
Homework 12

CAS CS 132: Geometric Algorithms

Due: Tuesday December 12, 2023 at 11:59PM

Submission Instructions

This week there is only a programming assignment. See below for instructions
on submission to Gradescope.

Practice Problems

The following list of problems comes from Linear Algebra and its Application
5th Ed by David C. Lay, Steven R. Lay, and Judi J. McDonald. They may
be useful for solidifying your understanding of the material and for studying in
general. They are optional, so please don’t submit anything for them.

• 6.6.2-4, 6.6.6, 6.6.9, 6.6.10



1 Linear Models (Programming)

In this problem, you will be finding models for the cost of homes in California
based on 1990 census data using multiple regression. This is very similar to the
example given in the section “Multiple Regression in Practice” from the text so
please make sure to read this example if you want additional guidance.

The objective of this problem will not be implementing model fitting (as
is the case for the example from the text). This will be implemented for you
via a single call to numpy.linalg.lstsq. Rather, your primary objective is to
build design matrices for linear, quadratic, and cubic functions. You can use
any function in NumPy we’ve seen in this course, but it may be useful to look
at the following functions before you get started:

• np.ones

• np.column stack

• np.linalg.norm

• Recall that a[:,i] is the ith column of a.

You are given starter code in the file hw12prog.py. Do not change the name
of this file when you submit. Also don’t change the names of any functions
included in the starter code. The only changes you should make are to
fill in the provided TODO items. In particular, you cannot change the
imports to the file. You may also notice that this file depends on scikit-learn.
Please verify early that you can work with this dependency. If you set
everything up for Homework 10, then this should require no additional work.

There are four function you need to fill in.

• distance, which calculates the distance between two vectors in Rn, rep-
resented as 1D NumPy arrays.

• linear design matrix, which builds the design matrix for simple multi-
ple regression, i.e., for finding a model of the form

f(x1, . . . , xn) = β0 +
∑

1≤i≤n

βixi

This matrix should be identical to the one in the text. The independent
variables are given to you as a matrix, where each row represent a data-
point. The dataset has 8 independent variables, so the input ind vars is
a 2D NumPy array with 8 columns, and the design matrix you return on
the input ind vars should have 9 columns.

• quadratic design matrix, which builds the design matrix for multiple
regression with a quadratic modeling function, i.e.,

f(x1, . . . , xn) = β0 +
∑

1≤i≤n

βixi +
∑

1≤i≤j≤n

βijxixj



This will require adding many new columns; the design matrix you return
on the input ind vars should have 45 columns.

• cubic design matrix, which builds the design matrix for multiple regres-
sion with a cubic modeling function, i.e.,

f(x1, . . . , xn) = β0 +
∑

1≤i≤n

βixi +
∑

1≤i≤j≤n

βijxixj +
∑

1≤i≤j≤k≤n

βijkxixjxk

The design matrix you return on the input ind vars should have 165
columns. As a hint, note that many of the columns you have to add are
the same ones you added in the previous function; don’t redo your work.

When you run the file, you should see a small report on the data and three error
calculations for each kind of model. If you’ve done everything correctly, your
errors should be around 104, 93, and 86 for linear, quadratic, and cubic func-
tions, respectively (note that the error goes down as the models become more
complex). There is also some commented-out code for graphing the predictions
against the actual values (as in the text). I highly recommend running this to
see how the prediction accuracy “looks” for each model, but you don’t have to
submit anything for this.

You will upload a single file hw12prog.py to Gradescope, where you can
verify that it passes some (but not all) autograder tests.


