Week 14 Discussion Solutions

CAS CS 132: Geometric Algorithms

December 4, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 Basis of the column space (Warm up)

Consider the following matrices. Note that A^{\prime} is an echelon from of A.

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 2 & 0 & 2 \\
3 & 4 & 9 & -2 & 5 \\
-2 & -3 & -7 & 2 & -2 \\
2 & 2 & 4 & 0 & 5
\end{array}\right] \quad A^{\prime}=\left[\begin{array}{ccccc}
1 & 0 & -1 & 2 & 0 \\
0 & 1 & 3 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A. Use the echelon form above to find a basis of $\operatorname{Col} A$ made up of columns of A.
B. Write down a NumPy expression in terms of A (a 2D NumPy array representing the matrix A above) for the matrix whose columns are the basis vectors you found in the previous part.
C. Let A_{i} be the matrix whose columns are the first i columns of A. For example,

$$
A_{3}=\left[\begin{array}{ccc}
1 & 1 & 2 \\
3 & 4 & 9 \\
-2 & -3 & -7 \\
2 & 2 & 4
\end{array}\right]
$$

Find $\operatorname{rank}\left(A_{i}\right)$ for each i using the echelon form above.
D. Write down a NumPy expression for $\operatorname{rank}\left(A_{i}\right)$ in terms of A and i and the NumPy function numpy.linalg.matrix_rank, which returns the rank of its argument.
E. Let B be an arbitrary $m \times 5$ matrix and let B_{i} be the matrix whose columns are the first i columns of B. Further suppose that $\operatorname{rank}\left(B_{1}\right)=1$, $\operatorname{rank}\left(B_{2}\right)=1, \operatorname{rank}\left(B_{3}\right)=2, \operatorname{rank}\left(B_{4}\right)=3$, and $\operatorname{rank}\left(B_{5}\right)=3$. Which columns of B form a basis of $\mathrm{Col} B$?
F. Use the previous parts to describe in an informal procedure you can use to find a basis for the column space of a small matrix using Python.

Solution.

A. The columns of A which form a basis of $\operatorname{Col} A$ the pivot columns of A. Therefore,

$$
\left\{\left[\begin{array}{c}
1 \\
3 \\
-2 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
4 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
5 \\
-2 \\
5
\end{array}\right]\right\}
$$

is a basis for $\operatorname{Col} A$.
B. It is possible to index NumPy arrays with lists, which can be used to pick out rows or columns of a matrix:

$$
\mathrm{A}[:,[0,1,4]]
$$

C. The linear dependence relations between columns are preserved by row reductions. For example, since

$$
-1\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+3\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3 \\
0 \\
0
\end{array}\right]
$$

we also have that

$$
-1\left[\begin{array}{c}
1 \\
3 \\
-2 \\
2
\end{array}\right]+3\left[\begin{array}{c}
1 \\
4 \\
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
9 \\
-7 \\
4
\end{array}\right]
$$

We can use this to determine the ranks of each matrix: $\operatorname{rank}\left(A_{1}\right)=1$, $\operatorname{rank}\left(A_{2}\right)=2, \operatorname{rank}\left(A_{3}\right)=2, \operatorname{rank}\left(A_{4}\right)=2, \operatorname{and} \operatorname{rank}\left(A_{5}\right)=3$.
D. We can use array slices to achieve this:
numpy.linalg.matrix_rank(A[:,:i])
E. If $\operatorname{rank}\left(B_{i}\right)=\operatorname{rank}\left(B_{i+1}\right)$ then the $(i+1)$ th column of B lies in the span of the first i columns. Therefore, we can construct a basis for $\mathrm{Col} B$ by choosing the columns for which the rank increases. In this case, the first column, the third column and the fourth column.
F. If we want to find a basis for the column space of a small matrix, we can find the ranks of increasingly large subsets of columns and see which ones increase the rank.

2 Boundary Reflection without a Matrix

Suppose that A is a $n \times n$ matrix and \mathbf{z} is a vector in \mathbb{R}^{n} whose i th component is 1 if the i th column of A is $\mathbf{0}$, and 0 otherwise, e.g.,

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -3 & 0 \\
0 & 2 & 0
\end{array}\right] \quad \mathbf{z}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

For an arbitrary vector \mathbf{v} in \mathbb{R}^{n}, write down an expression in terms of A, \mathbf{z} and \mathbf{v} for the vector

$$
A^{\prime} \mathbf{v}
$$

where A^{\prime} is the same as A, but every all-zeros column of A is replaced with the vector $c \mathbf{1}$ for some scalar c, e.g., as it pertains to the example above,

$$
A^{\prime}=\left[\begin{array}{ccc}
c & 1 & c \\
c & -3 & c \\
c & 2 & c
\end{array}\right]
$$

