
Week 15 Discussion Solutions

CAS CS 132: Geometric Algorithms

December 11, 2023

During discussion sections, we will go over three problems.

• The first will be a warm-up question, to help you verify your understanding
of the material.

• The second will be a solution to a problem on the assignment of the
previous week.

• The third will be a problem similar to one on the assignment of the fol-
lowing week.

The remainder of the time will be dedicated to open Q&A.

1 LAA 6.6.10 (Warm Up)

Suppose radioactive substances A and B have decay constants of 0.02 and 0.07,
respectively. If a mixture of these two substances at time t = 0 contains MA

grams of A and MB grams of B, then a model for the total amount of y of the
mixture present at time t is

y = MAe
−0.2t +MBe

−0.7t

Suppose the initial amounts MA and MB are unknown, but a scientist is able
to measure the total amounts present at several times and records the following
points (ti, yi):

(10, 21.34), (11, 20.68), (12, 20.05), (14, 18.87), (15, 18.30)

Find the design matrix X such that the least squares solution of

X

[
MA

MB

]
=

18.30
18.87
20.05
20.68
21.34

provides an estimate for MA and MB .

Solution. The equation
MAe

−0.2t +MBe
−0.7t

is linear in the parameters MA and MB so it is possible to apply the techniques
we have seen in class to this problem. The one trick is that we’ve ordered the
observations in increasing order from top to bottom, so we have to make sure
we set up our design matrix to reflect this:

e−0.2(15) e−0.7(15)

e−0.2(14) e−0.7(14)

e−0.2(12) e−0.7(12)

e−0.2(11) e−0.7(11)

e−0.2(10) e−0.7(10)

 =

e−3 e−21/2

e−14/5 e−49/5

e−12/5 e−42/5

e−11/5 e−77/10

e−2 e−7

2 Least Square (Homework 11)

Let C be an arbitrary m× n matrix of rank k and let b be an arbitrary vector
in Rm. Find an expression for the maximum size of a linearly independent set
of least squares solutions for Cx = b where b ̸= 0.

Solution. This problem is much about pattern matching and thinking about the
process of finding least squares solutions.

A least squares solution satisfies Cx = b̂. So the least squares solutions are
solutions to a matrix equation involving C. When we solve the normal equations
for Cx = b, we can (per this week’s discussion) write the general form solution
as

v + xiwi + xjwj + xkwk

where xi, xj and xk are free variables (for simplicity, we will assume there are
only three). The point here is to recognize is that this is also the general form

solution to the equation Cx = b̂. In particular, the number of free variables
must be the same as the dimension of the null space of C, which is n− k
by the rank-nullity theorem. Finally, we can recognize that {wi,wj ,wk} are
linearly independent (this is how we generated a basis for the null space) but

also {v,wi,wj ,wk} is linearly independent since b ̸= 0, and so b̂ ̸= 0 and

Cv = b̂ so v is not NulA. This set contains n− k + 1 vectors, and every least
squares solution can be represented as a linear combination of these vectors, so
we can have at most n− k + 1 linearly independent least squares solutions in a
set.

It is worth noting that we’d like to talk about dimension here, but solution
sets are not subspaces (we demonstrated in a previous assignment that they are
affine spaces). But we can still talk about maximal linearly independent sets
(recall that the dimension of a subspace U is the maximum size of a linearly
independent set of vectors from U).

3 Design Matrices

Write Python code (or pseudocode) which builds the design matrix for modeling
with the function

f(x) = β0 + β1x+ β2x
2 + · · ·+ βkx

k

given a feature vector x (i.e., a vector representing the independent variable for
a collection of data points) represented as a 1D NumPy array, and an integer k
which determines the degree used in f .

Solution. The approach is to iterate k times the process of adding a new column
to the matrix you will eventually return. At a high level:

A. Start with the all-ones vector A← 1 (a = np.ones(x.shape[0])).

B. For i from 1 to k repeat the following: add the vector xk to one side of A,
i.e., A← [A xk]. (a = np.column stack((a, x ** k)))

C. return A.

