Linear Transformations Geometric Algorithms Lecture 7

CAS CS 132

Recap Problem

Find three vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in \mathbb{R}^3 such that » every pair of vectors (i.e., $\{v_1, v_2\}$, $\{v_1, v_3\}$, {v₂, v₃}) are linearly independent » $\{v_1, v_2, v_3\}$ is linearly dependent

Demo: Geometry of Linear Dependence

Objectives

- 1. Introduce Matrix Transformations
- 2. Define Linear Transformations
- 3. Start looking at the Geometry of Linear Transformations
- 4. See an Non-Geometric Application

Keywords

Transformations Domain, Codomain Image, Range Matrix Transformations Linear Transformations Additivity, Homogeneity Dilation, Contraction, Shearing, Rotation

Introduction

Recall: Spans (with Matrices)

set of all possible linear combinations of them.

Definition. The span of a set of vectors is the

$span\{a_1, a_2, ..., a_n\} = \{ [a_1 \ a_2 \ ... \ a_n] \mathbf{v} : \mathbf{v} \in \mathbb{R}^n \}$

Recall: Spans (with Matrices)

set of all possible linear combinations of them.

Definition. The span of a set of vectors is the

- $span\{a_1, a_2, ..., a_n\} = \{ [a_1 \ a_2 \ ... \ a_n] \ v : v \in \mathbb{R}^n \}$
 - The span of the columns of a matrix A is the set of of vectors resulting from multiplying A by any vector.

Matrices as Transformations

Matrices allow us to transform vectors. The transformed vector lies in the span of its columns.

map a vector x to the vector Av

Example (Algebraic)

Example (Algebraic)

Example (Geometric)

!!Important!!

The vector may be a different size after translation.

Recall: Matrix-Vector Multiplication and Dimension

matrix-vector multiplication only works if the number of columns of the matrix matches the dimension of the vector

 $(m \times n)$

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

A New Interpretation of the Matrix Equation

- is there a vector which A transforms into b?
- find a vector which A
 transforms into b

Question (Conceptual)

Suppose a matrix transforms a vector according to the following picture. What is the size of the matrix?

Answer: 3×1

Mapping between the same space can be viewed as a way of moving around points.

-10.0

Transformations

vector $T(\mathbf{v})$ in \mathbb{R}^m .

Definition. A *transformation* T from \mathbb{R}^n to \mathbb{R}^m is a function which maps every vector v in \mathbb{R}^n to a

Definition. A *transformation* T from \mathbb{R}^n to \mathbb{R}^m is a function which maps every vector \mathbf{v} in \mathbb{R}^n to a vector $T(\mathbf{v})$ in \mathbb{R}^m .

 $T: \mathbb{R}^n \to \mathbb{R}^m$

Definition. A *transformation* T from \mathbb{R}^n to \mathbb{R}^m is a function which maps every vector \mathbf{v} in \mathbb{R}^n to a vector $T(\mathbf{v})$ in \mathbb{R}^m .

 $R' \rightarrow R^3$

Definition. A *transformation* T from \mathbb{R}^n to \mathbb{R}^m is a function which maps every vector v in \mathbb{R}^n to a vector $T(\mathbf{v})$ in \mathbb{R}^m . $A_X = b$

It's just a function, like in calculus.

Definition. For a vector \mathbf{v} , the *image* of \mathbf{v} under the transformation T is the vector $T(\mathbf{v})$.

the transformation T is the vector $T(\mathbf{v})$.

Definition. The range of a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of all possible images under T.

- Definition. For a vector v, the *image* of v under

the transformation T is the vector $T(\mathbf{v})$.

Definition. The range of a transformation $T(\mathbb{R}^n) \rightarrow \mathbb{R}^m$ is the set of all possible images under T.

- Definition. For a vector v, the *image* of v under

 $\operatorname{ran}(T) = \{T(\mathbf{v}) : v \in \mathbb{R}^n\}$ AMain

image of v under $T \equiv \text{output of } T$ applied to v range of $T \equiv all possible output of T$

Codomain and Range

The codomain and range of a transformation may or may not be the same.

Codomain and Range

The codomain and range of a transformation may or may not be the same.

Codomain and Range

or may not be the same.

