Gaussian Elimination

Geometric Algorithms
Lecture 3

Objectives

1. Motivation
2. Define the Gaussian Elimination (GE) algorithm
3. Analyze the GE algorithm

Keywords

echelon form
reduced echelon form
basic variables
free variables
Gaussian elimination
FLOPS

Motivation

Recall: Solving Systems of Linear Eqs.

Observation 1. Solutions look like simple systems of linear equations
said another way: it's easy to read off the solutions of some systems

Solving a system of linear equations is the same as row reducing its augmented matrix to a matrix which represents a solution.
What matrices represent solutions?

Recall: Number of Solutions

zero the system is inconsistent
one the system has a unique solution
many the system has infinity solutions
How does the number of solutions affect matrices representing solutions?

Recall: Elementary Row Operations

scaling

multiply a row by a number
interchange
replacement
switch two rows
add two rows (and replace one with the sum)
rep. + scl. add a scaled equation to another
How do we use these operations to get to matrices representing solutions?

Motivating Questions

Let's consider these first

What matrices represent solutions? (which have solutions that are easy to read off?)

How does the number of solutions affect the shape of these matrix?

How do we use row operations to get to those matrices?

Unique Solution Case

Unique Solution Case

$$
\begin{aligned}
{\left[\begin{array}{cccc}
2 & -3 & 5 & 11 \\
2 & -1 & 13 & 39 \\
1 & -1 & 5 & 14
\end{array}\right] }
\end{aligned} \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

The Identity Matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{1 s} \begin{gathered}
\text { atong the diagonal } \\
\text { 0s elsewhere }
\end{gathered}
$$

Unique Solution Case

coefficient matrix
 $$
\left[\begin{array}{llll} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{array}\right]
$$

a system of linear equations whose coefficient matrix is the identity matrix represent a unique solution

No Solution Case

No Solution Case

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 2 \\
1 & 2 & 3 & 4
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& \text { two parallel row representing } 0=1 \\
& \text { planes }
\end{aligned}
$$

No Solution Case

$$
\underbrace{\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]}_{\text {row }}
$$

a system with no solutions can be reduced to a matrix with the row

$$
00 \ldots 01
$$

Infinite Solution Case

Infinite Solution Case

$$
\left[\begin{array}{rrrr}
2 & 4 & 2 & 14 \\
1 & 7 & 1 & 12
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

a system with infinity solutions can be reduced to a system which leaves a variable unrestricted

Infinite Solution Case

$$
\begin{aligned}
& x_{1}+x_{3}=2 \text { it doesn't matter } \\
& x_{2}=1 \\
& \text { what } x_{3} \text { is if we } \\
& \text { want to satisfy } \\
& \text { this system of } \\
& \text { equations }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=1 \\
& x_{3}=0
\end{aligned}
$$

Infinite Solution Case

$$
\begin{array}{r}
x_{1}+x_{3}=2 \quad \begin{array}{c}
\text { it doesn't matter } \\
\text { what } x_{3} \text { is if we } \\
x_{2}=1 \quad \\
\text { want to satisfy } \\
\text { this system of } \\
\text { equations }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& x_{1}=1.5 \\
& x_{2}=1 \\
& x_{3}=0.5
\end{aligned}
$$

Infinite Solution Case

$$
\begin{array}{r}
x_{1}+x_{3}=2 \quad \begin{array}{c}
\text { it doesn't matter } \\
\text { what } x_{3} \text { is if we }
\end{array} \\
x_{2}=1 \quad \begin{array}{c}
\text { want to satisfy } \\
\text { this system of } \\
\text { equations }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& x_{1}=20 \\
& x_{2}=1 \\
& x_{3}=-18
\end{aligned}
$$

Infinite Solution Case

$$
\begin{array}{r}
x_{1}+x_{3}=2 \quad \begin{array}{c}
\text { it doesn't matter } \\
\text { what } x_{3} \text { is if we } \\
x_{2}=1 \quad \\
\text { want to satisfy } \\
\text { this system of } \\
\text { equations }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& x_{1}=2-x_{3} \\
& x_{2}=1 \\
& x_{3} \text { is free }
\end{aligned} \quad \text { general form }
$$

In Sum

none
reduces to a system with the equation $0=1$
one reduces to a system whose coefficient matrix is the identity matrix
infinity reduces to a system which leaves a variable unrestricted

Ideally, we want one form that handles all three cases

Motivating Questions

What matrices represent solutions? (which have solutions that are easy to read off?)

