# Vector Equations 

Geometric Algorithms
Lecture 4

## Recap Problem

consider the following system of linear equations

$$
\begin{aligned}
x+y & =0 \\
2 x-y & =0 \\
3 x+2 y & =0
\end{aligned}
$$

write down its augmented matrix and it's reduced echelon form

## Recap Problem (Solution)

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & -1 & 0 \\
3 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

we don't even have to do any calculations
I lied a bit on Tuesday
the coefficient matrix is: identity matrix + zeros on bottom

## Objectives

1. motivation
2. define vectors
3. discuss vector operations and vector algebra 4. relate vectors and systems of linear equations

## Keywords

vectorvector additionvector scaling/multiplicationthe zero vectorvector equations
linear combinations
span

## Sources

Images are from out textbook by Professor Crovella Demos are from Interactive Linear Algebra, a very nice optional text for this course

Motivation

## Changing Perspective

$$
2^{n}-1=\sum_{i=1}^{n-1} 2^{i}
$$

Show that this holds for all n

## Changing Perspective

$$
\begin{gathered}
2^{n}-1=\sum_{i=1}^{n-1} 2^{i} \\
100 \ldots 000-000 \ldots 001=011 \ldots 111 \\
\text { show that this holds for all } n \\
\text { much easier in binary }
\end{gathered}
$$

## Motivation?

vectors will be one of the most important shifts of perspective in this course the insight is so simple its genius

maybe I'm reaching...

## Big Data

a piece of data is a bunch of distinct values (numbers)

How can we tell if two piece of data are similar?
maybe if they are close together in a geometric sense

## A Note on Algebra

in programming an "interface" is an abstract collection of related functions (e.g., a printing interface, or a comparison interface)
and object then "implements" an interface doing abstract algebra is like implementing an interface we're defining an new thing called a "column vector" we need to define what "equality" and "adding" and "multiplying by a number" means for column vectors

## Vectors

## What is a vector (in $\mathbb{R}^{n}$ )?

A. an $n$-tuple of real numbers
B. a point in $\mathbb{R}^{n}$
C. a 1-column matrix with real values
D. all of the above
E. none of the above?
it's common to conflate points and vectors

## Column Vectors

Definition. a column vector is a matrix with a single column, e.g.,
\(\left[\begin{array}{c}2 <br>
3 <br>
0.1 <br>

-2\end{array}\right] \quad\)| bold |
| :---: |
| letter |
|  |
| 0 |\(\quad \mathbf{0}=\left[\begin{array}{c}0 <br>

0 <br>
0 <br>
\vdots <br>
0 <br>
0 <br>
0\end{array}\right]\)
$\mathbf{e}_{3}=\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0\end{array}\right]$

## A Note on Matrix Size

an ( $m \times n$ ) matrix is a matrix with $m$ rows and $n$ columns

$\mathbb{R}^{m \times n}$ is set of matrices with $\mathbb{R}$ entries

## Notation (Points)


points in $\mathbb{R}^{2}$ are notated as $(a, b)$

## Notation (Vectors)


vectors in $\mathbb{R}^{2}$ are notated as $\left[\begin{array}{l}a \\ b\end{array}\right]$

## Notation

we will often write $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for the vector

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

!!IMPORTANT!!
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is not the same as $\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$

## Vector Equality

two vectors are equal if their entries at each position are equal
(this is also the case for matrices)

$$
\begin{aligned}
& \text { ! ! IMPORTANT!! } \\
& \text { ORDER MATTERS } \\
& \qquad\left[\begin{array}{l}
1 \\
2
\end{array}\right] \neq\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

## Vector Equality

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \quad \text { is the same as } \begin{gathered}
a_{1}=b_{1} \\
a_{2}=b_{2} \\
\vdots \\
a_{n}=b_{n}
\end{gathered}
$$

## Vector Operations

## Vector "Interface"

addition what does $\mathbf{u}+\mathbf{v}$ (adding two vectors mean?
scaling what does $a \mathbf{v}$ (multiplying a vector by a real number) mean?

What properties do they need to satisfy?

