Week 10 Discussion Solutions

CAS CS 132: Geometric Algorithms

November 6, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q&A.

1 Column Space and Null Space (Warm Up)

Consider the following matrix

$$A = \begin{bmatrix} 1 & -2 & 0\\ 0 & 1 & -1\\ -3 & 1 & 5 \end{bmatrix}$$

- A. Find the reduced echelon form of A.
- B. Write down a general form solution for the equation $A\mathbf{x} = \mathbf{0}$.
- C. Find a basis for $\operatorname{Col} A$.
- D. Find a basis for $\operatorname{Nul} A$.
- E. Find a linear equation whose solution set (i.e., those points in the plane represented by the linear equation) is $\operatorname{Col} A$.

Solution.

Α.

В.

[1	0	-2
0	1	-1
0	0	0
-		

$$x_1 = 2x_3$$
$$x_2 = x_3$$
$$x_3 \text{ is free}$$

C. The pivot columns of A are its first and second columns. These columns form a basis for the column space of A:

$$\left\{ \begin{bmatrix} 1\\0\\-3 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}$$

D. The above general form solution can be represented as a linear combination of column vectors with free variables as weights:

$$x_3 \begin{bmatrix} 2\\1\\1 \end{bmatrix}$$

So this single vector forms a basis for the null space of A.

$$\left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$$

E. In order to find a plane which is spanned by two given vectors, we have to reduce a matrix of the form

$$\begin{bmatrix} 1 & -2 & x_1 \\ 0 & 1 & x_2 \\ -3 & 1 & x_3 \end{bmatrix}$$

to echelon form. Do so gives us

$$\begin{bmatrix} 1 & -2 & x_1 \\ 0 & 1 & x_2 \\ 0 & 0 & x_3 + 3x_1 + 5x_2 \end{bmatrix}$$

In order for the system of linear equations represented by the above matrix to be consistent, it must be that $3x_1 + 5x_2 + x_3 = 0$. In other words, in order for a vector $[x_1 \ x_2 \ x_3]^T$ to lie in the span of Col A, it must be a solution to the equation $3x_1 + 5x_2 + x_3 = 0$.

2 Order of Matrix Multiplcation

The matrices for the 2D transformations (on homogeneous coordinates) of translation and counterclockwise rotation about the origin are

	[1	0	x		$\cos \theta$	$-\sin\theta$	0
$T_{x,y} =$	0	1	y	$R_{\theta} =$	$\sin \theta$	$\cos \theta$	0
	0	0	1		0	0	1

- A. Show that $T_{1,1}R_{\pi/4} \neq R_{\pi/4}T_{1,1}$. Recall that $\pi/4$ in radians is 45° and $\cos(\pi/4) = \sin(\pi/4) = \sqrt{2}/2$.
- B. If we want to do rotation *and then* translation, which of the two matrices in the previous part do we want to use?
- C. Draw the effects $T_{1,1}R_{\pi/4}$ and $R_{\pi/4}T_{1,1}$ on the unit square on two separate graphs.

Solution.

Α.

$$T_{1,1}R_{\pi/4} = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 1\\ \sqrt{2}/2 & \sqrt{2}/2 & 1\\ 0 & 0 & 1 \end{bmatrix} \qquad R_{\pi/4}T_{1,1} = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0\\ \sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2}\\ 0 & 0 & 1 \end{bmatrix}$$

- B. Application order is the reverse of multiplication order. If we want to apply $R_{\pi/4}$ and then $T_{1,1}$, then we need to apply $T_{1,1}R_{\pi/4}$.
- C. Please consult the solution given during your discussion section.

3 Intersections and Unions of Subspaces

Let H_1 and H_2 be arbitrary subspaces of \mathbb{R}^n .

A. The *intersection* of H_1 and H_2 , written $H_1 \cap H_2$, is the set of vectors which appear in *both* H_1 and H_2 :

$$H_1 \cap H_2 = \{ \mathbf{v} : \mathbf{v} \in H_1 \text{ and } \mathbf{v} \in H_2 \}$$

Show that $H_1 \cap H_2$ is a subspace. (In other words, the intersection of two spans is a span).

B. The union of H_1 and H_2 , written $H_1 \cup H_2$, is the set of vectors which appear in at least one of H_1 and H_2 :

$$H_1 \cup H_2 = \{ \mathbf{v} : \mathbf{v} \in H_1 \text{ or } \mathbf{v} \in H_2 \}$$

Give an explicit example of two subspaces \mathbb{R}^2 whose union is *not* a subspace of \mathbb{R}^2 . *Hint*. Pick pretty much any two vectors **u** and **v** in \mathbb{R}^2 and take the two subspaces to be span{**u**} and span{**v**}.

Solution.

A. We have to verify two things: closure under addition and closure under scaling. First, closure under addition. Suppose we have two arbitrary vectors \mathbf{u} and \mathbf{v} of $H_1 \cap H_2$. We need to show that $\mathbf{u} + \mathbf{v}$ is in both H_1 and H_2 . First note that \mathbf{u} and \mathbf{v} are both in H_1 and in H_2 . Since H_1 is a subspace, it is closed under addition, so $\mathbf{u} + \mathbf{v} \in H_1$. Likewise, since H_2 is a subspace, it is closed under addition so $\mathbf{u} + \mathbf{v} \in H_2$. Therefore, $\mathbf{u} + \mathbf{v}$ is in $H_1 \cap H_2$.

Now for closure under scaling. Suppose we have an arbitrary vector \mathbf{v} in $H_1 \cap H_2$ and an arbitrary scalar c. Then \mathbf{v} is in both H_1 and H_2 . Since H_1 is closed under scaling, we have $c\mathbf{v}$ is in H_1 . And since H_2 is closed under scaling, we also have $c\mathbf{v}$ is in H_2 . Therefore, $c\mathbf{v} \in H_1 \cap H_2$.

B. It is very unlikely that the union of spans of two distinct vectors will form a subspace. Consider span $\{e_1\}$ and span $\{e_2\}$. Then

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \operatorname{span}\{\mathbf{e}_1\} \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in \operatorname{span}\{\mathbf{e}_2\}$$

but $[1 \ 1]^T$ does not appear in either spans. Try to draw a picture to make this more clear.