
Week 14 Discussion Solutions

CAS CS 132: Geometric Algorithms

December 4, 2023

During discussion sections, we will go over three problems.

• The first will be a warm-up question, to help you verify your understanding
of the material.

• The second will be a solution to a problem on the assignment of the
previous week.

• The third will be a problem similar to one on the assignment of the fol-
lowing week.

The remainder of the time will be dedicated to open Q&A.



1 Basis of the column space (Warm up)

Consider the following matrices. Note that A′ is an echelon from of A.

A =


1 1 2 0 2
3 4 9 −2 5
−2 −3 −7 2 −2
2 2 4 0 5

 A′ =


1 0 −1 2 0
0 1 3 −2 0
0 0 0 0 1
0 0 0 0 0


A. Use the echelon form above to find a basis of ColA made up of columns

of A.

B. Write down a NumPy expression in terms of A (a 2D NumPy array repre-
senting the matrix A above) for the matrix whose columns are the basis
vectors you found in the previous part.

C. Let Ai be the matrix whose columns are the first i columns of A. For
example,

A3 =


1 1 2
3 4 9
−2 −3 −7
2 2 4


Find rank(Ai) for each i using the echelon form above.

D. Write down a NumPy expression for rank(Ai) in terms of A and i and the
NumPy function numpy.linalg.matrix rank, which returns the rank of
its argument.

E. Let B be an arbitrary m × 5 matrix and let Bi be the matrix whose
columns are the first i columns of B. Further suppose that rank(B1) = 1,
rank(B2) = 1, rank(B3) = 2, rank(B4) = 3, and rank(B5) = 3. Which
columns of B form a basis of ColB?

F. Use the previous parts to describe in an informal procedure you can use
to find a basis for the column space of a small matrix using Python.

Solution.

A. The columns of A which form a basis of ColA the pivot columns of A.
Therefore, 


1
3
−2
2

 ,


1
4
−3
2

 ,


2
5
−2
5




is a basis for ColA.



B. It is possible to index NumPy arrays with lists, which can be used to pick
out rows or columns of a matrix:

A[:,[0, 1, 4]]

C. The linear dependence relations between columns are preserved by row
reductions. For example, since

−1


1
0
0
0

+ 3


0
1
0
0

 =


−1
3
0
0


we also have that

−1


1
3
−2
2

+ 3


1
4
−3
2

 =


2
9
−7
4


We can use this to determine the ranks of each matrix: rank(A1) = 1,
rank(A2) = 2, rank(A3) = 2, rank(A4) = 2, and rank(A5) = 3.

D. We can use array slices to achieve this:

numpy.linalg.matrix rank(A[:,:i])

E. If rank(Bi) = rank(Bi+1) then the (i+ 1)th column of B lies in the span
of the first i columns. Therefore, we can construct a basis for ColB by
choosing the columns for which the rank increases. In this case, the first
column, the third column and the fourth column.

F. If we want to find a basis for the column space of a small matrix, we can
find the ranks of increasingly large subsets of columns and see which ones
increase the rank.



2 Boundary Reflection without a Matrix

Suppose that A is a n× n matrix and z is a vector in Rn whose ith component
is 1 if the ith column of A is 0, and 0 otherwise, e.g.,

A =

0 1 0
0 −3 0
0 2 0

 z =

10
1


For an arbitrary vector v in Rn, write down an expression in terms of A, z and
v for the vector

A′v

where A′ is the same as A, but every all-zeros column of A is replaced with the
vector c1 for some scalar c, e.g., as it pertains to the example above,

A′ =

c 1 c
c −3 c
c 2 c


Furthermore, write down a NumPy expression which computes this without
using the function numpy.ones.

Solution. The difference between Av and A′v in the example above is the vector

c

1 0 1
1 0 1
1 0 1

v1v2
v3

 = c

v1 + v3
v1 + v3
v1 + v3


The important point of recognition here is that v1 + v3 = z · v. Therefore,

A′v = Av + c(z+ ·v)1

If we translate this directly into a NumPy expression we get

A @ v + c * (z @ v) * numpy.ones(A.shape[0])

but we don’t actually need the call to numpy.ones since adding a number to
a 1D NumPy vector is the same as adding that number to each entry of the
vector. So we can equivalently write this as

A @ v + c * (z @ v)



3 Multiple Least Squares Solutions

A =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 b =


−3
1
0
2
5
1


A. Find the orthogonal projection b̂ onto ColA. (Hint. Note that the

columns of A are linearly dependent. It will be easier to do the com-
putation if you take the last three columns of A to find the projection.)

B. Find a general form solution for the homogeneous equation ATAx = 0.
Then write this general form solution as a linear combination of vectors
with free variables as weights.

C. Find the normal equations for the system Ax = b.

D. Using the normal equations find a general form solution for the set of least
squares solutions of Ax = b. Then write this general form solution as a
linear combination of vectors with free variables and the scalar 1 as
weights.

Solution. Note for TFs/TAs: Feel free to give the reduced forms of the
matrices below as you solve each step if you don’t want to commit discussion
time to having students solve them.

A. ColA is spanned by the last three columns of A, so we can use this matrix,
call it C, to build a projection onto ColA:

b̂ = C(CTC)−1CTb

Then

CTb =

−3 + 1
0 + 2
5 + 1

 =

−2
2
6


and CTC = 2I so (CTC)−1 = (0.5)I and

C(0.5CTb) =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


−1

1
3

 =


−1
−1
1
1
3
3





B. The reduced echelon from of the augmented matrix for the systemATAx =
0 is 

6 2 2 2 0
2 2 0 0 0
2 0 2 0 0
2 0 0 2 0

 ∼


1 0 0 1 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 0 0


which has the general form solution

x1 = −x4

x2 = x4

x3 = x4

x4 is free

which can be written as

x4


−1
1
1
1


C. The normal equations are given by

6 2 2 2
2 2 0 0
2 0 2 0
2 0 0 2

x =


−4
−4
2
6


D. The reduced echelon form of the augmented matrix of the normal equa-

tions is 
1 0 0 1 3
0 1 0 −1 5
0 0 1 −1 −2
0 0 0 0 0


which has the general form

x1 = 3− x4

x2 = 5 + x4

x3 = −2 + x4

x4 is free

We can then write this as

1


3
5
−2
0

+ x4


−1
1
1
1





Note the similarity with the linear combination for the null space. We may
remember from a previous assignment that solutions sets are affine
spaces which can be represented as the null space translated
by some vector. In other words, every solution to a system of linear
equations is some fixed vector plus a vector in the null space. Think about
how this would be useful for finding maximal sets of linearly independent
vectors.


