Matrix Algebra **Geometric Algorithms** Lecture 9

CAS CS 132

Objectives

- 1. (From last time) Connect questions about matrix
 equations and linear transformations
- 2. Motivate matrix multiplication
- 3. Define matrix multiplication
- 4. Look at the algebra of matrix multiplication

Keywords

one-to-one transformation onto transformation matrix multiplication row-column rule matrix addition and scaling non-commutativity

Recap

Recall: Matrices as Transformations

Matrices allow us to transform vectors. The transformed vector lies in the span of its columns.

map a vector x to the vector Av

Recall: Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Recall: A New Interpretation of the Matrix Equation

- is there a vector which A transforms into b?
- find a vector which A
 transforms into b

Recall: A New Interpretation of the Matrix Equation

Solve $A\mathbf{x} = \mathbf{b} \equiv$

- is there a vector which A transforms into b?
- find a vector which A transforms into h
- What about other questions?

One-to-One and Onto Transformations

- Does Ax = 0 have a unique solution?

Does Ax = b have a solution for any choice of b?

Do the columns of A have full span? Are the columns of A linearly independent?

Does Ax = b have at least one solution for any choice of b?

Does Ax = b have at most one solution for any choice of h?

Does Ax = b have at least one solution for any choice of b?

Does Ax = b have at most one solution for any choice of h?

Wait, what's going on with this second one?

A New Perspective on Linear Independence $A\mathbf{x} = \mathbf{0}$ has a $A\mathbf{x} = \mathbf{b}$ has at most one unique solution solution for any choice of b $A\bar{x}=0$ here at most 1 solution A づ - う HX=0 has at not Suppose $A = \vec{v}$ has unique sol. $S = \vec{v}$ $A = \vec{v}$ why?: Chook b $A(\overline{u} - \overline{v}) = A\overline{v} - A\overline{v} = \overline{b} - \overline{b} = \overline{u}$ $\overline{n} - \overline{n} = 0$

one vector v in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector **b** in \mathbb{R}^m is the image of at least

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector **b** in \mathbb{R}^m is the **image of at least** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

T is *not* onto \mathbb{R}^m

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

T is onto \mathbb{R}^m

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector **b** in \mathbb{R}^m is the **image of at least** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

T is *not* onto \mathbb{R}^m

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

T is onto \mathbb{R}^m

One-to-one Transformations

One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector **b** in \mathbb{R}^m is the image of at most one vector v in \mathbb{R}^n (where T(v) = b).

One-to-one Transformations

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector **b** in \mathbb{R}^m is the image of at most one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

T is not one-to-one

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

T is one-to-one

Comparing Pictures

T is *not* onto \mathbb{R}^m

T is *not* one-to-one

T is onto \mathbb{R}^m

T is one-to-one

Comparing Pictures

T is *not* onto \mathbb{R}^m

T is *not* one-to-one

T is onto \mathbb{R}^m

T is one-to-one

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

» T is onto

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

» T is onto

Ax = b has a solution for any choice of b

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

- $\gg T$ is onto
- » $A\mathbf{x} = \mathbf{b}$ has a solution for any choice of \mathbf{b}
- \gg range(T) = codomain(T)

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

- » T is onto
- » $A\mathbf{x} = \mathbf{b}$ has a solution for any choice of \mathbf{b}
- \gg range(T) = codomain(T)
- » the columns of A span \mathbb{R}^m

for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

- $\gg T$ is onto
- Ax = b has a solution for any choice of b
- \gg range(T) = codomain(T)
- » the columns of A span \mathbb{R}^m
- » A has a pivot position in every <u>row</u>

for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

 $\gg T$ is one-to-one

for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

 $\gg T$ is one-to-one Ax = b has at most one solution for any b

for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

 $\gg T$ is one-to-one

Ax = b has at most one solution for any b» $A\mathbf{x} = \mathbf{0}$ has only the trivial solution

for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

- $\gg T$ is one-to-one
- Ax = b has at most one solution for any b
- » $A\mathbf{x} = \mathbf{0}$ has only the trivial solution

Theorem. The following are logically equivalent

» The columns of A are linearly independent

Taking Stock: One-to-One

for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

- » T is one-to-one
- Ax = b has at most one solution for any b
- » $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- » A has a pivot position in every <u>column</u>

Theorem. The following are logically equivalent

» The columns of A are linearly independent

How To: One-to-One and Onto

Question. Show that the linear transformation T is one-to-one/onto.

