Week 12 Discussion

CAS CS 132: Geometric Algorithms

November 20, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 Diagonalization by Hand

Diagonalize the following matrix.

$$
A=\left[\begin{array}{cc}
-3 & -4 \\
2 & 3
\end{array}\right]
$$

Solution. This implies the eigenvalues of this matrix are 1 and -1 .
Next we have to find bases for the eigenspaces of each of these eigenvalues. First, we will find a basis for $\operatorname{Nul}(A-I)$. Since

$$
A-I=\left[\begin{array}{cc}
-4 & -4 \\
2 & 2
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

the solution set of the equation $(A-I) \mathbf{x}=\mathbf{0}$ can be written as

$$
x_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Therefore, $\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$ forms a basis of the eigenspace of A for the eigenvalue 1.
For the eigenvalue -1 , we can do the same:

$$
A+I=\left[\begin{array}{cc}
-2 & -4 \\
2 & 4
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]
$$

which implies (by the same process as above) that $[-21]^{T}$ forms a basis of the eigenspace of A for -1 . Therefore, we can take

$$
P=\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right] \quad D=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Finally, we have to find the inverse of P. One way to do this is to use the equation

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

In this case,

$$
P^{-1}=\frac{1}{(-1)(1)-(-2)(1)}\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right]
$$

2 Determinant

Consider the following reduction sequence

$$
\begin{aligned}
& R_{1} \leftarrow R_{1}+R_{2} \\
& \operatorname{swap}\left(R_{2}, R_{3}\right) \\
& R_{3} \leftarrow R_{3}+5 R_{4} \\
& R_{2} \leftarrow-3 R_{2} \\
& R_{5} \leftarrow R_{5}-10 R_{3} \\
& R_{5} \leftarrow R_{5} / 11 \\
& \operatorname{swap}\left(R_{5}, R_{3}\right) \\
& \operatorname{swap}\left(R_{1}, R_{2}\right) \\
& R_{4} \leftarrow R_{4}+R_{1} \\
& R_{2} \leftarrow 5 R_{2} \\
& R_{1} \leftarrow-R_{1}
\end{aligned}
$$

Suppose that $A \in \mathbb{R}^{5 \times 5}$ reduces to U by this reduction sequence, where U is in reduced echelon form. If $\operatorname{rank} A=5$, what is $\operatorname{det} A$?

Solution.

32×2 Triangular Matrices and Diagonalization

Consider an arbitrary 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]
$$

A. Find an expression for the characteristic polynomial of A.
B. If $a \neq d$, then A has 2 distinct eigenvalues, and so there must be an eigenbasis of \mathbb{R}^{2} for A. If $a=d$, for what values of b is there an eigenbasis of \mathbb{R}^{2} for A ? Justify your answer.

Solution.

