Week 7 Discussion

CAS CS 132: Geometric Algorithms

October 16, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 Matrix Inverses (Warm Up)

For each matrix A, determine if it is invertible. If it is, compute its inverse A^{-1} and demonstrate that it is an inverse by computing $A^{-1} A$ and $A A^{-1}$.
A.

$$
A=\left[\begin{array}{ccc}
2 & 3 & -1 \\
0 & -1 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

B.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
2 & 2 & 0
\end{array}\right]
$$

Solution.

2 Span and Linear Independence (Midterm)

Consider the following vectors in \mathbb{R}^{4}.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-3 \\
4 \\
3 \\
7
\end{array}\right] \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
2
\end{array}\right] \mathbf{v}_{3}=\left[\begin{array}{c}
0 \\
-2 \\
-1 \\
-1
\end{array}\right] \mathbf{v}_{4}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-2
\end{array}\right]
$$

A. Determine if \mathbf{v}_{1} is in $\operatorname{span}\left\{\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$. Justify your answer. In particular, if \mathbf{v}_{1} is in $\operatorname{span}\left\{\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$, then write \mathbf{v}_{1} as a linear combination of \mathbf{v}_{2}, \mathbf{v}_{3}, and \mathbf{v}_{4}.
B. Determine if the vectors $\mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4} are linearly independent. Justify your answer. In particular, if they are linearly dependent, then write a dependence relation for them (that is, write the zero vector $\mathbf{0}$ as a linear combination of the vectors $\mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4}).
C. Determine if the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are linearly independent. Justify your answer. In particular, if they are linearly dependent, then write a dependence relation for them.

Solution.

3 3D Rotation Matrices

The matrices used for rotating counter-clockwise by θ around the x-, y-, and z-axes are
$R_{x, \theta}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right] \quad R_{y, \theta}=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right] \quad R_{z, \theta}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
Note that difference in sign for $R_{y, \theta}$. This is due to a convention called the right-hand rule which says that the orientation of the positive directions of each axis is given by thinking of the index finger, middle finger, and thumb of our right hand as the $x-, y$-, and z-axes (and that when we talk about counterclockwise around an axis, we mean counter-clockwise when the positive axis is pointing towards us).
A. Compute $\mathbf{v}=R_{z, 45^{\circ}}[1(-1) \sqrt{2}]^{T}$. Recall that $\cos 45^{\circ}=\sin 45^{\circ}=\frac{\sqrt{2}}{2}$.
B. Computer $R_{y, 45^{\circ}} \mathbf{v}$, where \mathbf{v} is the vector from the previous part.

Try to draw, to the best of your ability, what is happening to this vector after each transformation.

Solution.