Solution. (one approach) Find the matrix which implements T and see if it has a pivot in every column/row.

Warning: this is not the only way. Always try to think if you can solve it using any of the perspectives

Example: both 1-1 and onto

Rotation about the origin: why?:

onto: 1 pict per row

Example: 1-1, not onto

why?:
$$i_{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad i_{e_2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Example: not 1-1, not onto

Projection onto the x_1 -axis:

Question

Is vertical shearing a 1-1 transformation? Justify your answer.

(moving on)

Composing Linear Transformations

Shearing and Reflecting (Geometrically)

shear

reflect

Shearing and Reflecting Matrix

Shearing and Reflecting (Algebraically) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix}$ reflect shear First multiply by shear matrix, then multiply

Shearing and Reflecting (Algebraically) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix}$ reflect shear

by reflection matrix

First multiply by shear matrix, then multiply

This gives us the same transformation.

Shearing and Reflecting

$\begin{vmatrix} -1 & -1 \\ 0 & 1 \end{vmatrix} \mathbf{x} = \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} \left(\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \mathbf{x} \right)$

Fact. The composition of two linear transformation is a linear transformation.

Fact. The composition of two linear transformation is a linear transformation. Verify: T(S(au + bz)) = a T(S(u)) + b(T(S(z)))

Fact. The composition of two linear transformation is a linear transformation. Verify:

This means the composition of two matrix transformation can be represented as a single matrix.

The Key Question

Given two linear transformations, implements their composition?

how to we compute the matrix which

The Key Question

Given two linear transformations, how to we compute the matrix which implements their composition?

Matrix Multiplication

Matrix Multiplication

The boly

Matrix Multiplication

Definition. For a $m \times n$ matrix A and a $n \times p$ is the $m \times p$ matrix given by

Replace each column of B with A multiplied by that column.

matrix B with columns $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p$ the product AB

 $AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$

Tracking Dimensions

 $(m \times n)$

this only works if the number of <u>columns</u> of the left matrix matches the number of <u>rows</u> of the right matrix

 $(m \times k)$

Important Note

Even if AB is defined, it may be that BA is not defined

Non-Example

Non-Example

These are not defined.

The Key Fact (Restated)

For any matrices A and B (such that AB is defined) and any vector v

The matrix implementing the composition is the product of the two underlying matrices.

$A(B\mathbf{v}) = (AB)\mathbf{v}$

Row-Column Rule

Given a $m \times n$ matrix A and a $n \times p$ matrix B, the entry in row i and column j of AB is defined above.

N $(AB)_{ij} = \sum A_{ik} B_{kj}$ k=1

 $\left(- \right) \right)$

Row-Column Rule (Pictorially)

 $(AB)_{ij} =$

k = 1

Row-Column Rule (Pictorially)

 $(AB)_{ij} =$

k=1

Row-Column Rule (Pictorially)

*	*	*	
*	*	*	「 ∗
*	*	*	*
*	*	*	*
*	*	*	

 $(AB)_{ij} =$

*	*	*		
*	*	*	۲*	
*	*	*	*	
*	*	*	*	
*	*	*		

 $(AB)_{ij} =$

k=1

 $(AB)_{ij} =$

k = 1

 $(AB)_{ij} =$

k = 1

 $(AB)_{ij} =$

*	*	*		
*	*	*	۲*	*
*	*	*	*	*
*	*	*	*	*
*	*	*		

*	*	*		
*	*	*	Γ*	*
*	*	*	*	*
*	*	*	*	*
*	*	*		

k = 1

k = 1

k = 1

 $(AB)_{ij} =$

k = 1

 $(AB)_{ij} =$

k = 1

 $(AB)_{ij} =$

Question

$\begin{array}{cccc} z \times 3 & & & & & & & & & \\ Compute \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 7 \\ 7 & 1 \end{bmatrix}$

short version: What is the entry in the 2nd row and 2nd column?

$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix}$

Matrix Operations

What about when the right matrix is a single column?

What about when the right matrix is a single column?

 $A[b_1] = [Ab_1] = Ab_1$

What about when the right matrix is a single column?

 $A[b_1] = [Ab_1] = Ab_1$ This is just vector multiplication.

What about when the right matrix is a single column?

$A[b_1] = [Ab_1] = Ab_1$ This is just vector multiplication. We can think of $|A\mathbf{b}_1 A\mathbf{b}_2 \dots A\mathbf{b}_p|$ as collection of simultaneous matrix-vector multiplications

Matrix "Interface"

what does AB mean when A and multiplication *B* are matrices? addition what does A + B mean when A and *B* are matrices? what does cA mean when A is scaling matrix and c is a real number?

