Linear Transformations

Geometric Algorithms Lecture 7

Recap Problem

Find three vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ in \mathbb{R}^{3} such that » every pair of vectors (i.e., $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\},\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$, $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$) are linearly independent is
> $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent

Answer

$$
\left.\begin{array}{ll}
r_{1}, v_{2} & \text { ar } \\
\left.\begin{array}{l}
r_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
v_{3}=v_{1}+r_{2}
\end{array}\right]
\end{array} \quad \begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
r_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
r_{2}=\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right] \\
r_{3}=\left[\begin{array}{l}
3 \\
6 \\
8
\end{array}\right]
\end{array}\right.
$$

Demo: Geometry of Linear Dependence

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+a_{3} \vec{v}_{3}=\overrightarrow{0}
$$

Objectives

1. Introduce Matrix Transformations
2. Define Linear Transformations
3. Start looking at the Geometry of Linear Transformations
4. See an Non-Geometric Application

Keywords

Transformations
Domain, Codomain
Image, Range
Matrix Transformations
Linear Transformations
Additivity, Homogeneity
Dilation, Contraction, Shearing, Rotation

Introduction

Recall: Spans (with Matrices)

Definition. The span of a set of vectors is the set of all possible linear combinations of them.

$\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}=\left\{\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right] \mathbf{v}: \mathbf{v} \in \mathbb{R}^{n}\right\}$

Recall: Spans (with Matrices)

Definition. The span of a set of vectors is the set of all possible linear combinations of them.
$\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}=\left\{\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right] \mathbf{v}: \mathbf{v} \in \mathbb{R}^{n}\right\}$
The span of the columns of a matrix A is the set of of vectors resulting from multiplying A by any vector.

Matrices as Transformations

Matrices allow us to transform vectors.
The transformed vector lies in the span of its columns.

$$
\mathbf{X} \longmapsto A \mathbf{X}
$$

$$
\text { map a vector } \mathbf{x} \text { to the vector } A \mathbf{v}
$$

Example (Algebraic)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1(1)+0+0 \\
0+2(1)+0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
1(2)+0+0 \\
0+2(3)+0
\end{array}\right]=\left[\begin{array}{l}
2 \\
6
\end{array}\right]}
\end{aligned}
$$

Example (Algebraic)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1\left(x_{1}\right)+0+0 \\
0+2 x_{2}+0
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
2 x_{2}
\end{array}\right]
$$

Example (Geometric)

[i:

!!Important!!

The vector may be a different size after translation.

Recall: Matrix-Vector Multiplication and Dimension

 matrix-vector multiplication only works if the number of columns of the matrix matches the dimension of the vectorn
$m\left[\begin{array}{ccc}* & \cdots & * \\ * & \cdots & * \\ \vdots & \ddots & \vdots \\ * & \cdots & * \\ * & \cdots & *\end{array}\right] n \|\left[\begin{array}{c}* \\ \vdots \\ *\end{array}\right]=m\left[\begin{array}{c}* \\ * \\ \vdots \\ * \\ *\end{array}\right]$
$(m \times n)$
\mathbb{R}^{n}
\mathbb{R}^{m}

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

A New Interpretation of the Matrix Equation

$$
\begin{array}{ll}
A \mathbf{x}=\mathbf{b} ? & \equiv \\
& \begin{array}{l}
\text { is there a vector which } A \\
\text { transforms into } \mathbf{b} ?
\end{array} \\
\text { Solve } A \mathbf{x}=\mathbf{b} \quad \equiv \quad \begin{array}{l}
\text { find a vector which } A \\
\text { transforms into } \mathbf{b}
\end{array}
\end{array}
$$

Question (Conceptual)

Suppose a matrix transforms a vector according to the following picture. What is the size of the matrix?

Answer: 3×1

$\mathbb{R}^{n} \rightarrow \mathbb{R}^{h}$

Mapping between the same space can be viewed as a way of moving around points.

Transformations

Transformations in General

Definition. A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a function which maps every vector \mathbf{v} in \mathbb{R}^{n} to a vector $T(\mathbf{v})$ in \mathbb{R}^{m}.

Transformations in General

Definition. A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a function which maps every vector \mathbf{v} in \mathbb{R}^{n} to a vector $T(\mathbf{v})$ in \mathbb{R}^{m}.

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Transformations in General

Definition. A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a function which maps every vector \mathbf{v} in \mathbb{R}^{n} to a vector $T(\mathbf{v})$ in \mathbb{R}^{m}.

$$
T: \mathbb{R}^{n} \rightarrow \underset{\text { domain }}{\mathbb{R}^{m}}
$$

Transformations in General

Definition. A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a function which maps every vector \mathbf{v} in \mathbb{R}^{n} to a vector $T(\mathbf{v})$ in \mathbb{R}^{m}.
$A_{x}=b$

It's just a function, like in calculus.

