Week 13 Discussion

CAS CS 132: Geometric Algorithms

November 27, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week. But not this week, there was no assignment last week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 Inner Products, Norms, Orthogonality

The first two problems come from Linear Algebra and its Applications.
A. Given vectors

$$
\mathbf{u}=\left[\begin{array}{c}
2 \\
-5 \\
-1
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
-7 \\
-4 \\
6
\end{array}\right]
$$

compute (by hand) $\mathbf{u} \cdot \mathbf{v},\|\mathbf{u}\|^{2},\|\mathbf{v}\|^{2}$, and $\|\mathbf{v}+\mathbf{u}\|^{2}$
B. Show that if \mathbf{y} is orthogonal to \mathbf{u} and \mathbf{v}, then it is orthogonal to $\mathbf{u}+\mathbf{v}$.
C. Find a linearly independent set of three nonzero vectors in \mathbb{R}^{4}, all of which are orthogonal to
$\left[\begin{array}{c}1 \\ 3 \\ -1 \\ 3\end{array}\right]$

Solution.

2 Damping without a Matrix

Suppose that A is a $n \times n$ stochastic matrix. According to what we talked about in lecture, the matrix we use to perform PageRank is

$$
(1-\alpha) A+\frac{\alpha \mathbf{1}^{n \times n}}{n}
$$

where $\mathbf{1}^{n \times n}$ here is the $n \times n$ all-ones matrix. However, for the assignment this week, you will not be able to build this matrix because it is too dense. Given a vector \mathbf{v} from \mathbb{R}^{n}, write down an expression for

$$
\left((1-\alpha) A+\frac{\alpha \mathbf{1}^{n \times n}}{n}\right) \mathbf{v}
$$

which does not require building the matrix $\mathbf{1}^{n \times n}$. Hint. The expression should be of the form

$$
(1-\alpha) A \mathbf{v}+\mathbf{u}
$$

where \mathbf{u} is a vector depending on \mathbf{v} and the all-ones vector $\mathbf{1}^{n} \in \mathbb{R}^{n}$.
Solution.