Matrix "Interface"

what does AB mean when A and multiplication *B* are matrices? addition what does A + B mean when A and *B* are matrices? what does cA mean when A is scaling matrix and c is a real number? These should be consistent with matrix-vector interface and vector interface

Matrix Addition

$$[\mathbf{a}_1 \dots \mathbf{a}_n] + [\mathbf{b}_1 \dots \mathbf{b}_n]$$

$|_{n}| = |(\mathbf{a}_{1} + \mathbf{b}_{1}) \dots (\mathbf{a}_{n} + \mathbf{b}_{n})|$ Addition is done column-wise (or equivalently, element-wise)

e.g. $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ -2 & -3 \end{vmatrix} = \begin{vmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{vmatrix} = \begin{vmatrix} 3 & 5 \\ 1 & 1 \end{vmatrix}$

Matrix Addition MX $M \times \mathcal{V}$ MXM $[\mathbf{a}_1 \ \dots \ \mathbf{a}_n] + [\mathbf{b}_1 \dots \ \mathbf{b}_n] = [(\mathbf{a}_1 + \mathbf{b}_1) \ \dots \ (\mathbf{a}_n + \mathbf{b}_n)]$

element-wise)

This is exactly the same as vector addition, but for matrices.

Addition is done column-wise (or equivalently,

e.g. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix}$

Matrix Addition and Scaling

Scaling and adding happen element-wise (or, equivalently, column-wise). e.g. $2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$

Matrix Addition and Scaling

Scaling and adding happen element-wise (or, equivalently, column-wise). e.g. $2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$

This is exactly the same as vector scaling, but for matrices.

Algebraic Properties (Addition and Scaling)

In these properties A, B, and C are matrices of the same size and rand s are scalars (\mathbb{R})

Now we need to know/memorize these.

A + B = B + A(A + B) + C = A + (B + C)A + 0 = Ar(A + B) = rA + rB(r+s)A = rA + sAr(sA) = (rs)A

Algebraic Properties (Addition and Scaling)

In these properties A, B, and C are matrices of the appropriate size so that everything is defined, and r is a scalar

Now we need to know/memorize these.

A(BC) = (AB)CA(B + C) = AB + AC(B + C)A = BC + CAr(AB) = (rA)B = A(rB) $I_mA = A = AI_n$

Verifying A(B + C) = AB + AC

 $A([\overline{b}, \overline{b}] + [\overline{c}, \overline{c}]) = DAB + AC$ $A(\vec{b}_2 + \vec{c}_2) =$ $A\ddot{b}_{7} + (A\ddot{c}_{7}) =$

Matrix Multiplication is not Commutative

Important. AB may not be the same as BA (it may not even be defined)

Question (Conceptual)

Find a pair of 2D line T_2 such that T_1 followed T_2 followed by T_1 . (also find a pair where

Find a pair of 2D linear transformations T_1 and T_2 such that T_1 followed by T_2 is not the same as

(also find a pair where they are the same)

Answer: Rotation and Reflection

Computational Aspects of Matrix Multiplication

Matrix Operations in Numpy

- Let a and b be 2D numpy arrays and let c be a floating point number.
 - » a @ b (matrix multiplication)
 - » a + b (matrix addition)
 - » C * a (matrix scaling)
- We've seen these, we've used them a bit, we'll use them much more.

A Note on Complexity

Suppose A and B are $n \times n$ matrices. This operations takes *n* multiplications and *n* divisions (2*n* FLOPS total) Repeating for each entry gives $\sim 2n^3$ FLOPS

A Note on Parallelization

The main part of this procedure is highly parallelizable.

A Note on Parallelization

a = np.array(...) b = np.array(...) prod = np.zeros([a.shape[0], b.shape[1]]) for i in range(a.shape[0]): for j in range(b.shape[1]): prod[i, j] = np.dot(a[i], b[:,j])

The main part of this procedure is highly parallelizable.

One processor per entry gets you to $\sim 2n$ FLOPS

A Note on Libraries

There are a lot of other considerations for doing linear algebra on computers.

area).

LAPACK is the state of the art library for matrix operations.

numpy uses LAPACK

Best leave it to experts (or do research in the

Summary

We can reason about matrix equations by reasoning directly about properties of linear transformations.

Matrix multiplication coincides with composition of linear transformations.

There is an algebra of matrices which is consistent with the algebra of vectors.