### Linear Equations Geometric Algorithms Lecture 1

CAS CS 132

### **Objectives**

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

### Keywords

Systems of linear equations Solutions Coefficient matrix Augmented matrix Elimination and Back-substitution Replacement, interchange, scaling Row Equivalence (In)consistency

### Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

### Motivation

## Lines and line intersections An example from chemistry

### Motivation

## Lines and line intersections An example from chemistry

### Lines (Slope-Intercept Form)

## y = mx + bslope y-intercept

### Given a value of x, I can compute a value of y

### Lines (Graph)



### Lines (General Form)



What values of x and y make the equality hold?

### Lines (Graph)



### $\{(x, y) : (-2)x + y = 6\}$



### Lines

## slope-int $\rightarrow$ general (-m)x + y = b



### general $\rightarrow$ slope-int

### Line Intersection

### Question. Given two lines, where do they intersect?

### $y = m_1 x + b_1$ $y = m_2 x + b_2$

### Line Intersection (Graph)



### Line Intersection (Alternative)

### Question. Given two (general form) lines, what values of x and y satisfy **both** equations? This is the same question

### $a_1 x + b_1 y = c_1$ $a_{2}x + b_{2}y = c_{2}$

### Motivation

1. Lines and line intersections 2. An example from chemistry

### **Example: Balancing Chemical Equations**

## $\begin{array}{ccc} C_6H_{12}O_6 \rightarrow C_2H_5OH + CO_2 \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ &$

We want to know how much ethanol is produced by fermentation (for science)

The number of atoms has to be preserved on each side of the equation

### **Balancing Chemical Equations**

### $\alpha C_6 H_{12}O_6 \rightarrow \beta C_2 H_5 OH + \gamma CO_2$ Ethanol Glucose

 $6\alpha = 2\beta + \gamma$  $12\alpha = 6\beta$  $6\alpha = \beta + 2\gamma \qquad (O)$ 

**(C)** 

**(H)** 

### **Balancing Chemical Equations**

### $\alpha C_6 H_{12}O_6 \rightarrow \beta C_2 H_5 OH + \gamma CO_2$ Glucose Ethanol

 $6\alpha - 2\beta - \gamma = 0$  $12\alpha - 6\beta = 0$  $6\alpha - \beta - 2\gamma = 0 \qquad (O)$ 

**(C)** 

**(H)** 

### Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

### **Defining Systems of Linear Equations**

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

### **Defining Systems of Linear Equations**

### 1. Linear equations

- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

### **Linear Equations**

### Definition. A linear equation in the variables $x_1, x_2, \ldots, x_n$ is an equation of the form

where  $a_1, a_2, \ldots, a_n, b$  are real numbers ( $\mathbb{R}$ )

### coefficients unknowns

### $a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b$

### Linear Equations (Point sets)

### Linear equations describe point sets:

$$\{(s_1, s_2, \dots, s_n) \in \mathbb{R}^n : a_1 s_1 + a_2 s_2 + \dots + a_n s_n = b\}$$

These points are also called vectors, and  $\mathbb{R}^3$  is an example of a vector space

### The collections of numbers such that the equation holds.





### Linear Equations (Geometrically)

### If a 2D linear equation is a *line* then a 3D linear equation is...

### Not a line...

### **Example 1** 0x + 0y + z = 15

## This equation describes the solution set so x and y can be whatever we want

- $\{(x, y, z) : z = 15\}$



### Linear Equations (Geometrically)

### If a 2D linear equation is a *line* then a 3D linear equation is...

### A plane(!)

## **Example 2** -x + 0y + z = 15

- This equation describes the point set
- so y can be whatever we want

# $\{(x, y, z) : z = x + 15\}$





## **Example 3** -x + -y + z = 15

This equation describes the solution set

so all variables depend on each other

# $\{(x, y, z) : z = x + y + 15\}$







## **XYZ-intercepts** ax + by + cz = dJust like with lines, we can define x-intercept: $\frac{d}{a}$ y-intercept: $\frac{d}{b}$ z-intercept: $\frac{d}{c}$

These three points define the plane

### Question

### I just lied

Give an example of a linear equation that defines a plane with an x-intercept and *y*-intercept but no *z*-intercept
# Hyperplanes

# after three dimensions, we can't visualize planes

# the point set of a linear equation is called a *hyperplane*

# **Defining Systems of Linear Equations**

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

# **Systems of Linear Equations**

# **Definition.** A *system of linear equations* is just a collection of linear equations

# **Definition.** A *solution* to a system is a point (vector) that satisfies all its equations <u>simultaneously</u>

# System of Linear equations

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$  $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$  $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$ 

Does a system have a solution? How many solutions are there? What are its solutions?

