Linear Independence

Geometric Algorithms
Lecture 6

Recap Problem

Do these three vectors span all of \mathbb{R}^{3} ?

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-4 \\
4 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
6 \\
-3
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-5 \\
8 \\
-2
\end{array}\right]
$$

Answer: No

Consider the matrix

$$
\left[\begin{array}{ccc}
-4 & -3 & -5 \\
4 & 6 & 8 \\
2 & -3 & -2
\end{array}\right]
$$

Answer: No

$$
\begin{gathered}
{\left[\begin{array}{ccc}
-4 & -3 & -5 \\
4 & 6 & 8 \\
4 & -6 & -4
\end{array}\right]} \\
R_{3} \leftarrow 2 R_{3}
\end{gathered}
$$

Answer: No

$$
\begin{gathered}
{\left[\begin{array}{ccc}
-4 & -3 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{array}\right]} \\
R_{2} \leftarrow R_{2}+R_{1} \\
R_{3} \leftarrow R_{3}+R_{1}
\end{gathered}
$$

Answer: No

$$
\begin{gathered}
{\left[\begin{array}{ccc}
-4 & -3 & -5 \\
0 & 3 & 3 \\
0 & 0 & 0
\end{array}\right]} \\
R_{3} \leftarrow R_{3}+3 R_{2}
\end{gathered}
$$

Answer: No

$$
\left[\begin{array}{ccc}
-4 & -3 & -5 \\
0 & 3 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

Third row has no pivot

Objectives

1. Motivation
2. Define linear independence
3. See several perspectives on linear independence

Keywords

linear independence
linear dependence
homogenous systems of linear equations
trivial and nontrivial solutions

Motivation

Recall: Number of Solutions

zero the system is inconsistent
one the system has a unique solution
many the system has infinity solutions

Up to Now

Is a system of linear equations consistent? vector equation matrix equation

Does it have more than zero solutions?

Check the echelon form for consistency
Check the reduced echelon form for a solution

Some New Questions

When does $A \mathbf{x}=\mathbf{b}$ have exactly one solution?

When does $A \mathbf{x}=\mathbf{b}$ have infinitely many solutions?
What does it mean geometrically in each case?

Homogeneous Linear Systems

Recall: The Zero Vector

$$
\begin{aligned}
& \mathbf{v}+\mathbf{0}=\mathbf{0}+\mathbf{v}=\mathbf{v} \\
& c \mathbf{0}=\mathbf{0} \\
& \mathbf{u}+-\mathbf{u}=\mathbf{0}
\end{aligned}
$$

the dimension is implicit in the notation

Homogenous Linear Systems

Definition. A system of linear equations is called homogeneous if it can be expressed as

$$
A \mathbf{x}=\mathbf{0}
$$

familiar...

(anxiety inducing?)

Homogenous Linear Systems

Definition. A system of linear equations is called homogeneous if it can be expressed as

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

familiar...

(anxiety inducing?)

Homogenous Linear Systems

Definition. A system of linear equations is called homogeneous if it can be expressed as

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=0 \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=0 \\
\text { familiar..." } \\
\text { (anxiety inducing?) }
\end{gathered}
$$

Trivial Solutions

Definition. For the matrix equation

$$
A \mathbf{x}=\mathbf{0}
$$

the solution $\mathbf{x}=\mathbf{0}$ is called the trivial solution.

Any other solution is called nontrivial.

Trivial Solutions

Definition. For the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

the solution $\mathbf{x}=\mathbf{0}$ is called the trivial solution.

Any other solution is called nontrivial.

Trivial Solutions

Definition. For the system of linear equations

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =0 \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =0
\end{aligned}
$$

the solution $\mathbf{x}=\mathbf{0}$ is called the trivial solution. Any other solution is called nontrivial.

Questions about Homogeneous Systems

When does $A \mathbf{x}=\mathbf{0}$ have only the trivial solution?

When does $A \mathbf{x}=\mathbf{0}$ have nontrivial solutions?
What does it mean geometrically in each case?

Linear Independence

Linear Independence

Definition. A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent if the vectors equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\ldots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has exactly one solution (the trivial solution).
The columns of A are linearly independent if $A \mathbf{x}=\mathbf{0}$ has exactly one solution.

Linear Dependence

Definition. A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is linearly dependent if the vectors equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\ldots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has a nontrivial solution.
A set of vectors is linearly dependent if there is a nontrivial linear combination of the vectors which equals 0 .

