Week 4 Discussion

CAS CS 132: Geometric Algorithms

September 25, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 Unique Solutions (Warm-up)

Determine if the following equations of the form $A \mathbf{x}=\mathbf{b}$ have unique solutions. If they do, write down what the solution is.
A. $\left[\begin{array}{cccc}1 & -1 & 0.5 & 3 \\ 1 & 2 & 15 & 6 \\ 2 & 46 & -24 & 3\end{array}\right] \mathbf{x}=\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]$
B. $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 2 & 4\end{array}\right] \mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Solution.

2 Switching Free and Bound Variable (From the Previous Assignment)

Before presenting the solution to this problem, a note about general form solutions.

A general form solution is a description of the solution set of a system of linear equations (or vector equation or matrix equation) such that every variable either

- is designated as free,
- or is written as a linear equation of the free variables, and is called basic.

For example, the equation

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

has the general form solution

$$
\begin{aligned}
& x_{1}=1-x_{3} \\
& x_{2}=2 \\
& x_{3} \text { is free }
\end{aligned}
$$

but it also has the general form solution

$$
\begin{aligned}
& x_{1} \text { is free } \\
& x_{2}=2 \\
& x_{3}=1-x_{1}
\end{aligned}
$$

Both are valid general form solutions to the above equation. The first, we get from our procedure for reading a general form solution off of a reduced echelon form. But again, the second is also a general form solution, since they both describe the same solution set.

General form solutions are also sometimes called parametric solutions because the free variables are parameters in which the basic variables are written. Since reduced echelon forms are unique, there is a single general form solution that you will get by reading off the reduced echelon form of a matrix. But this does not mean that a system has a unique general form solution, it may have many general form solutions which describe the same solution set.

Consider the following augmented matrix in reduced echelon form.

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 2 & 3 \\
0 & 0 & 1 & 1 & 4
\end{array}\right]
$$

A. Write down the solution to this system in general form.
B. Rewrite the solution in general form so that x_{1} and x_{3} are free (and x_{2} and x_{4} are written in terms of x_{1} and x_{3}).
C. Write down the solution from part B as an augmented matrix (that is, your general form solution from part B should have two linear equations, you should rearrange these equations and write them as an augmented matrix). Write down the row operation of the form $R_{i} \leftarrow R_{i}+c R_{j}$ which converts the matrix from this part to the one above.

Solution.

3 Matrix-Vector Multiplications (Similar to the Current Assignment)

Write down a matrix A such that the following equations hold. For each part, write down A in the specified shape, where \square represents a nonzero entry.
A. $\left[\begin{array}{ccc}\square & 0 & \square \\ 0 & \boldsymbol{\square} & 0 \\ \square & 0 & \square \\ 0 & \square & 0\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$
B. $\left[\begin{array}{ccc}\boldsymbol{\square} & \square & \square \\ 0 & \boldsymbol{\square} & \boldsymbol{\square} \\ 0 & 0 & \boldsymbol{\square}\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Solution.