## Vector Addition

 adding two vectors means adding their entries$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
\vdots \\
a_{n}+b_{n}
\end{array}\right]
$$

!! IMPORTANT!!
WE CAN ONLY ADD VECTORS OF THE SAME SIZE

## Vector Addition (Non-Example)

$$
\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]+\left[\begin{array}{c}
23 \\
0.5 \\
3 \\
0
\end{array}\right]
$$

This is nonsensical

## Vector Addition (Example)

$$
\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]+\left[\begin{array}{c}
23 \\
0.5 \\
3
\end{array}\right]=\left[\begin{array}{c}
23+2 \\
3+0.5 \\
4+3
\end{array}\right]=\left[\begin{array}{c}
25 \\
3.5 \\
7
\end{array}\right]
$$

## Vector Addition (Geometrically)

in $\mathbb{R}^{2}$ it's called the parallelogram rule


## Vector Addition (Geometrically)

or the tip-to-tail rule


## demo <br> (from ILA)

## Vector Scaling/Multiplication

scaling/multiplying a vector by a number means multiplying each of it's elements

$$
a\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
a b_{1} \\
a b_{2} \\
\vdots \\
a b_{n}
\end{array}\right]
$$

## Vector Scaling/Multiplication (Example)

$$
3\left[\begin{array}{c}
2 \\
1 \\
3.5 \\
4
\end{array}\right]=\left[\begin{array}{c}
3 \cdot 2 \\
3 \cdot 1 \\
3 \cdot 3.5 \\
3 \cdot 4
\end{array}\right]=\left[\begin{array}{c}
6 \\
3 \\
10.5 \\
12
\end{array}\right]
$$

## Vector Scaling (Geometrically)

longer
the same length shorter reversed


## demo <br> (from ILA)

## Algebraic Properties

For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and any real numbers $c, d$ :

$$
\begin{array}{ll}
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} & c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v} \\
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) & (c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u} \\
\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u} & c(d \mathbf{u})=(c d) \mathbf{u} \\
\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0} & 1 \mathbf{u}=\mathbf{u}
\end{array}
$$

these are requirements for any vector space they matter more for bizarre vector spaces

## Question (Practice)

compute the value of this vector

$$
3\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+2\left[\begin{array}{c}
2 \\
0 \\
3 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-3 \\
4 \\
2 \\
0
\end{array}\right]
$$

## Answer

$$
3\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+2\left[\begin{array}{c}
2 \\
0 \\
3 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-3 \\
4 \\
2 \\
0
\end{array}\right]
$$

## Answer

$$
\left[\begin{array}{l}
3 \\
3 \\
3 \\
3
\end{array}\right]+\left[\begin{array}{c}
4 \\
0 \\
6 \\
-2
\end{array}\right]-\left[\begin{array}{c}
-3 \\
4 \\
2 \\
0
\end{array}\right]
$$

## Answer

$$
\left[\begin{array}{c}
3+4-(-3) \\
3+0-4 \\
3+6-2 \\
3+(-2)+0
\end{array}\right]
$$

Answer

$$
\left[\begin{array}{c}
0 \\
-10 \\
1
\end{array}\right]
$$

## In Sum

we can add vectors
we can scale vectors
this gives us a way of generating new vectors from old ones

What vectors can we make in this way?

## Linear Combinations

## Linear Combinations

Definition. a linear combination of vectors

$$
\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}
$$

is a vector of the form

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{1} \mathbf{v}_{2}+\ldots+\alpha_{n} \mathbf{v}_{n} \quad \begin{gathered}
\text { Looks suspiciously like } \\
\text { a linear equation.. }
\end{gathered}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are in $\mathbb{R}$ weights

## Linear Combinations (Example)

$$
3\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+2\left[\begin{array}{c}
2 \\
0 \\
3 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-3 \\
4 \\
2 \\
0
\end{array}\right]
$$

## Linear Combinations (Geometrically)

demo<br>(from ILA)

## The Fundamental Concern

Can u be written as a linear combination of

$$
\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} ?
$$

That is, are there weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots \alpha_{n} \mathbf{v}_{n}=u ?
$$

## Why is this fundamental?

I'm going to ask that you suspend your disbelief...

For now, how do we solve this problem?

