## Week 14 Discussion

## CAS CS 132: Geometric Algorithms

December 4, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

## 1 Basis of the column space (Warm up)

Consider the following matrices. Note that $A^{\prime}$ is an echelon from of $A$.

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 2 & 0 & 2 \\
3 & 4 & 9 & -2 & 5 \\
-2 & -3 & -7 & 2 & -2 \\
2 & 2 & 4 & 0 & 5
\end{array}\right] \quad A^{\prime}=\left[\begin{array}{ccccc}
1 & 0 & -1 & 2 & 0 \\
0 & 1 & 3 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A. Use the echelon form above to find a basis of $\operatorname{Col} A$ made up of columns of $A$.
B. Write down a NumPy expression in terms of A (a 2D NumPy array representing the matrix $A$ above) for the matrix whose columns are the basis vectors you found in the previous part.
C. Let $A_{i}$ be the matrix whose columns are the first $i$ columns of $A$. For example,

$$
A_{3}=\left[\begin{array}{ccc}
1 & 1 & 2 \\
3 & 4 & 9 \\
-2 & -3 & -7 \\
2 & 2 & 4
\end{array}\right]
$$

Find $\operatorname{rank}\left(A_{i}\right)$ for each $i$ using the echelon form above.
D. Write down a NumPy expression for $\operatorname{rank}\left(A_{i}\right)$ in terms of A and i and the NumPy function numpy.linalg.matrix_rank, which returns the rank of its argument.
E. Let $B$ be an arbitrary $m \times 5$ matrix and let $B_{i}$ be the matrix whose columns are the first $i$ columns of $B$. Further suppose that $\operatorname{rank}\left(B_{1}\right)=1$, $\operatorname{rank}\left(B_{2}\right)=1, \operatorname{rank}\left(B_{3}\right)=2, \operatorname{rank}\left(B_{4}\right)=3$, and $\operatorname{rank}\left(B_{5}\right)=3$. Which columns of $B$ form a basis of $\operatorname{Col} B$ ?
F. Use the previous parts to describe in an informal procedure you can use to find a basis for the column space of a small matrix using Python.

Solution.

## 2 Boundary Reflection without a Matrix

Suppose that $A$ is a $n \times n$ matrix and $\mathbf{z}$ is a vector in $\mathbb{R}^{n}$ whose $i$ th component is 1 if the $i$ th column of $A$ is $\mathbf{0}$, and 0 otherwise, e.g.,

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -3 & 0 \\
0 & 2 & 0
\end{array}\right] \quad \mathbf{z}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

For an arbitrary vector $\mathbf{v}$ in $\mathbb{R}^{n}$, write down an expression in terms of $A, \mathbf{z}$ and $\mathbf{v}$ for the vector

$$
A^{\prime} \mathbf{v}
$$

where $A^{\prime}$ is the same as $A$, but every all-zeros column of $A$ is replaced with the vector $c \mathbf{1}$ for some scalar $c$, e.g., as it pertains to the example above,

$$
A^{\prime}=\left[\begin{array}{ccc}
c & 1 & c \\
c & -3 & c \\
c & 2 & c
\end{array}\right]
$$

Furthermore, write down a NumPy expression which computes this without using the function numpy. ones.
Solution.

## 3 Multiple Least Squares Solutions

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
2 \\
5 \\
1
\end{array}\right]
$$

A. Find the orthogonal projection $\hat{\mathbf{b}}$ onto $\mathrm{Col} A$. (Hint. Note that the columns of $A$ are linearly dependent. It will be easier to do the computation if you take the last three columns of $A$ to find the projection.)
B. Find a general form solution for the homogeneous equation $A^{T} A \mathbf{x}=\mathbf{0}$. Then write this general form solution as a linear combination of vectors with free variables as weights.
C. Find the normal equations for the system $A \mathbf{x}=\mathbf{b}$.
D. Using the normal equations find a general form solution for the set of least squares solutions of $A \mathbf{x}=\mathbf{b}$. Then write this general form solution as a linear combination of vectors with free variables and the scalar 1 as weights.

## Solution.

