
CAS CS 132

Gaussian Elimination
Geometric Algorithms
Lecture 3

Objectives

1. Motivation

2. Define the Gaussian Elimination (GE) algorithm

3. Analyze the GE algorithm

Keywords

echelon form

reduced echelon form

basic variables

free variables

Gaussian elimination

FLOPS

Motivation

Recall: Solving Systems of Linear Eqs.

Observation 1. Solutions look like simple
systems of linear equations

said another way: it's easy to read off the
solutions of some systems

Solving a system of linear equations is the
same as row reducing its augmented matrix to a
matrix which represents a solution.

What matrices represent solutions?

Recall: Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions
How does the number of solutions affect

matrices representing solutions?

Recall: Elementary Row Operations

scaling multiply a row by a number

interchange switch two rows

replacement add two rows (and replace one

 with the sum)

rep. + scl. add a scaled equation to another
How do we use these operations to get to matrices

representing solutions?

Motivating Questions

What matrices represent solutions? (which have
solutions that are easy to read off?)

How does the number of solutions affect the
shape of these matrix?

How do we use row operations to get to those
matrices?

Let's consider these first

Unique Solution Case

Unique Solution Case

2 −3 5 11
2 −1 13 39
1 −1 5 14

∼ [
1 0 0 1
0 1 0 2
0 0 1 3]

x = 1
y = 2
z = 3

Nearly all the
examples we've seen

so far

The Identity Matrix

[
1 0 0
0 1 0
0 0 1]

1s along the diagonal

0s elsewhere

Unique Solution Case

[
1 0 0 1
0 1 0 2
0 0 1 3]

coefficient matrix

a system of linear equations whose coefficient
matrix is the identity matrix represent a

unique solution

No Solution Case

No Solution Case

[
1 1 1 1
1 1 1 2
1 2 3 4] ∼ [

1 2 3 4
1 1 1 1
0 0 0 1]

two parallel
planes

row representing 0 = 1

No Solution Case

[
1 2 3 4
1 1 1 1
0 0 0 1]

row representing 0 = 1

a system with no solutions can be reduced to a
matrix with the row

0 0 … 0 1

Infinite Solution Case

Infinite Solution Case

[2 4 2 14
1 7 1 12] ∼ [1 0 1 2

0 1 0 1]
x1 + x3 = 2

x2 = 1

a system with infinity solutions can be
reduced to a system which leaves a

variable unrestricted

Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 2
x2 = 1
x3 = 0

it doesn't matter
what is if we
want to satisfy
this system of

equations

x3

Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 1.5
x2 = 1
x3 = 0.5

it doesn't matter
what is if we
want to satisfy
this system of

equations

x3

Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 20
x2 = 1
x3 = − 18

it doesn't matter
what is if we
want to satisfy
this system of

equations

x3

Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 2 − x3

x2 = 1
x3 is free

general form

it doesn't matter
what is if we
want to satisfy
this system of

equations

x3

In Sum

none reduces to a system with the 
 equation

one reduces to a system whose coefficient 
 matrix is the identity matrix

infinity reduces to a system which leaves a 
 variable unrestricted

0 = 1

Ideally, we want one form that handles
all three cases

Motivating Questions

What matrices represent solutions? (which have
solutions that are easy to read off?)

How does the number of solutions affect the
shape of these matrix?

How do we use row operations to get to those
matrices?

this is Gaussian elimination

Defining the Gaussian
Elimination (GE) Algorithm

At a High Level

eliminations + back-substitution

we've already done this

but we'll take one step further and write down
the algorithm as pseudocode

Keep in mind. How do we turn our intuitions
into a formal procedure?

Defining the GE Algorithm (Outline)

1. echelon forms

2. elimination phase

3. substitution phase

Echelon Form

Leading Entries

Definition. the leading entry of a row is the
first nonzero value

1 2 3
0 −3 3
0 0 0
1 −1 10

no leading
entry

Echelon Form

Definition. A matrix is in echelon form if

1. The leading entry of each row appears to the
right of the leading entry above it

2. Every all-zeros row appears below any non-
zero rows

Echelon Form (Pictorially)

 = nonzero, = anything

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 ◼ * * * * *
0 0 0 0 0 ◼ * * * *
0 0 0 0 0 0 0 0 ◼ *
0 0 0 0 0 0 0 0 0 0

◼ *

all-zero rows at
the bottom

next leading entry
to the right

Why we care about Echelon Forms?

echelon forms aren't quite solutions, but their
close

the goal of elimination is to reduce
an augmented matrix to an echelon form

(more reasons we care in a moment)

Question

Is the identity matrix in echelon form?