Image and Range

Image and Range

Definition. For a vector \mathbf{v}, the image of \mathbf{v} under the transformation T is the vector $T(\mathbf{v})$.

Image and Range

Definition. For a vector \mathbf{v}, the image of \mathbf{v} under the transformation T is the vector $T(\mathbf{v})$.

Definition. The range of a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the set of all possible images under T.

Image and Range

Definition. For a vector \mathbf{v}, the image of \mathbf{v} under the transformation T is the vector $T(\mathbf{v})$.

Definition. The range of a transformation $T\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right.$ is the set of all possible images under T.

$$
\operatorname{ran}(T)=\left\{T(\mathbf{v}): v \in \frac{\left.\mathbb{R}^{n}\right\}}{\text { domain }}\right.
$$

image of \mathbf{v} under $T \equiv$ output of T applied to \mathbf{v} range of $T \equiv$ all possible output of T

Codomain and Range

The codomain and range of a transformation may or may not be the same.

Codomain and Range

The codomain and range of a transformation may or may not be the same.

Codomain and Range

The codomain and range of a transformation may or may not be the same.

range: just the green plane
domain: \mathbb{R}^{2}
codomain: \mathbb{R}^{3}
The range is always contained in the codomain.

Matrix Transformations

Transformation of a Matrix

Transformation of a Matrix

The transformation of a ($m \times n$) matrix A is the function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
T(\mathbf{v})=A \mathbf{v}
$$

Transformation of a Matrix

The transformation of a ($m \times n$) matrix A is the function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
T(\mathbf{v})=A \mathbf{v}
$$

given v, return A multiplied by \mathbf{v}

matris

Transformation of a Matrix

The transformation of a ($m \times n$) matrix A is the function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
T(\mathbf{v})=A \mathbf{v}
$$

given v, return A multiplied by v
e.g. $T(\mathbf{v})=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \mathbf{v} \quad T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$

Range and Span

Range and Span

The span of the columns of a matrix A is the set of all possible images under A.

Range and Span

The span of the columns of a matrix A is the set of all possible images under A.

$$
\begin{aligned}
& \operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}=\operatorname{ran}\left(\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right) \\
& T(\vec{r})=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right] \stackrel{\rightharpoonup}{r}
\end{aligned}
$$

Range and Span

The span of the columns of a matrix A is the set of all possible images under A.

$$
\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}=\operatorname{ran}\left(\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right)
$$

The transformation of a vector \mathbf{v} under the matrix A always lies in the span of its columns.

Example

$$
\begin{gathered}
T\left(\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]= \\
{\left[\begin{array}{c}
2(1)+1(-1)+0 \\
0(2)+1(-1)+0 \\
1(2)+3(-1)+0
\end{array}\right]=} \\
{\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]}
\end{gathered}
$$

$$
2\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+(-1)\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]+0\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=
$$

exercise

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Geometry of Matrix Transformations

Motto

Matrix transformations change the "shape" of a set of set of vectors (points).

Example: Dilation

Example: Dilation

$$
\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
r x_{1} \\
r x_{2}
\end{array}\right]
$$

if $r>1$, then the transformation pushes points away from the origin.

Example: Contraction

Example: Contraction

$$
\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
r x_{1} \\
r x_{2}
\end{array}\right]
$$

if $0 \leq r \leq 1$, then the transformation pulls points towards the origin.

Example: Shearing

Example: Shearing

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{2}
\end{array}\right]
$$

Imagine shearing like with rocks or metal.

Question

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
-x_{2}
\end{array}\right]
$$

Draw how this matrix transforms points. What kind of transformation does it represent?

Answer: Reflection

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Linear Transformations

Recall: Algebraic Properties

Matrix-vector multiplication satisfies the following two properties:

$$
\begin{array}{ll}
\text { 1. } A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v} & \text { (additivity) } \\
\text { 2. } A(c \mathbf{v})=c(A \mathbf{v}) & \text { (homogeneity) }
\end{array}
$$

Question

Verify the following.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left(2\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=2\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)}
\end{aligned}
$$

Answer

$$
\left[\begin{array}{ll}
10 & 1 \\
0
\end{array}\right][1]=
$$

Answer

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left(2\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=}
\end{aligned}
$$

Linear Transformations

Definition. A transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear if it satisfies the following two properties.

$$
\begin{array}{ll}
\text { 1. } T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) & \text { (additivity) } \\
\text { 2. } T(c \mathbf{v})=c T(\mathbf{v}) & \text { (homogeneity) }
\end{array}
$$

Linear Transformations

Definition. A transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear if it satisfies the following two properties.

