist which we will use to read graphs into our program.

Task. You should take a look at the file basic.adjlist, which represents the
graph that we saw in lecture:

Note that nodes are 0-indexed in this representation so this file has values
from 0 to 5. You will be using this file for testing.

Part 2: Building Sparse Adjacency Matrices

So far in this course, we’ve been working with NumPy arrays to represent matri-
ces, but NumPy arrays require too much space to represent very large matrices.
We saw on a previous assignment that matrices from practical applications can
sometimes be sparse, in that they don’t have very many entries relative to their
size. This is the case for many adjacency matrices.

In SciPy, there are a number of implementations of sparse matrices which
are more space efficient and more efficient to manipulate than standard NumPy
arrays. In NetworkX there is a function called adjacency matrix which builds
an adjacency matrix in one of these sparse implementations.

Task. Run the command python3 pagerank.py basic.adjlist 2. This will
throw an error since you have not implemented the power method yet, but you
should see printed the adjacency list for the above graph. Make sure that it
looks correct.

4https://networkx.org/documentation/stable/reference/readwrite/adjlist.html



Part 3: Normalizing Sparse Matrices

In Homework 6, we had an opportunity to write a function which converted
an adjacency matrix into a transition matrix. That implementation is (surprise
surprise) too slow to work with very large sparse matrices. This is quite a
difficult problem, which is why there is a scikit-learn function called normalize

for doing this. We will use this out of the box.

Task. After running the same command as in the previous step, you should
also see the normalized form of the adjacency matrix. Make sure that it looks
correct.

Part 4: One Step of the Power Method

The bulk of your work is going to be in defining the function which does one
iteration of the power method. The reason this part is tricky is that we cannot
do boundary reflecting or damping within the matrix as we did in lecture. This
is because both boundary reflecting and damping make the matrix dense
which would defeat the purpose of this using the sparse matrix in the first
place.

The key observation is that both boundary reflecting and damping can be
implemented without changing the very large sparse normalized matrix. The
equation that we used in lecture for the final transition matrix was

(1− α)A+
α

n
1

where A is the normalized matrix with all-zeros columns replaced with all-ones
columns (before normalization).5 The first step is to notice that A can be
thought of as the matrix A′ + 1

nAz where A′ is the normalized matrix possibly
with all-zeros columns and Az is the matrix with all-ones columns where A′

has all-zeros columns and zeros everywhere else. In the context of our running
example: 

0 1/6 1/3 0 0 0
1/2 1/6 1/3 0 0 0
1/2 1/6 0 0 0 0
0 1/6 0 0 1/2 1
0 1/6 1/3 1/2 0 0
0 1/6 0 1/2 1/2 0


is the same as

0 0 1/3 0 0 0
1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

+
1

6


0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0


5Historically (1−α) is called the damping factor and the original paper on PageRank takes

α to be 0.15 (we will do the same).



Next, we’re not actually interested in the above matrix, but the matrix-vector
multiplication

((1− α)A+
α

n
1)v

for some vector v, which can be rewritten as

(1− α)A′v +
1− α

n
Azv +

α

n
1v

and the two vectors on the right in this equation have a very simple structure.

Task. You will be implementing a single step of the power method in the
function power step. Given a sparse matrix A’ and a 2D NumPy array v, you
need to implement the equation

(1− α)A′v +
1− α

n
Azv +

α

n
1v

without building the matrices Az or α
n1. You cannot, for example, use6

(alpha / A’.shape[0]) * np.ones(A’.shape)

Instead, you need to think about what the vectors 1−α
n Azv and α

n1v are, and
compute that separately. For the first of these two, you are given a vector
zero cols as input which has the property that zero cols[i] is 1 if the ith
column of A′ is all-zeros, and 0 otherwise.

This is probably the trickiest part, so give it some thought. A
couple last implementation notes:

• You should not use the A @ v for matrix-vector multiplication when A is
sparse, but rather A.dot(v). This is better optimized for sparse matrices.

• Remember that adding a number to a vector adds that number entry-wise.
For example, np.array([1, 2, 3]) + 2 * np.ones(3) is the same as
np.array([1, 2, 3]) + 2 is the same as np.array([3, 4, 5]).

Part 5: Power Method

Now that we have pre-processed our matrix and built the function for doing an
iteration of our power method, we can implement the power method itself. This
is a matter of implementing the psuedocode from lecture and the notes.