# **Defining Systems of Linear Equations**

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

# Consistency

# **Definition.** A system of linear equations is *consistent* if it has a solution

It is *inconsistent* if it has <u>no</u> solutions

# Question

give an example of a 2D system of linear equations with no solutions

Can two lines intersect at more than one point?

# Number of Solutions

# zero the system is inconsistent



# one the system has a unique solution

# many the system has infinity solutions

# **Defining Systems of Linear Equations**

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

always writing down the unknowns is <u>exhausting</u>

we will write down linear systems as matrices, which are just 2D grids of numbers with <u>fixed</u> width and height

a matrix is just a representation





augmented matrix







## coefficient matrix

 $6\alpha - 2\beta - \gamma = 0$  $12\alpha - 6\beta = 0$  $6\alpha - \beta - 2\gamma = 0$ 

# **(C)** (H) **(O)**

# $\begin{bmatrix} 6 & -2 & -1 & 0 \\ 12 & -6 & 0 & 0 \\ 6 & -1 & -2 & 0 \end{bmatrix}$

# **Objectives**

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

# **Solving Systems of Linear Equations**

- 1. Some simple examples
- 2. Elimination and Back-Substitution
- 3. Row Equivalence

# **Solving Systems of Linear Equations**

## 1. Some simple examples

- 2. Elimination and Back-Substitution
- 3. Row Equivalence

# **Solving Systems with Two Variables** 2x + 3y = -64x - 5y = 10The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x



# **Solving Systems with Two Variables** 2x = (-3)y - 64x - 5y = 10The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x



# **Solving Systems with Two Variables** x = (-3/2)y - 34x - 5y = 10The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x



# **Solving Systems with Two Variables**

# 4((-3/2)y - 3) - 5y = 10The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for y Substitute result for y in EQ1 and solve for x

# x = (-3/2)y - 3



# **Solving Systems with Two Variables** x = (-3/2)y - 3-6y - 12 - 5y = 10

# The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x



# **Solving Systems with Two Variables** x = (-3/2)y - 3-11y = 22The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for y Substitute result for y in EQ1 and solve for x



# **Solving Systems with Two Variables** x = (-3/2)y - 3y = -2The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for y Substitute result for y in EQ1 and solve for x



# **Solving Systems with Two Variables** x = (-3/2)(-2) - 3y = -2The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x



# **Solving Systems with Two Variables**

# The Approach Solve for x in terms of y in EQ1

x = 3 - 3y = -2

- Substitute result for x in EQ2 and solve for y
- Substitute result for y in EQ1 and solve for x



# **Solving Systems with Two Variables** $\chi = ()$ y = -2The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for y

# Substitute result for y in EQ1 and solve for x



# **Solving Systems with Two Variables** 2x + 3y = -64x - 5y = 10The Approach

# **The Approach** Eliminate x from the EQ2 and solve for y Eliminate y from EQ1 and solve for x

# **Solving Systems of Linear Equations**

1. Some simple examples 2. Elimination and Back-Substitution 3. Row Equivalence

# **Solving Systems with Three Variables** x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4The Approach Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1

# Solving Systems with Three Variables x - 2y + z = 52y - 8z = -4

# 6(5+2y-z) The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate  $\ensuremath{\mathcal{Z}}$  from EQ2 and EQ1
- Eliminate y from EQ1

6(5 + 2y - z) + 5y + 9z = -4

# **Solving Systems with Three Variables** x - 2y + z = 52y - 8z = -430 + 12y - 6z + 5y + 9z = -4

# The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1

# **Solving Systems with Three Variables** x - 2y + z = 52y - 8z = -417y + 3z = -34The Approach Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3 Eliminate z from EQ2 and EQ1 Eliminate y from EQ1