Answer: Yes

the leading entries of each row appears to the
right of the leading entry above it

it has no all-zero rows

[
1 0 0
0 1 0
0 0 1]

Question

Is this matrix in echelon form?

[
2 3 −8
0 1 2
0 2 0]

Answer: No

The leading entry of the least row is not to
the right of the leading entry of the second
row

[
2 3 −8
0 1 2
0 2 0]

The Problem with Echelon Forms

1. we can't read off the complete solution from
an echelon form

2. they're not unique (uniqueness makes it
easier to define an algorithm)

Reduced Echelon Form

Reduced Echelon Form

Definition. A matrix is in reduced echelon form if

1. The leading entry of each row appears to the right
of the leading entry above it

2. Every all-zeros row appears below any non-zero rows

3. The leading entries of non-zero rows are 1

4. the leading entries are the only non-zero entries
of their columns

Reduced Echelon Form (Pictorially)

0 1 * 0 0 0 * * 0 *
0 0 0 1 0 0 * * 0 *
0 0 0 0 1 0 * * 0 *
0 0 0 0 0 1 * * 0 *
0 0 0 0 0 0 0 0 1 *
0 0 0 0 0 0 0 0 0 0

other column
entries are 0

leading entries are 1

Reduced Echelon Form (A Simple Example)

[1 0 1 2
0 1 0 1]

Reduced Echelon Form (A Simple Example)

x1 + x3 = 2
x2 = 1

x1 = 2 − x3

x2 = 1
x3 is free

The Fundamental Point

Theorem. every matrix is row equivalent to a
unique matrix in reduced echelon form

Definition. a pivot position in a matrix is
the position of a leading entry in it's reduced
echelon form

(i, j)

we can read off the solutions of a system of linear
equations by looking at its pivot positions

Basic and Free Variables

Definition. A variable is basic if its column
has a pivot position (this is called a pivot
column). It is free otherwise.

[1 0 1 2
0 1 0 1]

 is basicx1

 is basicx2

 is freex3

Solutions of Reduced Echelon Forms

the row of a pivot position in row describes
the value of in a solution to the system, in
terms of the free variables

i
xi

[1 0 1 2
0 1 0 1]

x1 = 2 − x3

x2 = 1
x3 is free

General Form Solution

for each pivot position , isolate in the
equation in row

if does not have a pivot position, write

(i, j) xi
j

xi

xi is free

x1 = 2 − x3

x2 = 1
x3 is free

[1 0 1 2
0 1 0 1]

Inconsistent Echelon Forms

Corollary. A matrix represents an inconsistent
system if its echelon form has a row of the
form

0 0 0 … 0 0 1

if it didn't, we could read off a solution

just echelon

Why we care about Reduced Echelon Forms?

the goal of back-substitution is to reduce an
echelon form matrix to a reduced echelon form

the goal of Gaussian elimination is to reduce
an augmented matrix to a reduced echelon form

echelon forms describe solutions to linear
equations

Question

write down a solution in general form for this
reduced echelon form matrix

[
1 0 0 3 1
0 0 1 2 4
0 0 0 0 0]

Answer

x1 = 1 − 3x4

x2 is free
x3 = 4 − 2x4

x4 is free
[

1 0 0 3 1
0 0 1 2 4
0 0 0 0 0]

The Algorithm

Gaussian Elimination (Specification)

Input: (augmented) matrix of size

Output: reduced echelon form of

Notation:

 = row of

 = entry in the the row and column

A m × (n + 1)

A

A[i] ith A

A[i, j] ith jth

Gaussian Elimination (High Level)

Given :

 convert to an echelon form

 if is consistent:

 convert to reduced echelon form

A

A A′￼

A′￼

A′￼

Gaussian Elimination (Pseudocode)

FUNCTION GE():

 GE_elim_stage()

 IF is_consistent_echelon():

 GE_back_sub_stage()

A

A

A

A

Elimination Stage

Elimination Stage (High Level)

Input: (augmented) matrix of size

Output: echelon form of

starting at the top left and move down, find a
leading entry and eliminate it from latter
equations

Note. this may require interchanging rows

A m × (n + 1)

A

Elimination (Pseudocode)

FUNCTION GE_elimination_stage():

