Week 13 Discussion Solutions

CAS CS 132: Geometric Algorithms

November 27, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week. But not this week, there was no assignment last week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 Inner Products, Norms, Orthogonality

The first two problems come from Linear Algebra and its Applications.
A. Given vectors

$$
\mathbf{u}=\left[\begin{array}{c}
2 \\
-5 \\
-1
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
-7 \\
-4 \\
6
\end{array}\right]
$$

compute (by hand) $\mathbf{u} \cdot \mathbf{v},\|\mathbf{u}\|^{2},\|\mathbf{v}\|^{2}$, and $\|\mathbf{v}+\mathbf{u}\|^{2}$
B. Show that if \mathbf{y} is orthogonal to \mathbf{u} and \mathbf{v}, then it is orthogonal to $\mathbf{u}+\mathbf{v}$.
C. Find a linearly independent set of three nonzero vectors in \mathbb{R}^{4}, all of which are orthogonal to

$$
\left[\begin{array}{c}
1 \\
3 \\
-1 \\
3
\end{array}\right]
$$

Solution.
A.

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =2(-7)+(-5)(-4)+(-1)(6)=-14+20+-6=0 \\
\|\mathbf{u}\|^{2} & =2(2)+(-5)(-5)+(-1)(-1)=4+25+1=30 \\
\|\mathbf{v}\|^{2} & =(-7)(-7)+(-4)(-4)+6(6)=49+16+36=101 \\
\|\mathbf{u}+\mathbf{v}\|^{2} & =(2+(-7))^{2}+((-5)+(-4))^{2}+(-1+6)^{2}=25+81+25=131
\end{aligned}
$$

It may be worthwhile to think a bit about what is going on geometrically here.
B. We need to verify that $\mathbf{y}^{T}(\mathbf{u}+\mathbf{v})=0$. By distributing the multiplication over the sum, we see that this is the same as $\mathbf{y}^{T} \mathbf{u}+\mathbf{y}^{T} \mathbf{v}$. Each summand is equal to 0 by the assumption that \mathbf{y} is orthogonal to \mathbf{v} and \mathbf{u} separately.
C. a vector $\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4}\end{array}\right]^{T}$ is orthogonal to the given vector if

$$
v_{1}+3 v_{2}-v_{3}+3 v_{4}=0
$$

We can think of this as a system of linear equations with a single nontrivial equation whose augmented matrix has the reduced echelon form

$$
\left[\begin{array}{ccccc}
1 & 3 & -1 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

In essence, this question asks to find a basis for the null space of this matrix, and we can use any of the techniques we've learned so far to do this. Writing the general form solution as a linear combination of vectors with free variables as weights gives us the vectors
$\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0\end{array}\right]$
$\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$
$\left[\begin{array}{c}-3 \\ 0 \\ 0 \\ 1\end{array}\right]$

It is straightforward to verify that all of these vectors are orthogonal to the given vector.

2 Damping without a Matrix

Suppose that A is a $n \times n$ stochastic matrix. According to what we talked about in lecture, the matrix we use to perform PageRank is

$$
(1-\alpha) A+\frac{\alpha \mathbf{1}^{n \times n}}{n}
$$

where $\mathbf{1}^{n \times n}$ here is the $n \times n$ all-ones matrix. However, for the assignment this week, you will not be able to build this matrix because it is too dense. Given a vector \mathbf{v} from \mathbb{R}^{n}, write down an expression for

$$
\left((1-\alpha) A+\frac{\alpha \mathbf{1}^{n \times n}}{n}\right) \mathbf{v}
$$

which does not require building the matrix $\mathbf{1}^{n \times n}$. Hint. The expression should be of the form

$$
(1-\alpha) A \mathbf{v}+\mathbf{u}
$$

where \mathbf{u} is a vector depending on \mathbf{v} and the all-ones vector $\mathbf{1}^{n} \in \mathbb{R}^{n}$.
Solution. Clearly the vector \mathbf{u} has to be the same as $\frac{\alpha \mathbf{1}^{n \times n} \mathbf{v}}{n}$. The trick is to recognize that this vector is simple in that all its entries are identical: every entry is $\mathbf{1}^{n} \cdot \mathbf{v}$. Therefore

$$
\mathbf{u}=\frac{\alpha}{n}\left(\mathbf{1}^{n} \cdot \mathbf{v}\right) \mathbf{1}^{n}
$$

which does not require building the $n \times n$ all-ones matrix.
When you go to implement this with NumPy, its worth noting you can simplify it further. Think about how you might use np. sum instead of np.dot, for example.

