Week 8 Discussion

CAS CS 132: Geometric Algorithms

October 23, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 Warm up

Consider the following matrices in echelon form and reduced echelon form.

$$
A=\left[\begin{array}{cccc}
2 & -3 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 10
\end{array}\right] \quad B=\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 3 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{ccc}
10 & 1 & 3 \\
0 & 1 & -3 \\
0 & 0 & 6
\end{array}\right]
$$

A. If $D \sim A$ (that is D is row equivalent to A) and D is the augmented matrix of a system of linear equations, what can we say about the solutions of the system? (e.g., general form, number of solutions)
B. If $D \sim C$, then what can we say about the columns of A ? (e.g., linearly independence, span)
C. If $D \sim C$, then what can we say about the solutions to the equation $D \mathrm{x}=\mathbf{0}$?
D. If $D \sim B$, then what can we say about the columns of D ?
E. If $D \sim B$ and D represents the augmented matrix of a system of linear equations of B, what can we say about the columns of the coefficient matrix for the system?
F. If $D \sim A$ and D is the augmented matrix of a system of linear equations, what can we say about the solutions of the system for which $x_{1}=0$.

Solution.

2 Composing Rotations

Consider the following \mathbb{R}^{3} rotation matrices.

$$
A=\left[\begin{array}{ccc}
\cos 45^{\circ} & -\sin 45^{\circ} & 0 \\
\sin 45^{\circ} & \cos 45^{\circ} & 0 \\
0 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 180^{\circ} & -\sin 180^{\circ} \\
0 & \sin 180^{\circ} & \cos 180^{\circ}
\end{array}\right]
$$

The matrix A rotates vectors around the x_{3}-axis by 45 degrees, and B rotates vectors around the x_{1}-axis by 180 degrees. Also remember that

$$
\begin{aligned}
\cos 45^{\circ} & =\frac{\sqrt{2}}{2} \\
\sin 45^{\circ} & =\frac{\sqrt{2}}{2} \\
\cos 180^{\circ} & =-1 \\
\sin 180^{\circ} & =0 \\
\cos (-\theta) & =\cos (\theta) \text { for any } \theta \\
\sin (-\theta) & =-\sin (\theta) \text { for any } \theta
\end{aligned}
$$

A. (4 points) Determine A^{-1}. Every entry should be a scalar multiple of 1 , $\cos 45^{\circ}$ or $\sin 45^{\circ}$. In particular, don't include any trigonometric functions applied to negative angles. Hint. You don't have to do any calculations for this. Think about what it means to "undo" a rotation.
B. (6 points) Calculate $A B A^{-1}$. Your solutions should be as reduced as possible, and should not contain any trigonometric functions.
C. (4 points) Describe what the transformation implemented by $A B A^{-1}$ does geometrically. Your answer should be of the form "rotation by [NUMBER] degrees around the span of [VECTOR]." Hint. We've seen this transformation before.

Solution.

3 Regular Stochastic Matrices

For each of the following stochastic matrices:

- Determine if it is regular.
- Write down a solution to the homogeneous equation $(A-I) \mathbf{x}=\mathbf{0}$.
- If it is possible, find a steady-state vector from this solution.
A.

$$
\left[\begin{array}{ll}
1 & 0.5 \\
0 & 0.5
\end{array}\right]
$$

B.

$$
\left[\begin{array}{ll}
0.2 & 1 \\
0.8 & 0
\end{array}\right]
$$

Solution.