 FOR from 1 to : # for all rows from top to bottom

 IF rows are all-zeros then STOP

 position of leftmost nonzero entry in rows of

 swap rows and # make sure row has the pivot

 apply row operations to zero out all entries below in

 IF has an inconsistent row then STOP

A

i m

i…m

(j, k) ← i…m A

A[i] A[j] i

(i, k) A

A

Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

leftmost
nonzero
entry

Swap and R1 R3

Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

next entry
to zero

R3 ← R3 − R1

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

leftmost
nonzero
entry

swap with R2 R2

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5next entry

to zero

R3 ← R3 −
3R2

2

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

leftmost
nonzero
entry

swap with R3 R3

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4
done with elimination stage

going to back substitution stage

Back Substitution Stage

Back Substitution Stage (High Level)

Input: (augmented) matrix of size in
echelon form

Output: reduced echelon form of

scale pivot positions and eliminate the
variables for that column from the other
equations

A m × (n + 1)

A

Back Substitution Phase (Pseudocode)

FUNCTION GE_back_sub_stage():

 FOR from 1 to :

 IF row has a pivot position :

 apply row operations to zero-out entries above

A

i m

i (i, j)

A[i] ← A[i] / A[i, j]

(i, j)

Gaussian Elimination (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

R1 ← R1 / 3

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

R2 ← R2 / 2

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

R1 ← R1 + 3R2

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4pivot

position

R3 ← R3 / 1

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

R2 ← R2 − R1

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 0 −7
0 0 0 0 1 4

next entry
to zero

R1 ← R1 − 5R3

Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4]

done with back substitution phase

Gaussian Elimination (Example)

x1 = (−24) + 2x3 − 3x4

x2 = (−7) + 2x3 − 2x4

x3 is free
x4 is free
x5 = 4

Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4]

x1 = (−24) + 2x3 − 3x4

x2 = (−7) + 2x3 − 2x4

x3 is free
x4 is free
x5 = 4

(columns 3 and 4 don't have
pivot positions)

Question

Why do we check if the system is consistent
before doing back substitution?

Answer

We only back substitute if we want to be able
to get a solution in general form

Analyzing the Algorithm

Analyzing the Algorithm

We will not use notation!

For numerics, we care about number of FLoating-
oint OPerations (FLOPs):

 >> addition 
 >> subtraction 
 >> multiplication 
 >> division 
 >> square root

O(⋅)

 vs. is very different
when

2n n
n ∼ 1020

Dominant Terms

that said, we don't care about exact bounds

A function is asymptotically equivalent to
 if

for polynomials, they are equivalent to their
dominant term

f(n)
g(n)

lim
i→∞

f(i)
g(i)

= 1

Dominant Terms

the dominant term of a polynomial is the monomial with the
highest degree

 dominates the function even though the coefficient for
is so large

lim
i→∞

3x3 + 100000x2

3x3
= 1

3x3 x2

Parameters

 : number of variables

 : number of equations (we will assume)

 : number of rows in the augmented matrix

n

m m = n

n + 1

The Cost of a Row Operation

 multiplications for the scaling

 additions for the row additions

Ri ← Ri + aRj
n + 1

n + 1

Tally: FLOPS2(n + 1)

Cost of First Iteration of Elimination

repeated row operations for each row except the
first

R2 ← R2 + a2R1
R3 ← R3 + a3R1

⋮
Rn ← Rn + anR1

Tally: FLOPS≈ 2n(n + 1)

Rough Cost of Elimination

repeating this last process at most times
gives us a dominant term

we can give a better estimation...

n
2n3

Tally: FLOPS≈ 2n2(n + 1)

Cost of Elimination

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 0 0 0 0 0 0

At iteration , we're
only interested in
rows after

And to the right of
column

i

i

i

Cost of Elimination

Iteration 1:  
Iteraiton 2:  
Iteration 3:  

2n(n + 1)
2(n − 1)n
2(n − 2)(n − 1)

⋮

Tally: FLOPS∼ (2/3)n3

n

∑
k=1

2k(k + 1) ≈
2n(n + 1)(2n + 1)

6
∼ (2/3)n3

+

Cost of Back Substitution

(Let's assume no free variables)

for each pivot, we only need to:

 >> zero out a position in 1 row (0 FLOPS) 
 >> add a value to the last row (1 FLOP)

at most 1 FLOP per row per pivot
∼ n2

Tally: FLOPS∼ (2/3)n3

Cost of Gaussian Elimination

Tally: FLOPS∼ (2/3)n3

(dominated by elimination)

Summary

row echelon forms describe solutions to systems
of linear equations

Gaussian elimination is an algorithmic process
for solving systems of linear equations

Gaussian elimination requires about FLOPS (2/3)n3