How does the number of solutions affect the shape of these matrix?

How do we use row operations to get to those matrices?
this is Gaussian elimination

Defining the Gaussian Elimination (GE) Algorithm

At a High Level

eliminations + back-substitution
we've already done this
but we'll take one step further and write down the algorithm as pseudocode

Keep in mind. How do we turn our intuitions into a formal procedure?

Defining the GE Algorithm (Outline)

1. echelon forms
2. elimination phase
3. substitution phase

Echelon Form

Leading Entries

Definition. the leading entry of a row is the first nonzero value

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & 3 \\
0 & 0 & 0 \\
1 & -1 & 10
\end{array}\right] \longleftarrow \quad \begin{gathered}
\text { no leading } \\
\text { entry }
\end{gathered}
$$

Echelon Form

Definition. A matrix is in echelon form if

1. The leading entry of each row appears to the right of the leading entry above it
2. Every all-zeros row appears below any nonzero rows

Echelon Form (Pictorially)

■ = nonzero, * = anything

Why we care about Echelon Forms?

echelon forms aren't quite solutions, but their close
the goal of elimination is to reduce an augmented matrix to an echelon form
(more reasons we care in a moment)

Question

Is the identity matrix in echelon form?

Answer: Yes

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

the leading entries of each row appears to the right of the leading entry above it
it has no all-zero rows

Question

Is this matrix in echelon form?

$$
\left[\begin{array}{ccc}
2 & 3 & -8 \\
0 & 1 & 2 \\
0 & 2 & 0
\end{array}\right]
$$

Answer: No

$$
\left[\begin{array}{ccc}
2 & 3 & -8 \\
0 & 1 & 2 \\
0 & 2 & 0
\end{array}\right]
$$

The leading entry of the least row is not to the right of the leading entry of the second row

The Problem with Echelon Forms

1. we can't read off the complete solution from an echelon form
2. they're not unique (uniqueness makes it easier to define an algorithm)

Reduced Echelon Form

Reduced Echelon Form

Definition. A matrix is in reduced echelon form if

1. The leading entry of each row appears to the right of the leading entry above it
2. Every all-zeros row appears below any non-zero rows
3. The leading entries of non-zero rows are 1
4. the leading entries are the only non-zero entries of their columns

Reduced Echelon Form (Pictorially)

Reduced Echelon Form (A Simple Example)

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Reduced Echelon Form (A Simple Example)

$$
\begin{gathered}
x_{1}+x_{3}=2 \\
x_{2}=1 \\
x_{1}=2-x_{3} \\
x_{2}=1 \\
x_{3} \text { is free }
\end{gathered}
$$

The Fundamental Point

Theorem. every matrix is row equivalent to a unique matrix in reduced echelon form Definition. a pivot position (i,j) in a matrix is the position of a leading entry in it's reduced echelon form
we can read off the solutions of a system of linear equations by looking at its pivot positions

Basic and Free Variables

Definition. A variable is basic if its column has a pivot position (this is called a pivot column). It is free otherwise.

Solutions of Reduced Echelon Forms

the row of a pivot position in row i describes the value of x_{i} in a solution to the system, in terms of the free variables

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& x_{1}=2-x_{3} \\
& x_{2}=1 \\
& x_{3} \text { is free }
\end{aligned}
$$

General Form Solution

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& x_{1}=2-x_{3} \\
& x_{2}=1 \\
& x_{3} \text { is free }
\end{aligned}
$$

for each pivot position (i, j), isolate x_{i} in the equation in row j
if x_{i} does not have a pivot position, write x_{i} is free

Inconsistent Echelon Forms

Corollary. A matrix represents an inconsistent system if its echelon form has a row of the form

$$
000 \ldots 001^{\text {just echelon }}
$$

if it didn't, we could read off a solution

Why we care about Reduced Echelon Forms?

the goal of back-substitution is to reduce an echelon form matrix to a reduced echelon form
the goal of Gaussian elimination is to reduce an augmented matrix to a reduced echelon form

echelon forms describe solutions to linear equations

Question

write down a solution in general form for this reduced echelon form matrix

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 3 & 1 \\
0 & 0 & 1 & 2 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Answer

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 3 & 1 \\
0 & 0 & 1 & 2 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=1-3 x_{4} \\
& x_{2} \text { is free } \\
& x_{3}=4-2 x_{4} \\
& x_{4} \text { is free }
\end{aligned}
$$