# **Solving Systems with Three Variables** x - 2y + z = 52y - 8z = -417(8z - 4)/2 + 3z = -34

### The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

# **Solving Systems with Three Variables** x - 2y + z = 52y - 8z = -417(4z - 2) - 3z = -34The Approach Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3 Eliminate z from EQ2 and EQ1 Eliminate y from EQ1
## **Solving Systems with Three Variables** x - 2y + z = 52y - 8z = -468z - 34 - 3z = 26The Approach Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3 Eliminate z from EQ2 and EQ1 Eliminate y from EQ1

# **Solving Systems with Three Variables** x - 2y + z = 52y - 8z = -4

### The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

71z = 0

## **Solving Systems with Three Variables** x - 2y + 0 = 52y - 8(0) = -4z = 0

### The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

## **Solving Systems with Three Variables** x - 2y = 52y = -4

### The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

z = 0

# Solving Systems with Three Variables x - 2(-2) = 5 y = -2z = 0

### The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

# Solving Systems with Three Variables x = 1 y = -2z = 0

### The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

## **Solving Systems with Three Variables** x = 1y = -2z = 0

### The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1

### Elimination

### Back-Substitution



## Verifying the Solution

# x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4

x = 1y = -2z = 0

## Verifying the Solution (1) - 2(-2) + (0) = 52(-2) - 8(0) = -46(1) + 5(-2) + 9(0) = -4

x = 1y = -2z = 0

### Verifying the Solution

# 1 + 4 + 0 = 5-4 + 0 = -46 - 10 + 0 = -4

x = 1y = -2z = 0

### Verifying the Solution

5 = 5-4 = -4-4 = -4The solution simultaneously satisfies the equations x = 1y = -2z = 0



## **Solving Systems of Linear Equations**

- 1. Some simple examples
- 2. Elimination and Back-Substitution
- 3. Row Equivalence

## **Solving Systems as Matrices**

### How does this look with matrices? **Observation.** Each intermediate step of elimination and back-substitution gives us a new linear system with the same solutions

Can we represent these intermediate steps as operations on matrices?

### **Elementary Row Operations**

scaling multipl
interchange switch
replacement add two

### These operations don't change the solutions

# multiply a row by a number switch two rows add two rows (and replace one with the sum)

### Scaling Example

# 2x + 3y = -64x - 5y = 10











### Interchange Example

2x + 3y = -64x - 5y = 10

 $\begin{vmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{vmatrix}$ 

# 4x - 5y = 102x + 3y = -6

# $\begin{vmatrix} 4 & -5 & 10 \\ 2 & 3 & -6 \end{vmatrix}$

### Replacement

2x + 3y = -64x - 5y = 10











### Question

Describe how to perform substitution (substituting a variable in one equation with the its value in another equation) via row operations

### **Elementary Row Operations**

- scaling multiply a row by a number switch two rows interchange replacement add two rows (and replace one with the sum) rep. + scl. add a scaled equation to another

# **Example: Row Reductions**

 $\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$  $R_2 \leftarrow R_2/(-11) \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix} \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$  $R_1 \leftarrow R_1 - 3R_2$  $R_1 \leftarrow R_1/2$ 

 $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$  $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{vmatrix}$ 

### **Example: Row Reductions**

 $R_{2} \leftarrow R_{1} \leftarrow R_{1$ 

 $\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$ 

$$- \frac{R_2 - 2R_1}{R_2 - R_2 - R_1 - 3R_2}$$
$$- \frac{R_1 - 3R_2}{R_1 - R_1 - 2R_2}$$

# elimination substitution

# $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

### **Row Equivalence**

one can be transformed into the other by a sequence of row operations

# $\begin{vmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{vmatrix}$

# Definition. Two matrices are row equivalent if

### We can compute solutions by sequence of row operations

### **Row Equivalence and Inconsistency**

### If a system is inconsistent, it is row equivalent to a system with a row of the form

000.01

### Summary

Linear equations define <u>hyperplanes</u> not have <u>solutions</u> Linear systems can be represented as matrices, which makes them more convenient to solve

# Systems of linear equations may or may