Task. You will be implementing the power method in the function power iter.
You should separately write the function l1 error which computes the function

errorℓ1(u,v) =
n∑

i=1

|ui − vi|

6This is not a restriction of the assignment, this matrix will be too large to build on your
machine.



as in the notes. If you’re interested in where the name comes from, feel free to
peruse the Wikipedia page on Norms.7

You’ll notice when you run the pagerank.py program a bunch of stuff is
printed to the command line. In this function youmust call the print error log

once every 10 iterations of the power method, and one last time when you stop
iterating (so you can see the final error). For example, a run might print the
following.

1 | error after 10 iterations: 0.03154451079478763

2 | error after 20 iterations: 0.003705951856289287

3 | error after 30 iterations: 0.0005351506008266042

4 | error after 40 iterations: 8.340084685614549e-05

5 | error after 50 iterations: 1.3684642707116416e-05

6 | error after 60 iterations: 2.3141829071034e-06

7 | error after 70 iterations: 3.9985909018511144e-07

8 | error after 80 iterations: 7.079267907127914e-08

9 | error after 90 iterations: 1.2740109503149871e-08

10 | error after 92 iterations: 9.043053349643915e-09

So all together, the run took 92 iterations. This will make it easier for you to
see the progress that is being made as you run it.

Part 6: Running PageRank

When you’re done, you will be able to run your program on large graphs taken
from the Stanford Large Network Dataset Collection.8 The assignment comes
with three graphs based on actual Web data, one from Stanford, one from
Stanford and Berkeley, and one from Google.

You will be filling in functions in the file hw10prog.py, but the actual pro-
gram for PageRank is pagerank.py. This file imports the functions that you
write. You should read through pagerank.py and try to understand
what’s going on to the best of your ability. It’s okay if you don’t get
everything.

The file pagerank.py takes two arguments at the command line: the name
of a file in adjacency list format, and an exponent for the error tolerance used
in the power method. So

1 python pagerank.py basic.adjlist 4

will run PageRank on the graph in basic.adjlist with error tolerance 0.0001.
If you type

1 python pagerank.py

with no arguments, you will get a usage string that gives you more detail on
this.

You can do this problem by running the program in this way, but the project
also comes with a Makefile. If you haven’t had a chance to work with Makefiles,
they are used to organize code building, running and cleaning processes. On
the command line, you can instead just run the following commands:

7https://en.wikipedia.org/wiki/Norm (mathematics)#Euclidean norm
8http://snap.stanford.edu/data/index.html



• make basic runs PageRank on the basic graph from the running example

• make stanford runs PageRank on the Stanford web data

• make berkstan runs PageRank on the Berkeley-Stanford data

• make google runs PageRank on the Google data

• make fullrun runs PageRank on all three of the large graphs

• make destroy deletes all auxiliary files created by the program (more on
this in a moment)

The last thing you need to know about running the program: you’ll find that
preprocessing will take the bulk of the time when running. To make this a
bit easier, the program saves intermediate representations of the pre-processed
graphs and rankings it finds so that you don’t have to recompute them if you
rerun the program. These are the files with the extensions .npy and .npz. So
if you find that your implementation is incorrect but you already ran
it you have to delete these files or call make destroy to get rid of them before
recomputing the ranking.

Task. You should run PageRank on every large graph with an error tolerance
of 10−8. Alternatively, you can use make fullrun. You should then fill in the
variables top five stanford, top five berkstan, and top five google with
the top 5 nodes after calling PageRank. You can determine these values by
looking at what is printed to the command line. To be clear, these variables
should be assigned to lists of 5 numbers.

Submission. All together, your required tasks are:

• Install necessary packages (Part 0)

• Verify the setup by running the program on basic.adjlist (Part 1)

• Fill in power step (Part 4)

• Fill in l1 error and power iter (Part 5)

• Fill in the ranking variables top five stanford, top five berkstan, and
top five google (Part 6)

You are given starter code in hw10.zip. You will upload a single file (found in
that directory) hw10prog.py to Gradescope, where you can verify that it passes
some (but not all) autograder tests. Don’t change the name of this file
when you submit. Also don’t change the names of any functions included in
the starter code. The only changes you should make are to fill in the
provided TODO items. A couple last note:

• Test using make basic or python3 basic.adjlist 8 as you work. This
will be faster than working with the large graphs while testing. You can
verify the ranking against what is given in the notes.



• This isn’t a lot of code, but there’s a lot to think about. Work out a
couple examples on paper, make sure you know what you are trying to
implement before you go to typing it out in Python.


