Week 9 Discussion Solutions

CAS CS 132: Geometric Algorithms

October 30, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 LU Factorization by Hand (Warm Up)

Compute the LU factorization of the following matrix. Then verify that your factorization is correct by carrying out the matrix multiplication $L U$.

$$
\left[\begin{array}{ccc}
1 & 2 & -3 \\
-1 & -1 & 4 \\
2 & 3 & -6
\end{array}\right]
$$

Solution. This matrix can be reduced to an echelon form by the following row operations.

$$
\begin{aligned}
& R_{2} \leftarrow R_{2}+R_{1} \\
& R_{3} \leftarrow R_{3}+(-2) R_{1} \\
& R_{3} \leftarrow R_{3}+R_{2}
\end{aligned}
$$

which yields the matrix

$$
U=\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

We can then build the matrix L using the procedure we discussed in lecture: we start with $L \leftarrow I$ and then perform the following sequence of operations on L according to the row operations above.

$$
\begin{aligned}
& L_{21} \leftarrow-1 \\
& L_{31} \leftarrow 2 \\
& L_{32} \leftarrow-1
\end{aligned}
$$

so we get the matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]
$$

2 Matrix Algebra

A. Suppose A and B are invertible matrices and $A B^{T} X A^{-1} B=I$. Solve for X in terms of A and B.
B. Show that $A+A^{T}$ is symmetric for any square matrix A. That is, show that $\left(A+A^{T}\right)^{T}=A+A^{T}$.
C. Show that if A and B are symmetric and $A B=B A$ then $A B$ is symmetric.

Solution.

A. Solving for X is a matter of multiplying both sides of the equation by matrices until X is isolated:

$$
\begin{aligned}
A B^{T} X A^{-1} B & =I \\
A^{-1} A B^{T} X A^{-1} B & =A^{-1} I \\
B^{T} X A^{-1} B & =A^{-1} \\
\left(B^{-1}\right)^{T} B^{T} X A^{-1} B & =\left(B^{-1}\right)^{T} A^{-1} \\
\left(B^{T}\right)^{-1} B^{T} X A^{-1} B & =\left(B^{-1}\right)^{T} A^{-1} \\
X A^{-1} B & =\left(B^{-1}\right)^{T} A^{-1} \\
X A^{-1} B B^{-1} & =\left(B^{-1}\right)^{T} A^{-1} B^{-1} \\
X A^{-1} & =\left(B^{-1}\right)^{T} A^{-1} B^{-1} \\
X A^{-1} A & =\left(B^{-1}\right)^{T} A^{-1} B^{-1} A \\
X & =\left(B^{-1}\right)^{T} A^{-1} B^{-1} A
\end{aligned}
$$

It is not necessary for you have explicitly included the 5 th line.
B. As noted in the problem statement, we need to show that $\left(A+A^{T}\right)^{T}=$ $A+A^{T}$. We have to use the equalities we know about transposes to do this.

$$
\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=A+A^{T}
$$

C. Same idea as the previous part:

$$
(A B)^{T}=B^{T} A^{T}=B A=A B
$$

We can replace B^{T} with B and A^{T} with A because they are both symmetric.

3 NumPy and SciPy

A. Construct a random 10×10 matrix and a random vector in \mathbb{R}^{10} using

```
import numpy
import scipy
a = numpy.random.rand (10, 10)
b = numpy.random.rand (10)
```

Then construct its inverse and its LU factoration using numpy.linalg.inv and scipy.linalg.lu_factor, respectively. Finally, solve equation ax $=$ b in three ways:

```
s1 = numpy.linalg.solve(a, b)
s2 = a_inv @ b
s3 = scipy.lu_solve(lu) # where lu is the result of lu_factor
```

Verify that these three solutions are the same. Note, this process is not guaranteed to succeed since not all square matrices are invertible, but it is incredibly unlikely that a random 10×10 matrix is not invertible.
B. Construct a random integer matrix with entries between 1 and 10 as follows:

```
a = numpy.random.randint(1, 11, (10, 10))
```

Write a function called norm_col which divides a NumPy vector by the sum of its entries (you don't need to consider the case in which the input is the zero vector). Then read about the function numpy. apply_along_axis in the NumPy documentation. Check the value of

