Week 15 Discussion

CAS CS 132: Geometric Algorithms

December 11, 2023

During discussion sections, we will go over three problems.

- The first will be a warm-up question, to help you verify your understanding of the material.
- The second will be a solution to a problem on the assignment of the previous week.
- The third will be a problem similar to one on the assignment of the following week.

The remainder of the time will be dedicated to open Q\&A.

1 LAA 6.6.10 (Warm Up)

Suppose radioactive substances A and B have decay constants of 0.02 and 0.07 , respectively. If a mixture of these two substances at time $t=0$ contains M_{A} grams of A and M_{B} grams of B, then a model for the total amount of y of the mixture present at time t is

$$
y=M_{A} e^{-0.2 t}+M_{B} e^{-0.7 t}
$$

Suppose the initial amounts M_{A} and M_{B} are unknown, but a scientist is able to measure the total amounts present at several times and records the following points $\left(t_{i}, y_{i}\right)$:

$$
(10,21.34),(11,20.68),(12,20.05),(14,18.87),(15,18.30)
$$

Find the design matrix X such that the least squares solution of

$$
X\left[\begin{array}{l}
M_{A} \\
M_{B}
\end{array}\right]=\left[\begin{array}{l}
18.30 \\
18.87 \\
20.05 \\
20.68 \\
21.34
\end{array}\right]
$$

provides an estimate for M_{A} and M_{B}.
Solution.

2 Least Square (Homework 11)

Let C be an arbitrary $m \times n$ matrix of rank k and let \mathbf{b} be an arbitrary vector in \mathbb{R}^{m}. Find an expression for the maximum size of a linearly independent set of least squares solutions for $C \mathbf{x}=\mathbf{b}$ where $\mathbf{b} \neq 0$.

Solution.

3 Design Matrices

Write Python code (or pseudocode) which builds the design matrix for modeling with the function

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{k} x^{k}
$$

given a feature vector \mathbf{x} (i.e., a vector representing the independent variable for a collection of data points) represented as a 1D NumPy array, and an integer k which determines the degree used in f.
Solution.