The Algorithm

Gaussian Elimination (Specification)

Input: (augmented) matrix A of size $m \times(n+1)$
Output: reduced echelon form of A
Notation:
$A[i]=i$ th row of A
$A[i, j]=$ entry in the the i th row and j th column

Gaussian Elimination (High Level)

Given A :
convert A to an echelon form A^{\prime}
if A^{\prime} is consistent:
convert A^{\prime} to reduced echelon form

Gaussian Elimination (Pseudocode)

FUNCTION GE(A):
GE_elim_stage(A)
IF is_consistent_echelon(A):
GE_back_sub_stage(A)

Elimination Stage

Elimination Stage (High Level)

Input: (augmented) matrix A of size $m \times(n+1)$
Output: echelon form of A
starting at the top left and move down, find a leading entry and eliminate it from latter equations

Note, this may require interchanging rows

Elimination (Pseudocode)

FUNCTION GE_elimination_stage(A):
FOR i from 1 to m : \# for all rows from top to bottom
IF rows i...m are all-zeros then STOP
$(j, k) \leftarrow$ position of leftmost nonzero entry in rows $i \ldots . m$ of A
swap rows $A[i]$ and $A[j]$ \# make sure row i has the pivot apply row operations to zero out all entries below (i,k) in A IF A has an inconsistent row then STOP

Elimination Stage (Example)

Swap R_{1} and R_{3}

Elimination Stage (Example)

$$
\begin{gathered}
\text { next entry } \\
\text { to zero }
\end{gathered}\left[\begin{array}{cccccc}
3 & -9 & 12 & -9 & 6 & 15 \\
3 & -7 & 8 & -5 & 8 & 9 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right]
$$

Elimination Stage (Example)

$\underset{\substack{\text { leftmost } \\ \text { nonzero } \\ \text { entry }}}{ }\left[\begin{array}{cccccc}3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5\end{array}\right]$
swap R_{2} with R_{2}

Elimination Stage (Example)

$$
\begin{gathered}
\underset{\text { next entry }}{\text { to zero }}\left[\begin{array}{cccccc}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right] \\
R_{3} \leftarrow R_{3}-\frac{3 R_{2}}{2}
\end{gathered}
$$

Elimination Stage (Example)

$$
\underset{\text { leftmost }}{\text { lent }} \text { nonzero } 0 .\left[\begin{array}{cccccc}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

swap R_{3} with R_{3}

Elimination Stage (Example)

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]} \\
& \text { done with elimination stage } \\
& \text { going to back substitution stage }
\end{aligned}
$$

Back Substitution Stage

Back Substitution Stage (High Level)

Input: (augmented) matrix A of size $m \times(n+1)$ in echelon form

Output: reduced echelon form of A
scale pivot positions and eliminate the variables for that column from the other equations

Back Substitution Phase (Pseudocode)

FUNCTION GE_back_sub_stage(A):

```
FOR i from 1 to m:
    IF row i has a pivot position (i,j):
    A[i]}\leftarrowA[i]/A[i,j
    apply row operations to zero-out entries above (i,j)
```


Gaussian Elimination (Example)

$$
\begin{gathered}
\text { pivot } \\
\text { position }
\end{gathered}\left[\begin{array}{cccccc}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

Gaussian Elimination (Example)

$$
\begin{gathered}
\text { pivot } \\
\text { position }
\end{gathered}\left[\begin{array}{cccccc}
1 & -3 & 4 & -3 & 2 & 5 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

Gaussian Elimination (Example)

$\underset{\text { to zero }}{\substack{\text { next entry }}}\left[\begin{array}{cccccc}1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4\end{array}\right]$

$$
R_{1} \leftarrow R_{1}+3 R_{2}
$$

Gaussian Elimination (Example)

$$
\left[\begin{array}{cccccc}
1 & 0 & -2 & 3 & 5 & -4 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

$$
R_{3} \leftarrow R_{3} / 1
$$

Gaussian Elimination (Example)

$$
\begin{gathered}
\underset{\substack{\text { next entry } \\
\text { to zero }}}{ }\left[\begin{array}{cccccc}
1 & 0 & -2 & 3 & 5 & -4 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \\
R_{2} \leftarrow R_{2}-R_{1}
\end{gathered}
$$

Gaussian Elimination (Example)