Linear Dependence (Alternative)

Definition. A set of vectors is linearly dependent if it is not linearly independent.

$$
A \mathbf{x}=\mathbf{0} \text { has a nontrivial solution }
$$

$A \mathbf{x}=\mathbf{0}$ does not have only the trivial solution

Another Interpretation of Linear Dependence

demo
 (from ILA)

Three Vectors in \mathbb{R}^{3}

It's possible for three vectors in \mathbb{R}^{3} to span all of \mathbb{R}^{3}, but it's not guaranteed

There may be vectors which lies in the plane spanned by two other vectors.

Or even two vectors which lie in the span of one of the others.

Fundamental Concern

How do we classify when a set of vectors does not span as much as it possibly can? When it is "smaller" than it could be?

This is the role of linear dependence.

Linear Dependence (Another Alternative)

Definition. A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is linearly dependent if it is nonempty and one of its vectors can be written as a linear combination of the others (not including itself).
e.g., $\quad \mathbf{v}_{1}=\left[\begin{array}{c}-4 \\ 4 \\ 2\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}-3 \\ 6 \\ -3\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}-5 \\ 8 \\ -2\end{array}\right]$
(the recap problem)

The Linear Combination Perspective

Suppose we have four vectors such that

$$
\mathbf{v}_{3}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}+\quad+5 \mathbf{v}_{4}
$$

This gives us a solution to a vector equation.

The Linear Combination Perspective

$$
\mathbf{v}_{3}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}+\quad+5 \mathbf{v}_{4}
$$

implies

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}+x_{4} \mathbf{v}_{4}=\mathbf{0}
$$

has a nontrivial solution:

$$
(2,3,-1,5)
$$

The Vector Equation Perspective

Suppose

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}+x_{4} \mathbf{v}_{4}=\mathbf{0}
$$

has a nontrivial solution:

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)
$$

where, say, $\alpha_{2} \neq 0$
We can turn this into a linear combination.

The Vector Equation Perspective

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}=\mathbf{0}
$$

The Vector Equation Perspective

$$
\alpha_{1} \mathbf{v}_{1}+
$$

$$
\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}=-\alpha_{2} \mathbf{v}_{2}
$$

The Vector Equation Perspective

This division only works because $\alpha_{2} \neq 0$.

We get one vector as a linear combination of the others.

In All

Theorem. A set of vectors is linearly dependent if and only if it is nonempty and at least one of its vectors can be written as a linear combination of the others.

$$
\begin{aligned}
& P \text { if and only if } Q \text { means } \\
& P \text { implies } Q \text { and } Q \text { implies } P
\end{aligned}
$$

Linear Dependence Relation

Definition. If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly dependent, then a linear dependence relation is an equation of the form

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{n} \mathbf{v}_{n}=\mathbf{0}
$$

A linear dependence relation witnesses the linear dependence.

How To: Linear Dependence Relation

Question. Write down a linear dependence relation for the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{n}$.

Solution. Find a nontrivial solution to the equation

$$
\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}
\end{array}\right] \mathbf{x}=\mathbf{0}
$$

(there will be a free variable you can choose to be nonzero)

Question

Write down the linear dependence relation for the following vectors.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-4 \\
4 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
6 \\
-3
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-5 \\
8 \\
-2
\end{array}\right]
$$

Answer

$$
\left[\begin{array}{cccc}
-4 & -3 & -5 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { Added } 0 \text { column }
$$

Where we left off

Answer

$$
\left[\begin{array}{cccc}
-4 & -3 & -5 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
R_{2} \leftarrow R_{2} / 3
$$

Answer

$$
\left[\begin{array}{cccc}
-4 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
R_{1} \leftarrow R_{1}+3 R_{2}
$$

Answer

$$
\left[\begin{array}{cccc}
1 & 0 & 0.5 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
R_{1} \leftarrow R_{1} /(-4)
$$

Answer

$$
\begin{aligned}
& x_{1}=-(0.5) x_{3} \\
& x_{2}=-x_{3} \\
& x_{3} \text { is free }
\end{aligned}
$$

Answer

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=2 \\
& x_{3}=-2
\end{aligned}
$$

Answer

$$
\left[\begin{array}{c}
-4 \\
4 \\
2
\end{array}\right]+2\left[\begin{array}{c}
-3 \\
6 \\
-3
\end{array}\right]-2\left[\begin{array}{c}
-5 \\
8 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Simple Cases

The Empty Set

\{\} (a.k.a. \varnothing) is linearly independent We stretch the definition a bit: there is no nontrivial linear combination of the vectors equaling 0

There are none at all...
0 is in every span, even the empty span.

One Vector

A single vector \mathbf{v} is linearly independent if and only if it $\mathbf{v} \neq \mathbf{0}$.

Note that

$$
x_{1} \mathbf{0}=\mathbf{0}
$$

has many nontrivial solutions.