Furthermore, write down a NumPy expression which computes this without using the function numpy. ones.
Solution. The difference between $A \mathbf{v}$ and $A^{\prime} \mathbf{v}$ in the example above is the vector

$$
c\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=c\left[\begin{array}{l}
v_{1}+v_{3} \\
v_{1}+v_{3} \\
v_{1}+v_{3}
\end{array}\right]
$$

The important point of recognition here is that $v_{1}+v_{3}=\mathbf{z} \cdot \mathbf{v}$. Therefore,

$$
A^{\prime} \mathbf{v}=A \mathbf{v}+c(\mathbf{z}+\cdot \mathbf{v}) \mathbf{1}
$$

If we translate this directly into a NumPy expression we get

$$
\mathrm{A} @ \mathrm{v}+\mathrm{c} *(\mathrm{z} @ \mathrm{v}) * \text { numpy. ones (A.shape [0]) }
$$

but we don't actually need the call to numpy. ones since adding a number to a 1D NumPy vector is the same as adding that number to each entry of the vector. So we can equivalently write this as

$$
\mathrm{A} @ \mathrm{v}+\mathrm{c} *(\mathrm{z} @ \mathrm{v})
$$

3 Multiple Least Squares Solutions

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
2 \\
5 \\
1
\end{array}\right]
$$

A. Find the orthogonal projection $\hat{\mathbf{b}}$ onto $\mathrm{Col} A$. (Hint. Note that the columns of A are linearly dependent. It will be easier to do the computation if you take the last three columns of A to find the projection.)
B. Find a general form solution for the homogeneous equation $A^{T} A \mathbf{x}=\mathbf{0}$. Then write this general form solution as a linear combination of vectors with free variables as weights.
C. Find the normal equations for the system $A \mathbf{x}=\mathbf{b}$.
D. Using the normal equations find a general form solution for the set of least squares solutions of $A \mathbf{x}=\mathbf{b}$. Then write this general form solution as a linear combination of vectors with free variables and the scalar 1 as weights.

Solution. Note for TFs/TAs: Feel free to give the reduced forms of the matrices below as you solve each step if you don't want to commit discussion time to having students solve them.
A. $\operatorname{Col} A$ is spanned by the last three columns of A, so we can use this matrix, call it C, to build a projection onto $\operatorname{Col} A$:

$$
\hat{\mathbf{b}}=C\left(C^{T} C\right)^{-1} C^{T} \mathbf{b}
$$

Then

$$
C^{T} \mathbf{b}=\left[\begin{array}{c}
-3+1 \\
0+2 \\
5+1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2 \\
6
\end{array}\right]
$$

and $C^{T} C=2 I$ so $\left(C^{T} C\right)^{-1}=(0.5) I$ and

$$
C\left(0.5 C^{T} \mathbf{b}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
1 \\
3 \\
3
\end{array}\right]
$$

B. The reduced echelon from of the augmented matrix for the system $A^{T} A \mathbf{x}=$ 0 is

$$
\left[\begin{array}{lllll}
6 & 2 & 2 & 2 & 0 \\
2 & 2 & 0 & 0 & 0 \\
2 & 0 & 2 & 0 & 0 \\
2 & 0 & 0 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

which has the general form solution

$$
\begin{aligned}
& x_{1}=-x_{4} \\
& x_{2}=x_{4} \\
& x_{3}=x_{4} \\
& x_{4} \text { is free }
\end{aligned}
$$

which can be written as

$$
x_{4}\left[\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right]
$$

C. The normal equations are given by

$$
\left[\begin{array}{llll}
6 & 2 & 2 & 2 \\
2 & 2 & 0 & 0 \\
2 & 0 & 2 & 0 \\
2 & 0 & 0 & 2
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
-4 \\
-4 \\
2 \\
6
\end{array}\right]
$$

D. The reduced echelon form of the augmented matrix of the normal equations is

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 0 & -1 & 5 \\
0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

which has the general form

$$
\begin{aligned}
& x_{1}=3-x_{4} \\
& x_{2}=5+x_{4} \\
& x_{3}=-2+x_{4} \\
& x_{4} \text { is free }
\end{aligned}
$$

We can then write this as

$$
1\left[\begin{array}{c}
3 \\
5 \\
-2 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Note the similarity with the linear combination for the null space. We may remember from a previous assignment that solutions sets are affine spaces which can be represented as the null space translated by some vector. In other words, every solution to a system of linear equations is some fixed vector plus a vector in the null space. Think about how this would be useful for finding maximal sets of linearly independent vectors.