Matrix Transformations

Transformation of a Matrix
Transformation of a Matrix

The transformation of $a (m \times n)$ matrix A is the function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

$T(\mathbf{v}) = A\mathbf{v}$

Transformation of a Matrix

The transformation of a $(m \times n)$ matrix A is the function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

Tancformation is function

 $T(\mathbf{v}) = A\mathbf{v}$

given v, return A multiplied by v

Transformation of a Matrix

The transformation of $a (m \times n)$ matrix A is the function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

given v, return A multiplied by v $\mathbf{e.g.} \quad T(\mathbf{v}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{v} \qquad ---\left(\begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0$ ▲ _

$T(\mathbf{v}) = A\mathbf{v}$

The span of the columns of a matrix A is the set of all possible *images* under A.

The span of the columns of a matrix A is the set of all possible *images* under A.

 $\left[\begin{array}{c} \left(\overrightarrow{v} \right) = \left[\overrightarrow{q} \right] & \overrightarrow{q} \\ \overrightarrow{q} & \overrightarrow{q} \\ \end{array} \right] \xrightarrow{\gamma}$

The span of the columns of a matrix A is the set of all possible *images* under A.

$$span\{a_1, a_2, ..., a_n\}$$

The transformation of a vector v under the matrix A always lies in the span of its columns.

 $= ran([a_1 \ a_2 \ \dots \ a_n])$

Example $f(x) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\$

$2\begin{bmatrix}1\\0\\1\end{bmatrix} + (-1)\begin{bmatrix}1\\1\\3\end{bmatrix} + 0\begin{bmatrix}1\\2\\0\end{bmatrix} =$

exercise

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Geometry of Matrix Transformations

Matrix transformations change the "shape" of a set of set of vectors (points).

Example: Dilation

Example: Dilation

Example: Contraction

Example: Contraction

if $0 \le r \le 1$, then the transformation pulls points towards the origin.

Example: Shearing

Example: Shearing

$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}$

Imagine shearing like with rocks or metal.

Question

Draw how this matrix transforms points. What kind of transformation does it represent?

Answer: Reflection

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Linear Transformations

Recall: Algebraic Properties

Matrix-vector multiplication satisfies the following two properties:

 $2 \quad A(c\mathbf{v}) = c(A\mathbf{v})$

1. $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$ (additivity) (homogeneity)

Question

Verify the following.

$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{pmatrix} = 2 \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{pmatrix}$

Answer $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix} =$

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} =$

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$

$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 2 & 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix}$

Linear Transformations

Definition. A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is *linear* if it satisfies the following two properties.

1. T(u + v) = T(u) + T(v)2. $T(c\mathbf{v}) = cT(\mathbf{v})$

(additivity) (homogeneity)

Linear Transformations

Definition. A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is linear if it satisfies the following two properties.

1. T(u + v) = T(u) + T(v)2. $T(c\mathbf{v}) = cT(\mathbf{v})$

Matrix transformations are linear transformations.

(additivity) (homogeneity)

Example: Zero

Example: Rotation We'll see this on Thursday, but we can reason about it geometrically for now.

Example: Indefinite I

T(f) =

 $T(f+g) = \int (f+g)(x)dx = \int f(x) + g(x)dx$ $T(cf) = \int (cf)(x)dx = \int dx$ the same goes

ntegrals
=
$$\int f(x) dx$$
 Disclaimers
Advanced
Material
 $f(x) dx = \int f(x) dx + \int g(x) dx = T(f) + T(g)$
 $cf(x) dx = c \int f(x) dx = cT(f)$
for derivatives

(how are functions vectors???)

Example: Expectation

This is exactly <u>linearity</u> of expectation.

$T(X) = \mathbb{E}[X]$

Disclaimer: Advanced Material

(how are random variables vectors???)

Non-Example: Squares

 $T(x) = x^2$ Note that $T: \mathbb{R}^1 \to \mathbb{R}^1$

Non-Example: Translation

X +

Question

Show that $T(\mathbf{v}) = 5\mathbf{v}$ is a linear transformation.

Show that $T(x) = e^x$ is not a linear transformation.

$T(\mathbf{v}) = 5\mathbf{v}$

$T(x) = e^x$

Properties of Linear Transformations

T(0) = ???

T(0) = 0

The zero vector is *tixed* It can't move anywhere.

T(0) = 0

The zero vector is *fixed* by linear transformations.