The Zero Vector and Linear Dependence

If a set of vectors V contains the $\mathbf{0}$, then it is linearly dependent.

$$
(1) \mathbf{0}+0 \mathbf{v}_{2}+0 \mathbf{v}_{2}+\ldots+0 \mathbf{v}_{n}=\mathbf{0}
$$

There is a very simple nontrivial solution.

Two Vectors

Definition. Two vectors are colinear if they are scalar multiples of each other.
e.g. , $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}1.5 \\ 1.5 \\ 3\end{array}\right]$ or $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}-1 \\ -1\end{array}\right] \longrightarrow$

Two vectors are linearly dependent if and only if they are colinear.

Three Vectors

Definition. A collection of vectors is coplanar if their span is a plane.

Three vectors are linearly dependent if an only if they are colinear or coplanar.

This can be reasoning can be extended to more vectors, but we run out of terminology

Yet Another Interpretation

Increasing Span Criterion

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent then we cannot write one of it's vectors as a linear combination of the others.

But we get something stronger.

Increasing Span Criterion

Theorem. $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent if and only if for all $i \leq n$,

$$
\mathbf{v}_{i} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{i-1}\right\}
$$

As we add vectors, the span gets larger.

Increasing Span Criterion

span\{\} is a point $\{0\}$
$\operatorname{span}\left\{\mathbf{v}_{1}\right\}$ is a line
$\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a plane
$\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a 3 -space
$\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a 4-space

Characterization of Linear Dependence

Theorem. $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly dependent if and only there is an $i \leq n$,

$$
\mathbf{v}_{i} \in \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{i-1}\right\}
$$

As we add vectors, we'll eventually find one in the span of the preceding ones.

Characterization of Linear Dependence

span\{\} is a point $\{0\}$
$\operatorname{span}\left\{\mathbf{v}_{1}\right\}$ is a line
$\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a plane
$\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is still a plane
.. (this is an example, it may take a lot more vectors before we find one in the span of the preceding vectors)

As a Picture

Characterization of Linear Dependence

Corollary. If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent, then for any vector \mathbf{v}_{k+1}, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}$ are linearly dependent.

> If we add a vector to a linearly dependent set, it remains linearly dependent

Question

Are the following vectors linearly independent?

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
2023 \\
0
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
0.1 \\
7
\end{array}\right]
$$

Answer: No

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
2023 \\
0
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
0.1 \\
7
\end{array}\right]
$$

Any three vectors can at most span a plane.
The first two are not colinear, so they span a p lane (\mathbb{R}^{2}).

Linear Independence and Free Variables

Linear Dependence Relations (Again)

When finding a linear dependence relation, we came across a system which a free variable

$$
\left[\begin{array}{cccc}
-4 & -3 & -5 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

we can take x_{3} to be free

Pivots and Linear Dependence

Theorem. The columns of a matrix A are linearly independent if and only if A has a pivot in every column.

Remember that we choose our free variables to be the ones whose columns don't have pivots.

> Free variables allow for infinitely many (nontrivial) solution.

Recall: General Form Solutions

$$
\begin{aligned}
& x_{1}=-(0.5) x_{3} \\
& x_{2}=-x_{3} \\
& x_{3} \text { is free }
\end{aligned}
$$

Recall: General Form Solutions

$$
\begin{aligned}
& x_{1}=-0.5 \\
& x_{2}=-1 \\
& x_{3}=1
\end{aligned}
$$

Recall: General Form Solutions

$$
\begin{aligned}
& x_{1}=0.5 \\
& x_{2}=1 \\
& x_{3}=-1
\end{aligned}
$$

Recall: General Form Solutions

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=2 \\
& x_{3}=-2
\end{aligned}
$$

The point: the solution is not unique.

How To: Linear Independence

Question. Is the set of vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ linearly independent?

Solution. Check if $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{0}$ has a unique solution.

How To: Linear Independence

Question. Is the set of vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ linearly independent?

Solution. Check if $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right] \mathbf{x}=\mathbf{0}$ has a unique solution.

How To: Linear Independence

Question. Is the set of vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ linearly independent?

Solution. Check if the general form solution $\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n} & \mathbf{0}\end{array}\right]$ has any free variables.

How To: Linear Independence

Question. Is the set of vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ linearly independent?

Solution. Reduce $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ to echelon form and check if has a pivot position in every column.

Example: Recap Problem Again

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-4 \\
4 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
6 \\
-3
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-5 \\
8 \\
-2
\end{array}\right]
$$

The reduced echelon form of $\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$ is

$$
\left[\begin{array}{ccc}
1 & 0 & 0.5 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \begin{gathered}
\text { without a } \\
\text { pivot }
\end{gathered}
$$

Linear Independence and Full Span

The columns of a $(m \times n)$ matrix span all of \mathbb{R}^{n} if there is a pivot in every row.

