Week 14 Discussion

CAS CS 132: Geometric Algorithms

December 4, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q&A.

1 Basis of the column space (Warm up)

Consider the following matrices. Note that A' is an echelon from of A.

	[1	1	2	0	2]	[1	0	-1	2	0
A =	3	4	9	-2	5	A' =	0	1	3	-2	0
	-2	-3	-7	2	-2		0	0	0	0	1
	2	2	4	0	5		0	0	0	0	0

- A. Use the echelon form above to find a basis of $\operatorname{Col} A$ made up of columns of A.
- B. Write down a NumPy expression in terms of A (a 2D NumPy array representing the matrix A above) for the matrix whose columns are the basis vectors you found in the previous part.
- C. Let A_i be the matrix whose columns are the first *i* columns of A. For example,

$$A_3 = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 4 & 9 \\ -2 & -3 & -7 \\ 2 & 2 & 4 \end{bmatrix}$$

Find rank (A_i) for each *i* using the echelon form above.

- D. Write down a NumPy expression for $rank(A_i)$ in terms of A and i and the NumPy function numpy.linalg.matrix_rank, which returns the rank of its argument.
- E. Let B be an arbitrary $m \times 5$ matrix and let B_i be the matrix whose columns are the first *i* columns of B. Further suppose that $\operatorname{rank}(B_1) = 1$, $\operatorname{rank}(B_2) = 1$, $\operatorname{rank}(B_3) = 2$, $\operatorname{rank}(B_4) = 3$, and $\operatorname{rank}(B_5) = 3$. Which columns of B form a basis of $\operatorname{Col} B$?
- F. Use the previous parts to describe in an informal procedure you can use to find a basis for the column space of a small matrix using Python.

Solution.

2 Boundary Reflection without a Matrix

Suppose that A is a $n \times n$ matrix and z is a vector in \mathbb{R}^n whose *i*th component is 1 if the *i*th column of A is **0**, and 0 otherwise, e.g.,

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 2 & 0 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

For an arbitrary vector **v** in \mathbb{R}^n , write down an expression in terms of A, **z** and **v** for the vector

$$A'\mathbf{v}$$

where A' is the same as A, but every all-zeros column of A is replaced with the vector $c\mathbf{1}$ for some scalar c, e.g., as it pertains to the example above,

$$A' = \begin{bmatrix} c & 1 & c \\ c & -3 & c \\ c & 2 & c \end{bmatrix}$$

Furthermore, write down a NumPy expression which computes this *without* using the function numpy.ones.

Solution.

3 Multiple Least Squares Solutions

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} -3 \\ 1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix}$$

- A. Find the orthogonal projection $\hat{\mathbf{b}}$ onto Col A. (*Hint.* Note that the columns of A are linearly dependent. It will be easier to do the computation if you take the last three columns of A to find the projection.)
- B. Find a general form solution for the homogeneous equation $A^T A \mathbf{x} = \mathbf{0}$. Then write this general form solution as a linear combination of vectors with free variables as weights.
- C. Find the normal equations for the system $A\mathbf{x} = \mathbf{b}$.
- D. Using the normal equations find a general form solution for the set of least squares solutions of $A\mathbf{x} = \mathbf{b}$. Then write this general form solution as a linear combination of vectors with free variables **and the scalar 1** as weights.

Solution.