Midterm Review Solutions

CAS CS 132: Geometric Algorithms

1 Solving Systems of Linear Equations

Find a solution the following system of linear equations.

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & =-9 \\
x_{2}-2 x_{3} & =-1 \\
x_{1}+x_{2} & =-10
\end{aligned}
$$

Solution. This system has the augmented matrix

$$
\left[\begin{array}{cccc}
1 & 1 & -1 & -9 \\
0 & 1 & -2 & -1 \\
1 & 1 & 0 & -10
\end{array}\right]
$$

which has the reduced echelon form

$$
\left[\begin{array}{llll}
1 & 0 & 0 & -7 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

2 LAA 1.2.18

Determine all values of h such that the following matrix is the augmented matrix of a consistent linear system.
$\left[\begin{array}{ccc}1 & -3 & -2 \\ 5 & h & -7\end{array}\right]$

Solution. By the reduction $R_{2} \leftarrow R_{2}-5 R_{1}$, we get the matrix

$$
\left[\begin{array}{ccc}
1 & -3 & -2 \\
0 & h+15 & 3
\end{array}\right]
$$

This matrix is in echelon form, so h can be any value other than 15 . If $h=-15$, then there a row which represents an inconsistent equation.

3 General Form Solutions

Consider the following system of linear equations.

$$
\begin{aligned}
x_{1}-5 x_{2}-x_{3}-2 x_{4} & =3 \\
x_{3}-2 x_{4} & =11 \\
(-2) x_{3}+5 x_{4} & =-24
\end{aligned}
$$

A. Write down a general form solution which describes the solution set of the following system of linear equations.
B. Write down a different general form solution which describes the same solution set (i.e., one in which a different variable is free).

Solution.

A. The reduced echelon form of the augmented matrix of this system is

$$
\left[\begin{array}{ccccc}
1 & -5 & 0 & 0 & 6 \\
0 & 0 & 1 & 0 & 7 \\
0 & 0 & 0 & 1 & -2
\end{array}\right]
$$

We can write down a solution in general form from this matrix:

$$
\begin{aligned}
& x_{1}=6+5 x_{2} \\
& x_{2} \text { is free } \\
& x_{3}=7 \\
& x_{4}=-2
\end{aligned}
$$

B. Since x_{1} is written in terms of the free variable x_{2}, we can instead write x_{2} in terms of x_{1}.

$$
\begin{aligned}
& x_{1} \text { is free } \\
& x_{2}=(1 / 5) x_{1}-(6 / 5) \\
& x_{3}=7 \\
& x_{4}=-2
\end{aligned}
$$

$4 \quad$ LAA 1.3.13

Consider the following matrix A and vector \mathbf{b}.

$$
A=\left[\begin{array}{ccc}
1 & -4 & 2 \\
0 & 3 & 5 \\
-2 & 8 & -4
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
3 \\
-7 \\
h
\end{array}\right]
$$

A. Determine if \mathbf{b} can be written as a linear combination of the columns of A if $h=-3$.
B. For what values of h can \mathbf{b} be written as a linear combination of the columns of A.

Solution.
A. The augmented matrix $[A \mathbf{b}]$ is row equivalent to the echelon form

$$
\left[\begin{array}{cccc}
1 & -4 & 2 & 3 \\
0 & 3 & 5 & -7 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

since this represents an inconsistent system, \mathbf{b} cannot be written as a linear combination of the columns of A.
B. If $h=-6$, then the last row does not represent an inconsistent equation. In this case, \mathbf{b} can be written as a linear combination of the columns of A.

5 Intersections of Spans

Consider the following vectors.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \quad \mathbf{v}_{4}=\left[\begin{array}{l}
0 \\
3 \\
2
\end{array}\right]
$$

Find a nonzero vector which lies in both $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $\operatorname{span}\left\{\mathbf{v}_{3}, \mathbf{v}_{4}\right\}$.
Solution. The span of the first pair of vectors is exactly the $x_{1} x_{2}$-plane, which is described by the equation $x_{3}=0$. Therefore, it suffices to find a vector in $\operatorname{span}\left\{\mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ such whose third component is 0 . We can take $2 \mathbf{v}_{3}+\mathbf{v}_{4}$, which is

6 LAA 1.7.31

Find a nontrivial solution to matrix equation $A \mathbf{x}=\mathbf{0}$ without performing any row reductions. (Hint. What is the relationship between the first two columns and the last column of A ?)

$$
A=\left[\begin{array}{ccc}
2 & 3 & 5 \\
-5 & 1 & -4 \\
-3 & -1 & -4 \\
1 & 0 & 1
\end{array}\right]
$$

Solution. Write A as $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ then $\mathbf{a}_{1}+\mathbf{a}_{2}=\mathbf{a}_{3}$. Therefore, a solution to this equation is the vector

$$
\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

7 Linearly Independent Vectors

Consider three arbitrary vectors

$$
\mathbf{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
$$

and suppose that they are linearly independent.
A. What is the maximum number of entries of these vectors which can be 0 ? Note that the solution will be a number between 0 and 9 .
B. What is the minimum number?

In each case provide an example.

Solution.

A. There can be at most 6 zero entries. If there were 7 , then some vector would have to be all zeros, which would automatically make the set linearly dependent. An example is the standard basis vectors $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3}.
B. It is possible for there to be no zero entries. We can take as an example

$$
\mathbf{v}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

8 Drawing Linear Transformations

Draw the unit square after being transformed by the matrix transformation implemented by

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Solution.

9 Matrices of Linear Transformations

Find the matrix which implemented the following transformation.

$$
\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] \mapsto\left[\begin{array}{c}
v_{2} \\
v_{1} \\
v_{3}+v_{4}
\end{array}\right]
$$

Solution. In order to determine the matrix implementing a linear transformation, we have to determine how the transformation affects the standard basis.

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \mapsto\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \mapsto\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \mapsto\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \mapsto\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Then we put these together into a single matrix

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

10 3D Linear Transformations

Considering the transformation T implemented by the following matrix.
$\left[\begin{array}{ccc}\cos 2 & 0 & -\sin 2 \\ 0 & 1 & 0 \\ \sin 2 & 0 & \cos 2\end{array}\right]$

Describe geometrically what T does. Then find a vector \mathbf{v} whose span is not changed by this transformation (i.e., $\operatorname{span}\{\mathbf{v}\}=\operatorname{span}\{T(\mathbf{v})\}$).

Solution. This transformation rotates vectors around the x_{2} axis. The the span of the vector \mathbf{e}_{2} is not changed by this transformation since $T\left(\mathbf{e}_{2}\right)=\mathbf{e}_{2}$.