The columns of a matrix are linearly independent if there is a pivot in every column.

Tall Matrices

If $m>n$ then the columns cannot span \mathbb{R}^{m}

$$
\left[\begin{array}{ccc}
* & \ldots & * \\
* & \ldots & * \\
* & \ldots & * \\
\vdots & \vdots & \vdots \\
* & \ldots & * \\
* & \cdots & * \\
* & \cdots & *
\end{array}\right]
$$

Tall Matrices

If $m>n$ then the columns cannot span \mathbb{R}^{m}

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right]
$$

This matrix has at most 3 pivots, but 4 rows.

Wide Matrices

If $m<n$ then the columns cannot be linearly independent

$$
\left[\begin{array}{ccccccc}
* & * & * & \ldots & * & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & \ldots & * & * & *
\end{array}\right]
$$

Wide Matrices

If $m<n$ then the columns cannot be linearly independent

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]
$$

This matrix as at most 3 pivots, but 4 columns.

The Takeaway

The columns of a ($m \times n$) matrix span all of \mathbb{R}^{n} if there is a pivot in every row.

The columns of a matrix are linearly independent if there is a pivot in every column.

Don't confuse these!

Application: Networks and Flow

Graphs/Networks

A graph/network is a mathematical object representing collection of nodes and edges connecting them.

Directed Graphs

Today we focus on directed graphs, in which edges have a specified direction.

Think of these as one-way streets.

Flow

We are often interested in how much "stuff" we can push through the edges

In the above example, the "stuff" is cars/hr.
I like to imagine water moving through a pipe, and splitting an joints in the pipe

Flow Network

A flow network is a directed graph with specified source and sink nodes.

Flow comes out of and goes into sources and sinks. They are assigned a flow value (or variable).

Flow

Definition. The flow of a graph is an assignment of nonnegative values to the edges so that the following holds.
conservation: flow into a node = flow out of a node
source/sink constraint: flow into a source/out of a sink is nonnegative.

Flow Conservation

Flow in = Flow out

e.g.,

$$
x_{2}+x_{4}=300+x_{3}
$$

$100+400=x_{4}+x_{5}$

Flow Conservation

Flow in = Flow out
e.g.,
$x_{2}+x_{4}=300+x_{3}$
$100+400=x_{4}+x_{5}$
Every node determines a linear equation

How To: Network Flow

Question. Find a general solution for the flow of a given graph.

Solution. Write down the linear equations determined by flow conservation at non-source and non-sink nodes, and then solve.

Example

$$
\begin{aligned}
& \text { (A) } 500+300=x_{1}+x_{2} \\
& \text { (B) } x_{2}+x_{4}=300+x_{3} \\
& \text { (C) } 100+400=x_{4}+x_{5} \\
& \text { (D) } x_{1}+x_{5}=600
\end{aligned}
$$

Example

(A) $x_{1}+x_{2}=800$
(B) $x_{2}-x_{3}+x_{4}=300$
(C) $x_{4}+x_{5}=500$
(D) $x_{1}+x_{5}=600$

System of Linear Equations

Example

$\left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 0 & 800 \\ 0 & 1 & -1 & 1 & 0 & 300 \\ 0 & 0 & 0 & 1 & 1 & 500 \\ 1 & 0 & 0 & 0 & 1 & 600\end{array}\right]$

Augmented Matrix

Example

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 600 \\
0 & 1 & 0 & 0 & -1 & 200 \\
0 & 0 & 1 & 0 & 0 & 400 \\
0 & 0 & 0 & 1 & 1 & 500
\end{array}\right]
$$

Reduced Echelon Form

Note that global flow is conserved.

Example

$$
\begin{aligned}
& x_{1}=600-x_{5} \\
& x_{2}=200+x_{5} \\
& x_{3}=400 \\
& x_{4}=500-x_{5} \\
& x_{5} \text { is free }
\end{aligned}
$$

General Solution

How To: Max Flow Value for an Edge

Question. Find the maximum value of a flow variable in a given flow network.

Solution. Remember that flow values must be positive. Look at the general form solution and see what makes this hold.

Example

$$
\begin{aligned}
& x_{1}=600-x_{5} \\
& x_{2}=200+x_{5} \\
& x_{3}=400 \\
& x_{4}=500-x_{5} \\
& x_{5} \text { is free }
\end{aligned}
$$

$x_{4} \geq 0$ implies $x_{5} \leq 500$
$x_{1} \geq 0$ implies $x_{5} \leq 600$

The maximum value of x_{5} is 500

Summary

Linear independence helps us understand when a span is "as large as it can be."

We can reduce this seeing if a single homogeneous equation has a unique solution. Network Flows define linear systems we can solve.

