Week 10 Discussion

CAS CS 132: Geometric Algorithms

November 6, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 Column Space and Null Space (Warm Up)

Consider the following matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & -1 \\
-3 & 1 & 5
\end{array}\right]
$$

A. Find the reduced echelon form of A.
B. Write down a general form solution for the equation $A \mathbf{x}=\mathbf{0}$.
C. Find a basis for $\operatorname{Col} A$.
D. Find a basis for $\operatorname{Nul} A$.
E. Find a linear equation whose solution set (i.e., those points in the plane represented by the linear equation) is $\operatorname{Col} A$.

Solution.

2 Order of Matrix Multiplcation

The matrices for the 2D transformations (on homogeneous coordinates) of translation and counterclockwise rotation about the origin are

$$
T_{x, y}=\left[\begin{array}{lll}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right] \quad R_{\theta}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

A. Show that $T_{1,1} R_{\pi / 4} \neq R_{\pi / 4} T_{1,1}$. Recall that $\pi / 4$ in radians is 45° and $\cos (\pi / 4)=\sin (\pi / 4)=\sqrt{2} / 2$.
B. If we want to do rotation and then translation, which of the two matrices in the previous part do we want to use?
C. Draw the effects $T_{1,1} R_{\pi / 4}$ and $R_{\pi / 4} T_{1,1}$ on the unit square on two separate graphs.

Solution.

3 Intersections and Unions of Subspaces

Let H_{1} and H_{2} be arbitrary subspaces of \mathbb{R}^{n}.
A. The intersection of H_{1} and H_{2}, written $H_{1} \cap H_{2}$, is the set of vectors which appear in both H_{1} and H_{2} :

$$
H_{1} \cap H_{2}=\left\{\mathbf{v}: \mathbf{v} \in H_{1} \text { and } \mathbf{v} \in H_{2}\right\}
$$

Show that $H_{1} \cap H_{2}$ is a subspace. (In other words, the intersection of two spans is a span).
B. The union of H_{1} and H_{2}, written $H_{1} \cup H_{2}$, is the set of vectors which appear in at least one of H_{1} and H_{2} :

$$
H_{1} \cup H_{2}=\left\{\mathbf{v}: \mathbf{v} \in H_{1} \text { or } \mathbf{v} \in H_{2}\right\}
$$

Give an explicit example of two subspaces \mathbb{R}^{2} whose union is not a subspace of \mathbb{R}^{2}. Hint. Pick pretty much any two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{2} and take the two subspaces to be $\operatorname{span}\{\mathbf{u}\}$ and $\operatorname{span}\{\mathbf{v}\}$.

Solution.

