
CAS CS 132

Numerics
Geometric Algorithms
Lecture 2

Recap (1/2)

Linear equations define hyperplanes

Systems of linear equations define
intersections of hyperplanes

We solve systems linear equations by
elimination and back substitution

Systems of linear equations can be represented
as matrices

Recap (2/2)

elimination and back-substitution can be
represented as row operations on matrices

row operations don't change the solution sets

Recap Problem (1/2)

Show that if is a solution to

then it is also a solution to

(s1, s2)

ax + by = c
dx + ey = f

ax + by = c
(a + d)x + (b + e)y = (c + f)

Recap Problem (2/2)

Give values of through such that

has a solution but

does not

a f

(a + d)x + (b + e)y = (c + f)

ax + by = c
dx + ey = f

don't drop equations when doing replacements

Objectives

1. number representations

2. consequences of floating point representations

3. best practices

Keywords

floating point numbers

IEEE-754

relative error

numpy.isclose

ill-conditioned problems

let's do a quick demo

Significant Figures (Sig Figs)

Have you ever been docked points in a science
class for having incorrect sig figs?

when you use a ruler, you can't do better than
, so we can't say anything about nanometer

differences
±1𝗆𝗆

we run into a similar problem with decimal numbers
in programs

Number Representations

your computer is a collection of fixed size
registers

each register holds a sequence of bits

The Goal. represent numbers so they fit in
those registers

this is, of course, a lie an abstraction

Number Representations

Question. How do we slice up our fixed sequence
to represent numbers?

things to consider:
• simple idea (easy to understand)
• maximize coverage (not too redundant)
• simple numeric operations (easy to use)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unsigned Integers

binary value (we should know this by now)

e.g. 10001010 represents

1(27) + 0(26) + 0(25) + 0(24) + 0(23) + 1(22) + 0(21) + 1(20)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

value

Signed Integers

sign bit + binary value

e.g. 10001010 represents

−1 × (0(26) + 0(25) + 0(24) + 0(23) + 1(22) + 0(21) + 1(20))

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

valuesign

Floating-Point Numbers (Some Figures)

floats in python use 64 bits

That's possible values

We can't represent everything. We'll have to
choose and then round

Question. Which ones should we represent?

1.8 × 1019

Floating-Point Numbers (An Idea)

Integers work because they are discrete and
evenly spaced

What if we evenly discretize a range of values?

i.e., represent

..., -0.001, 0, 0.0001, 0.002, 0.003, 0.004,...

Question

Discuss the advantages and disadvantages of
this approach

Floating-Point Numbers (IEEE-754)

like scientific notation, but binary

the equation:

it's an accepted standard, not perfect, but it works well

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)

image source

https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Question

Any ideas why this is better/worse?

Also, why the additive 1?

And why not have a sign bit for the exponent?

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)

Step Size

Definition. step size is the space between two
floating-point representations

for fixed exponent two numbers are at least

away (why?)

n

0.00…001 × 2n = 2−52 × 2n

step size increases with magnitude

Step size doubles for each exponent
image source

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)

https://commons.wikimedia.org/wiki/File:FloatingPointPrecisionAugmented.png

What to Keep in Mind

IEEE-754 defines a subset of decimal numbers

operations on floating point numbers attempt to
give you the closest to the actual value,
though there will be errors.

we can assume when we write down a number like
'0.3' we get the closest IEEE-754 value

Relative Error
Observation. is tiny error for but
massive for

±0.001 1020

10−20

Relative Error.

𝖾𝗋𝗋𝗋𝖾𝗅 =
𝖾𝗋𝗋
𝗏𝖺𝗅

IEEE-754 keeps relative error small

Relative Error (Calculation)

error is determined by step-size

𝖾𝗋𝗋 ≤ 2−52 × 2n

(fix an exponent)n

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)

Relative Error (Calculation)
(fix an exponent)n

the smallest number we can represent at least
 1.0 × 2n

𝗏𝖺𝗅 ≥ 1.0 × 2n

(why do we care about a lower bound on val?)

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)

Relative Error (Calculation)

the relative error is small

 𝗏𝖺𝗅 ≥ 1.0 × 2n

𝖾𝗋𝗋 ≤ 2−52 × 2n

𝖾𝗋𝗋𝗋𝖾𝗅 =
𝖾𝗋𝗋
𝗏𝖺𝗅

≤
2−52 × 2n

1.0 × 2n
= 2−52 ≈ 10−16

(fix an exponent)n

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)

16 digits of accuracy
Not bad, but also not great

≈

let's do a quick demo
example from the notes

The Takeaways

operations on floating-point numbers are not
exact

properties like (associativity) may
not hold

it's a trade-off for large range and low
relative error

(ab)c = a(bc)

What do we do about it?

Best Practices

1. don't compare floating points for equality

2. be aware of ill-conditioned problems

3. be aware of small differences

Principle 1: Closeness

When doing floating-point calculations in a
program, define an error margin and use that
for equality checking

In Practice.

 Replace x == y
 with numpy.isclose(x, y)

demo

Principle 2: Ill-Conditioned Problems

Make sure your problem is not sensitive to
small errors.

In Practice. for example, don't divide by
numbers much smaller than your error tolerance

demo

Principle 3: Small Differences

Make sure you understand your error tolerance
when looking that the small differences of
large numbers.

In Practice. Don't expect to have 16 digits
of accuracy even if and do

a − b
a b

demo

One Last Note: Special Numbers

0 (we can't already represent 0?)

nan stands for not a number, .e.g, sqrt(-2)

inf symbolic infinity, behaves as expected

Summary

floating point numbers are represented in your
computer

floating point operations are not exact

this can have unintended consequences

we get 16 digits of accuracy