$\underset{\text { to zero }}{\substack{\text { next entry }}}\left[\begin{array}{cccccc}1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4\end{array}\right]$

$$
R_{1} \leftarrow R_{1}-5 R_{3}
$$

Gaussian Elimination (Example)

$$
\left[\begin{array}{cccccc}
1 & 0 & -2 & 3 & 0 & -24 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

done with back substitution phase

Gaussian Elimination (Example)

$$
\begin{aligned}
& x_{1}=(-24)+2 x_{3}-3 x_{4} \\
& x_{2}=(-7)+2 x_{3}-2 x_{4} \\
& x_{3} \text { is free } \\
& x_{4} \text { is free } \\
& x_{5}=4
\end{aligned}
$$

Gaussian Elimination (Example)

$$
\begin{aligned}
& x_{1}=(-24)+2 x_{3}-3 x_{4} \\
& x_{2}=(-7)+2 x_{3}-2 x_{4} \\
& x_{3} \text { is free } \\
& x_{4} \text { is free } \\
& x_{5}=4
\end{aligned} \quad\left[\begin{array}{cccccc}
1 & 0 & -2 & 3 & 0 & -24 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

Question

Why do we check if the system is consistent before doing back substitution?

Answer

We only back substitute if we want to be able to get a solution in general form

Analyzing the Algorithm

Analyzing the Algorithm

We will not use $O(\cdot)$ notation!
For numerics, we care about number of FLoatingoint OPerations (FLOPs):
>> addition
>> subtraction
>> multiplication
>> division
>> square root
$2 n$ vs. n is very different when $n \sim 10^{20}$

Dominant Terms

that said, we don't care about exact bounds A function $f(n)$ is asymptotically equivalent to $g(n)$ if

$$
\lim _{i \rightarrow \infty} \frac{f(i)}{g(i)}=1
$$

for polynomials, they are equivalent to their dominant term

Dominant Terms

the dominant term of a polynomial is the monomial with the highest degree

$$
\lim _{i \rightarrow \infty} \frac{3 x^{3}+100000 x^{2}}{3 x^{3}}=1
$$

$3 x^{3}$ dominates the function even though the coefficient for x^{2} is so large

Parameters

n : number of variables
m : number of equations (we will assume $m=n$)
$n+1$: number of rows in the augmented matrix

The Cost of a Row Operation

$$
R_{i} \leftarrow R_{i}+a R_{j}
$$

$n+1$ multiplications for the scaling
$n+1$ additions for the row additions

Tally: $2(n+1)$ FLOPS

Cost of First Iteration of Elimination

$$
\begin{aligned}
R_{2} & \leftarrow R_{2}+a_{2} R_{1} \\
R_{3} & \leftarrow R_{3}+a_{3} R_{1} \\
& \vdots \\
R_{n} & \leftarrow R_{n}+a_{n} R_{1}
\end{aligned}
$$

repeated row operations for each row except the first

Rough Cost of Elimination

repeating this last process at most n times gives us a dominant term $2 n^{3}$
we can give a better estimation...

Cost of Elimination

\(\left[\begin{array}{llllllllll}0 \& \square \& * \& * \& * \& * \& * \& * \& * \& *

0 \& 0 \& 0 \& \square \& * \& * \& * \& * \& * \& *

0 \& 0 \& 0 \& 0 \& * \& * \& * \& * \& * \& *

0 \& 0 \& 0 \& 0 \& * \& * \& * \& * \& * \& *

0 \& 0 \& 0 \& 0 \& * \& * \& * \& * \& * \& *

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0\end{array}\right] \quad\)| At iteration i, we 're |
| :--- |
| only interested in |
| rows after i |

Cost of Elimination

Iteration 1: $2 n(n+1)$
Iteraiton 2: 2(n-1)n
Iteration 3: 2(n-2)(n-1)

$$
\sum_{k=1}^{n} 2 k(k+1) \approx \frac{2 n(n+1)(2 n+1)}{6} \sim(2 / 3) n^{3}
$$

Cost of Back Substitution

(Let's assume no free variables)
for each pivot, we only need to:
>> zero out a position in 1 row (0 FLOPS)
>> add a value to the last row (1 FLOP) at most 1 FLOP per row per pivot $\sim n^{2}$

Cost of Gaussian Elimination

$$
\text { Tally: } \sim(2 / 3) n^{3} \text { FLOPS }
$$

(dominated by elimination)

Summary

row echelon forms describe solutions to systems of linear equations

Gaussian elimination is an algorithmic process for solving systems of linear equations

Gaussian elimination requires about (2/3)n ${ }^{3}$ FLOPS