$$
\begin{array}{ll}
\text { 1. } T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) & \text { (additivity) } \\
\text { 2. } T(c \mathbf{v})=c T(\mathbf{v}) & \text { (homogeneity) }
\end{array}
$$

Example: Identity

$$
\begin{gathered}
T(\mathbf{v})=\mathbf{V} \\
T(\vec{u}+\vec{r})=\vec{u}+\vec{r}=T(\vec{u})+T(\vec{r}) \\
T(c \vec{r})=c \vec{r}=c T(\vec{r}) v \\
T \text { is linear }
\end{gathered}
$$

Example: Zero

$$
\begin{gathered}
T(\mathbf{v})=\mathbf{0} \\
T(\vec{u}+\vec{r})=\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}=T(\vec{u})+T(\vec{r}) \\
T(c \vec{r})=\overrightarrow{0}=c \overrightarrow{0}=c T(\vec{r}) r \\
T
\end{gathered}
$$

Example: Rotation

We'll see this on Thursday, but we can reason about it geometrically for now.

Example: Indefinite Integrals

$T(f+g)=\int(f+g)(x) d x=\int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x=T(f)+T(g)$
$T(c f)=\int(c f)(x) d x=\int c f(x) d x=c \int f(x) d x=c T(f)$
the same goes for derivatives
(how are functions vectors???)

Example: Expectation

$$
T(X)=\mathbb{E}[X]
$$

Disclaimer: Advanced Material

This is exactly linearity of expectation.
(how are random variables vectors???)

Non-Example: Squares

$$
\begin{gathered}
T(x)=x^{2} \\
\text { Note that } T: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1} \\
T(1+1)=T(2)=4 \\
T(1)+T(1)=1+1=2
\end{gathered}
$$

Non-Example: Translation

Question

Show that $T(\mathbf{v})=5 \mathbf{v}$ is a linear transformation. Show that $T(x)=e^{x}$ is not a linear transformation.

Answer

$$
T(\mathbf{v})=5 \mathbf{v}
$$

Answer

$$
T(x)=e^{x}
$$

Properties of Linear Transformations

The Zero Vector

$$
T(\mathbf{0})=? ? ?
$$

The Zero Vector

$$
T(\mathbf{0})=\mathbf{0}
$$

The Zero Vector

$T(\mathbf{0})=\mathbf{0}$

The zero vector is fixed by linear transformations. It can't move anywhere.

The Zero Vector

$T(\mathbf{0})=0$

Note: These may be different dimensions!

The zero vector is fixed by linear transformations. It can't move anywhere.

Verification

any matrix transformation:
rotation:
translation (non-example):

A Single Condition

$$
T(a \mathbf{v}+b \mathbf{u})=a T(\mathbf{v})+b T(\mathbf{u})
$$

A Single Condition

$$
T(a \mathbf{v}+b \mathbf{u})=a T(\mathbf{v})+b T(\mathbf{u})
$$

We can combine our linearity conditions:

A Single Condition

$$
T(a \mathbf{v}+b \mathbf{u})=a T(\mathbf{v})+b T(\mathbf{u})
$$

We can combine our linearity conditions:
$T(a \mathbf{v}+b \mathbf{u})$

A Single Condition

$$
T(a \mathbf{v}+b \mathbf{u})=a T(\mathbf{v})+b T(\mathbf{u})
$$

We can combine our linearity conditions:

$$
\begin{aligned}
& T(a \mathbf{v}+b \mathbf{u}) \\
& =T(a \mathbf{v})+T(b \mathbf{u}) \quad \text { (additivity) }
\end{aligned}
$$

A Single Condition

$$
T(a \mathbf{v}+b \mathbf{u})=a T(\mathbf{v})+b T(\mathbf{u})
$$

We can combine our linearity conditions:

$$
\begin{array}{ll}
T(a \mathbf{v}+b \mathbf{u}) & \\
=T(a \mathbf{v})+T(b \mathbf{u}) & \\
=a T(\mathbf{v})+b T(\mathbf{u}) & \\
\text { (homogeneity for each term) }
\end{array}
$$

A Single Condition

Theorem. A transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear if and only if for any vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{m} and any real numbers a and b,

$$
T(a \mathbf{u}+b \mathbf{v})=a T(\mathbf{u})+b T(\mathbf{v})
$$

A Single Condition

Theorem. A transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear if and only if for any vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{m} and any real numbers a and b,

$$
T(a \mathbf{u}+b \mathbf{v})=a T(\mathbf{u})+b T(\mathbf{v})
$$

It's often easiest to show this single condition.

Linear Combinations

$$
T\left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{n} \mathbf{v}_{n}\right)=a_{1} T\left(\mathbf{v}_{1}\right)+a_{2} T\left(\mathbf{v}_{2}\right)+\ldots+a_{n} T\left(\mathbf{v}_{n}\right)
$$

We can generalize this condition to any linear combination.