## Vector Equations and Systems of Linear Equations

## The Fundamental Connection

we don't know the weights, that's want we want to find
what if we write them as unknowns?

$$
x_{1}\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

## The Fundamental Connection

we don't know the weights, that's want we want to find
what if we write them as unknowns?

$$
\left[\begin{array}{c}
x_{1} \\
(-2) x_{1} \\
(-5) x_{1}
\end{array}\right]+\left[\begin{array}{l}
2 x_{2} \\
5 x_{2} \\
6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

## The Fundamental Connection

we don't know the weights, that's want we want to find
what if we write them as unknowns?

$$
\left[\begin{array}{c}
x_{1}+2 x_{2} \\
(-2) x_{1}+5 x_{2} \\
-5 x_{1}+6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

## The Fundamental Connection

we don't know the weights, that's want we want to find
what if we write them as unknowns?

$$
\begin{array}{cc}
x_{1}+2 x_{2}=7 & \text { we get a system } \\
(-2) x_{1}+5 x_{2}=4 & \begin{array}{c}
\text { of linear } \\
\text { equations we } \\
\text { know how to }
\end{array} \\
-5 x_{1}+6 x_{2}=-3 & \text { solve }
\end{array}
$$

## The Fundamental Connection

More generally:

$$
x_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{1 m}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{21} \\
a_{21} \\
\vdots \\
a_{2 m}
\end{array}\right]+\ldots+x_{n}\left[\begin{array}{c}
a_{n 1} \\
a_{n 2} \\
\vdots \\
a_{n m}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

## The Fundamental Connection

$$
\left[\begin{array}{c}
a_{11} x_{1} \\
a_{21} x_{1} \\
\vdots \\
a_{1 m} x_{1}
\end{array}\right]+\left[\begin{array}{c}
a_{21} x_{2} \\
a_{21} x_{2} \\
\vdots \\
a_{2 m} x_{1}
\end{array}\right]+\ldots+\left[\begin{array}{c}
a_{n 1} x_{n} \\
a_{n 2} x_{n} \\
\vdots \\
a_{n m} x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

by vector scaling

## The Fundamental Connection

$$
\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

by vector addition

## The Fundamental Connection

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

> by vector equality

## The Fundamental Connection

$\left[\begin{array}{ccccc}a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\ a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}\end{array}\right] \quad$ this is our big
augmented matrix
$a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}$
$\vdots$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}$
system of linear equations

$$
x_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{1 m}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{21} \\
a_{21} \\
\vdots \\
a_{2 m}
\end{array}\right]+\ldots+x_{n}\left[\begin{array}{c}
a_{n 1} \\
a_{n 2} \\
\vdots \\
a_{n m}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

vector equation

## HOW TO: Linear Combination Problems

Question. Can b be written as a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}$ ?

Solution. Solve the system of linear equations with the augmented matrix
this is notation for

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

A solution to this system is a set of weights to define $\mathbf{b}$ as a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$

## Question (Practice)

Can $\left[\begin{array}{c}7 \\ 4 \\ -3\end{array}\right]$ be written as a linear combination of $\left[\begin{array}{c}1 \\ -2 \\ -5\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$ ?

## Answer: Yes

$$
3\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]+2\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

## Spans

Definition. the span of a set of vectors is the set of all possible linear combinations of them
$\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}=\left\{\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots \alpha_{n} \mathbf{v}_{n}: \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right.$ are in $\left.\mathbb{R}\right\}$
read: $\mathbf{u}$ is an element of $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$
$\mathbf{u} \in \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ exactly when $\mathbf{u}$ can be expressed as a linear combination of those vectors

## Spans (Geometrically)

for one vector

$$
\operatorname{span}\{\mathbf{v}\}=\{\alpha \mathbf{v}: \alpha \in \mathbb{R}\}
$$

this is all scalar multiple of $v$
the span of one vector is a line

## Spans (Geometrically)

the span of two vectors can be a plane the span of three vectors can be a hyperplane

## !! IMPORTANT!!

In all cases they pass through the origin

## Spans (Geometrically)

## HOW TO: Span Problems

Question. Is $\mathbf{b} \in \operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ ?
Solution. Determine if b can be written as a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$

you know how to do this now

## Question (Conceptual)

What does it mean geometrically if $\mathbf{b} \notin \operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\} ?$

## demo <br> (from ILA)

## HOW TO: Inconsistency and Spans

Question. find a vector b which does not appear in $\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$

Solution. Choose b so that

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

is the augmented matrix of an inconsistent system

There is no way to write b as a linear combination

## Summary

vectors are fundamental objects
we can think of them as the columns of a linear system
we can scale them and add them together
they can span spaces which represent hyperplanes

