Week 8 Discussion

CAS CS 132: Geometric Algorithms

October 23, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q&A.

1 Warm up

Consider the following matrices in echelon form and reduced echelon form.

A =	$\begin{bmatrix} 2\\0\\0 \end{bmatrix}$	$\begin{array}{c} -3 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0\\2\\10 \end{bmatrix}$	B =	$ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	0 1 0 0	$2 \\ 3 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} $		$C = \begin{bmatrix} 10\\0\\0 \end{bmatrix}$	$egin{array}{c} 1 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 3 \\ -3 \\ 6 \end{bmatrix}$	
						L	0	0	0	· ·				

- A. If $D \sim A$ (that is D is row equivalent to A) and D is the augmented matrix of a system of linear equations, what can we say about the solutions of the system? (e.g., general form, number of solutions)
- B. If $D \sim C$, then what can we say about the columns of A? (e.g., linearly independence, span)
- C. If $D \sim C$, then what can we say about the solutions to the equation $D\mathbf{x} = \mathbf{0}$?
- D. If $D \sim B$, then what can we say about the columns of D?
- E. If $D \sim B$ and D represents the augmented matrix of a system of linear equations of B, what can we say about the columns of the coefficient matrix for the system?
- F. If $D \sim A$ and D is the augmented matrix of a system of linear equations, what can we say about the solutions of the system for which $x_1 = 0$.

Solution.

2 Composing Rotations

Consider the following \mathbb{R}^3 rotation matrices.

	$\cos 45^{\circ}$	$-\sin 45^\circ$	0		1	0	0]
A =	$\sin 45^{\circ}$	$\cos 45^{\circ}$	0	B =	0	$\cos 180^{\circ}$	$-\sin 180^{\circ}$
	0	0	1		0	$\sin 180^{\circ}$	$\cos 180^{\circ}$

The matrix A rotates vectors around the x_3 -axis by 45 degrees, and B rotates vectors around the x_1 -axis by 180 degrees. Also remember that

$$\cos 45^\circ = \frac{\sqrt{2}}{2}$$
$$\sin 45^\circ = \frac{\sqrt{2}}{2}$$
$$\cos 180^\circ = -1$$
$$\sin 180^\circ = 0$$
$$\cos(-\theta) = \cos(\theta) \text{ for any } \theta$$
$$\sin(-\theta) = -\sin(\theta) \text{ for any } \theta$$

- A. (4 points) Determine A^{-1} . Every entry should be a scalar multiple of 1, $\cos 45^{\circ}$ or $\sin 45^{\circ}$. In particular, don't include any trigonometric functions applied to negative angles. *Hint.* You don't have to do any calculations for this. Think about what it means to "undo" a rotation.
- B. (6 points) Calculate ABA^{-1} . Your solutions should be as reduced as possible, and should not contain any trigonometric functions.
- C. (4 points) Describe what the transformation implemented by ABA^{-1} does geometrically. Your answer should be of the form "rotation by [NUMBER] degrees around the span of [VECTOR]." *Hint.* We've seen this transformation before.

Solution.

3 Regular Stochastic Matrices

For each of the following stochastic matrices:

- Determine if it is regular.
- Write down a solution to the homogeneous equation $(A I)\mathbf{x} = \mathbf{0}$.
- If it is possible, find a steady-state vector from this solution.

А.	$\begin{bmatrix} 1 & 0.5 \\ 0 & 0.5 \end{bmatrix}$
В.	$\begin{bmatrix} 0.2 & 1 \\ 0.8 & 0 \end{bmatrix}$

Solution.