Linear Combinations

$$
T\left(\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(\mathbf{v}_{i}\right)
$$

We can generalize this condition to any linear combination.

Linear Combinations

$$
T\left(\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(\mathbf{v}_{i}\right)
$$

We can generalize this condition to any linear combination.

This is the most useful form.

Application: Unit Cost Matrices

A Question for a Business Student

Suppose you have a company that produces two products B and C .
For each product you know how much you spend per dollar on material (M), labor (L) and overhead (0).

$$
\left.\begin{array}{cc}
\mathrm{B} & \mathrm{C} \\
{\left[\begin{array}{c}
.45
\end{array}\right.} & .40 \\
.25 & .30 \\
.15 & .15
\end{array}\right] \begin{aligned}
& \mathrm{M} \\
& \mathrm{~L} \\
& 0
\end{aligned}
$$

A Question for a Business Student

A Question for a Business Student

$$
\left.\begin{array}{cc}
\mathrm{B} & \mathrm{C} \\
{\left[\begin{array}{c}
.45 \\
.40 \\
.25
\end{array}\right.} & .30 \\
.15 & .15
\end{array}\right] \begin{gathered}
\mathrm{M} \\
\mathrm{~L} \\
0
\end{gathered}
$$

A Question for a Business Student

$$
\left.\begin{array}{cc}
\mathrm{B} & \mathrm{C} \\
{\left[\begin{array}{c}
.45 \\
.40 \\
.25
\end{array}\right.} & .30 \\
.15 & .15
\end{array}\right] \begin{gathered}
\mathrm{M} \\
\mathrm{~L} \\
0
\end{gathered}
$$

How much are you spending, in total, on each cost, given that you made s_{1} dollars worth of B and s_{2} dollars worth of C?

A Question for a Business Student

$$
\left.\begin{array}{cc}
\mathrm{B} & \mathrm{C} \\
{\left[\begin{array}{c}
.45 \\
.40 \\
.25
\end{array} .30\right.} \\
.15 & .15
\end{array}\right] \begin{gathered}
\mathrm{M} \\
\mathrm{~L} \\
0
\end{gathered}
$$

How much are you spending, in total, on each cost, given that you made s_{1} dollars worth of B and s_{2} dollars worth of C?

Solution. Use matrix transformations.

As a Matrix Transformation

$$
T(\mathbf{x})=\left[\begin{array}{ll}
0.45 & 0.40 \\
0.25 & 0.30 \\
0.15 & 0.25
\end{array}\right] \mathbf{x}
$$

As a Matrix Transformation

$$
\begin{gathered}
T(\mathbf{x})=\left[\begin{array}{ll}
0.45 & 0.40 \\
0.25 & 0.30 \\
0.15 & 0.25
\end{array}\right] \mathbf{x} \\
T\left(\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]\right)=s_{1}\left[\begin{array}{c}
0.45 \\
0.25 \\
0.15
\end{array}\right]+s_{2}\left[\begin{array}{c}
0.40 \\
0.30 \\
0.15
\end{array}\right]=\left[\begin{array}{c}
\text { total material cost } \\
\text { total labor cost } \\
\text { total overhead cost }
\end{array}\right]
\end{gathered}
$$

As a Matrix Transformation

$$
\begin{gathered}
T(\mathbf{x})=\left[\begin{array}{lr}
0.45 & 0.40 \\
0.25 & 0.30 \\
0.15 & 0.25
\end{array}\right] \mathbf{x} \\
T\left(\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]\right)=s_{1}\left[\begin{array}{c}
0.45 \\
0.25 \\
0.15
\end{array}\right]+s_{2}\left[\begin{array}{c}
0.40 \\
0.30 \\
0.15
\end{array}\right]=\left[\begin{array}{c}
\text { total material cost } \\
\text { total labor cost } \\
\text { total overhead cost }
\end{array}\right]
\end{gathered}
$$

This is much more valuable if we had a lot of products and a complex collection of costs.

Moral: Data Manipulation

Moral: Data Manipulation

We can manipulate data (linearly) via linear transformations (which we will see, means via matrix multiplication).

Moral: Data Manipulation

We can manipulate data (linearly) via linear transformations (which we will see, means via matrix multiplication).

We can write down a single matrix which we can multiply every time.

Moral: Data Manipulation

We can manipulate data (linearly) via linear transformations (which we will see, means via matrix multiplication).

We can write down a single matrix which we can multiply every time.

This is a very powerful algorithmic idea.

Summary

Matrices can be viewed as linear transformations.

Matrix transformations change the "shape" of points sets.

Linear transformations behave well with respect to linear combinations.