T(0) = 0Note: These may be different dimensions!

It can't move anywhere.

The zero vector is *fixed* by linear transformations.

Verification

any matrix transformation:

rotation:

translation (non-example):

We can combine our linearity conditions:

We can combine our linearity conditions: $T(a\mathbf{v} + b\mathbf{u})$

We can combine our linearity conditions: $T(a\mathbf{v} + b\mathbf{u})$ (additivity) $= T(a\mathbf{v}) + T(b\mathbf{u})$

We can combine our linearity conditions: $T(a\mathbf{v} + b\mathbf{u})$ (additivity) $= T(a\mathbf{v}) + T(b\mathbf{u})$ (homogeneity for each term) $= aT(\mathbf{v}) + bT(\mathbf{u})$

if and only if for any vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^m and any real numbers a and b,

Theorem. A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is linear

Theorem. A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is linear if and only if for any vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^m and any real numbers a and b,

It's often easiest to show this single condition.

Linear Combinations

combination.

$T(a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n) = a_1T(\mathbf{v}_1) + a_2T(\mathbf{v}_2) + \dots + a_nT(\mathbf{v}_n)$

We can generalize this condition to any linear

Linear Combinations

$$T\left(\sum_{i=1}^{n} a_i \mathbf{v}_i\right)$$

We can generalize this combination.

We can generalize this condition to any linear

Linear Combinations

$$T\left(\sum_{i=1}^{n} a_i \mathbf{v}_i\right)$$

We can generalize this combination.

This is the most useful form.

We can generalize this condition to any linear

Application: Unit Cost Matrices

Suppose you have a company that produces two products B and C.

(0).

For each product you know how much you spend per dollar on material (M), labor (L) and overhead

B C [.45 .40] M [.25 .30] L **.15** .15 **0**

 B
 C

 .45
 .40
 M

 .25
 .30
 L

 .15
 .15
 0

How much are you spending, in total, on each cost, given that you made s_1 dollars worth of B and s_2 dollars worth of C?

 B
 C

 .45
 .40
 M

 .25
 .30
 L

 .15
 .15
 0

How much are you spending, in total, on each cost, given that you made s_1 dollars worth of B and s_2 dollars worth of C?

Solution. Use matrix transformations.

As a Matrix Transformation

$T(\mathbf{x}) = \begin{bmatrix} 0.45 & 0.40 \\ 0.25 & 0.30 \\ 0.15 & 0.25 \end{bmatrix} \mathbf{x}$

 $T(\mathbf{x}) = \begin{bmatrix} 0.45 & 0.40 \\ 0.25 & 0.30 \\ 0.15 & 0.25 \end{bmatrix} \mathbf{x}$

$T\left(\begin{bmatrix}s_1\\s_2\end{bmatrix}\right) = s_1\begin{bmatrix}0.45\\0.25\\0.15\end{bmatrix} + s_2\begin{bmatrix}0.40\\0.30\\0.15\end{bmatrix} = \begin{bmatrix}\text{total material cost}\\\text{total labor cost}\\\text{total overhead cost}\end{bmatrix}$

products and a complex collection of costs.

- $T(\mathbf{x}) = \begin{bmatrix} 0.45 & 0.40 \\ 0.25 & 0.30 \\ 0.15 & 0.25 \end{bmatrix} \mathbf{x}$
- $T\left(\begin{bmatrix}s_1\\s_2\end{bmatrix}\right) = s_1\begin{bmatrix}0.45\\0.25\\0.15\end{bmatrix} + s_2\begin{bmatrix}0.40\\0.30\\0.15\end{bmatrix} = \begin{bmatrix}\text{total material cost}\\\text{total labor cost}\\\text{total overhead cost}\end{bmatrix}$
- This is much more valuable if we had a lot of

We can manipulate data (linearly) via linear matrix multiplication).

transformations (which we will see, means via

We can manipulate data (linearly) via linear matrix multiplication).

multiply every time.

transformations (which we will see, means via

We can write down a *single* matrix which we can

We can manipulate data (linearly) via linear matrix multiplication).

multiply every time.

This is a very powerful algorithmic idea.

transformations (which we will see, means via

We can write down a *single* matrix which we can

Summary

Matrices can be viewed as linear transformations.

Matrix transformations change the "shape" of points sets.

to linear combinations.

Linear transformations behave well with respect