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Recap (1/2)

Linear equations define hyperplanes 

Systems of linear equations define 
intersections of hyperplanes 

We solve systems linear equations by 
elimination and back substitution 

Systems of linear equations can be represented 
as matrices



Recap (2/2)

elimination and back-substitution can be 
represented as row operations on matrices 

row operations don't change the solution sets



Recap Problem (1/2)

Show that if  is a solution to 

 

then it is also a solution to 

(s1, s2)

ax + by = c
dx + ey = f

ax + by = c
(a + d)x + (b + e)y = (c + f )



Recap Problem (2/2)

Give values of  through  such that 

 

has a solution but 

 

does not

a f

(a + d)x + (b + e)y = (c + f )

ax + by = c
dx + ey = f



don't drop equations when doing replacements



Objectives

1. number representations 

2. consequences of floating point representations 

3. best practices
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let's do a quick demo



Significant Figures (Sig Figs)

Have you ever been docked points in a science 
class for having incorrect sig figs? 

when you use a ruler, you can't do better than 
, so we can't say anything about nanometer 

differences
±1𝗆𝗆

we run into a similar problem with decimal numbers 
in programs



Number Representations

your computer is a collection of fixed size 
registers 

each register holds a sequence of bits 

The Goal. represent numbers so they fit in 
those registers

this is, of course, a lie an abstraction



Number Representations

Question. How do we slice up our fixed sequence 
to represent numbers? 

things to consider: 
• simple idea (easy to understand) 
• maximize coverage (not too redundant) 
• simple numeric operations (easy to use)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Unsigned Integers

binary value (we should know this by now) 

e.g. 10001010 represents 

1(27) + 0(26) + 0(25) + 0(24) + 0(23) + 1(22) + 0(21) + 1(20)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

value



Signed Integers

sign bit + binary value 

e.g. 10001010 represents 

−1 × (0(26) + 0(25) + 0(24) + 0(23) + 1(22) + 0(21) + 1(20))

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

valuesign



Floating-Point Numbers (Some Figures)

floats in python use 64 bits 

That's  possible values 

We can't represent everything. We'll have to 
choose and then round 

Question. Which ones should we represent?

1.8 × 1019



Floating-Point Numbers (An Idea)

Integers work because they are discrete and 
evenly spaced 

What if we evenly discretize a range of values? 

i.e., represent 

..., -0.001, 0, 0.0001, 0.002, 0.003, 0.004,...



Question

Discuss the advantages and disadvantages of 
this approach



Floating-Point Numbers (IEEE-754)

like scientific notation, but binary 

the equation: 

 

it's an accepted standard, not perfect, but it works well

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252 ) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)

image source

https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg


Question

Any ideas why this is better/worse? 

Also, why the additive 1? 

And why not have a sign bit for the exponent?

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252 ) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)



Step Size

Definition. step size is the space between two 
floating-point representations 

for fixed exponent  two numbers are at least 

 

away (why?)

n

0.00…001 × 2n = 2−52 × 2n

step size increases with magnitude

Step size doubles for each exponent
image source

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252 ) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)

https://commons.wikimedia.org/wiki/File:FloatingPointPrecisionAugmented.png


What to Keep in Mind

IEEE-754 defines a subset of decimal numbers 

operations on floating point numbers attempt to 
give you the closest to the actual value, 
though there will be errors. 

we can assume when we write down a number like 
'0.3' we get the closest IEEE-754 value



Relative Error
Observation.  is tiny error for  but 
massive for 

±0.001 1020

10−20

Relative Error. 

𝖾𝗋𝗋𝗋𝖾𝗅 =
𝖾𝗋𝗋
𝗏𝖺𝗅

IEEE-754 keeps relative error small



Relative Error (Calculation)

error is determined by step-size 

𝖾𝗋𝗋 ≤ 2−52 × 2n

(fix an exponent )n

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252 ) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)



Relative Error (Calculation)
(fix an exponent )n

the smallest number we can represent at least
 1.0 × 2n

𝗏𝖺𝗅 ≥ 1.0 × 2n

(why do we care about a lower bound on val?)

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252 ) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)



Relative Error (Calculation)

the relative error is small 

 𝗏𝖺𝗅 ≥ 1.0 × 2n

𝖾𝗋𝗋 ≤ 2−52 × 2n

𝖾𝗋𝗋𝗋𝖾𝗅 =
𝖾𝗋𝗋
𝗏𝖺𝗅

≤
2−52 × 2n

1.0 × 2n
= 2−52 ≈ 10−16

(fix an exponent )n

(−1)𝗌𝗂𝗀𝗇 × (1 +
𝖿𝗋𝖺𝖼𝗍𝗂𝗈𝗇

252 ) × 2𝖾𝗑𝗉𝗈𝗇𝖾𝗇𝗍−(210−1)



16 digits of accuracy 
Not bad, but also not great

≈



let's do a quick demo 
example from the notes



The Takeaways

operations on floating-point numbers are not 
exact 

properties like  (associativity) may 
not hold 

it's a trade-off for large range and low 
relative error

(ab)c = a(bc)

What do we do about it?



Best Practices

1. don't compare floating points for equality 

2. be aware of ill-conditioned problems 

3. be aware of small differences



Principle 1: Closeness

When doing floating-point calculations in a 
program, define an error margin and use that 
for equality checking 

In Practice. 

    Replace    x == y 
    with       numpy.isclose(x, y)



demo



Principle 2: Ill-Conditioned Problems

Make sure your problem is not sensitive to 
small errors. 

In Practice. for example, don't divide by 
numbers much smaller than your error tolerance



demo



Principle 3: Small Differences

Make sure you understand your error tolerance 
when looking that the small differences of 
large numbers. 

In Practice. Don't expect  to have 16 digits 
of accuracy even if  and  do

a − b
a b



demo



One Last Note: Special Numbers

0      (we can't already represent 0?) 

nan    stands for not a number, .e.g, sqrt(-2) 

inf    symbolic infinity, behaves as expected 



Summary

floating point numbers are represented in your 
computer 

floating point operations are not exact 

this can have unintended consequences 

we get 16 digits of accuracy


