Matrix Algebra

Geometric Algorithms
Lecture 9

Objectives

1. (From last time) Connect questions about matrix equations and linear transformations
2. Motivate matrix multiplication
3. Define matrix multiplication
4. Look at the algebra of matrix multiplication

Keywords

one-to-one transformation
onto transformation
matrix multiplication
row-column rule
matrix addition and scaling
non-commutativity

Recap

Recall: Matrices as Transformations

Matrices allow us to transform vectors.
The transformed vector lies in the span of its columns.

$$
\mathbf{X} \longmapsto A \mathbf{X}
$$

$$
\text { map a vector } \mathbf{x} \text { to the vector } A \mathbf{v}
$$

Recall: Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Recall: A New Interpretation of the Matrix Equation

$$
\begin{array}{ll}
A \mathbf{x}=\mathbf{b} ? & \equiv \\
& \begin{array}{l}
\text { is there a vector which } A \\
\text { transforms into } \mathbf{b} ?
\end{array} \\
\text { Solve } A \mathbf{x}=\mathbf{b} \quad \equiv \quad \begin{array}{l}
\text { find a vector which } A \\
\text { transforms into } \mathbf{b}
\end{array}
\end{array}
$$

Recall: A New Interpretation of the Matrix Equation

$$
\begin{array}{ll}
A \mathbf{x}=\mathbf{b} ? & \equiv \\
\text { Solve } A \mathbf{x}=\mathbf{b} \quad \begin{array}{l}
\text { is there a vector which } A \\
\text { transforms into } \mathbf{b} ?
\end{array} \\
\text { What about other questions? }
\end{array}
$$

One-to-One and Onto Transformations

Other Questions Like...

Does $A \mathbf{x}=\mathbf{b}$ have a solution for any choice of \mathbf{b} ?
Does $A \mathbf{x}=\mathbf{0}$ have a unique solution?

Other Questions Like...

Do the columns of A have full span?
Are the columns of A linearly independent?

Other Questions Like...

Does $A \mathbf{x}=\mathbf{b}$ have at least one solution for any choice of b ?

Does $A \mathbf{x}=\mathbf{b}$ have at most one solution for any choice of b?

Other Questions Like...

Does $A \mathbf{x}=\mathbf{b}$ have at least one solution for any choice of \mathbf{b} ?

Does $A \mathbf{x}=\mathbf{b}$ have at most one solution for any choice of \mathbf{b} ?

Wait, what's going on with this second one?

A New Perspective on Linear Independence

$A \mathbf{x}=\mathbf{0}$ has a $\equiv A \mathbf{x}=\mathbf{b}$ has at most one unique solution
$A \overrightarrow{0}=\overrightarrow{0}$
why?: Chord \vec{b}

$$
\begin{aligned}
& \text { Suppose } \vec{u}, \vec{r} \text { st. } A \vec{u}=\vec{b} \quad A \vec{r}=\vec{b} \quad u=\vec{r} \\
& A(\vec{u}-\vec{r})=A \vec{v}-A \vec{r}=\vec{b}-\vec{b}=\overrightarrow{0} \\
& \text { it must be } \vec{u}-\vec{r}=\overrightarrow{0}
\end{aligned}
$$

Onto Transformations

Onto Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at least one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

Onto Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at least one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

Onto Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at least one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

One-to-one Transformations

One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at most one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at most one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

T is not one-to-one

T is one-to-one

Comparing Pictures

T is not onto \mathbb{R}^{m}

T is not one-to-one

T is onto \mathbb{R}^{m}

T is one-to-one

Comparing Pictures

T is not onto \mathbb{R}^{m}

T is not one-to-one

T is onto \mathbb{R}^{m}

T is one-to-one

Taking Stock: Onto

Taking Stock: Onto

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.

Taking Stock: Onto

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is onto

Taking Stock: Onto

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is onto
» $A \mathbf{x}=\mathbf{b}$ has a solution for any choice of \mathbf{b}

Taking Stock: Onto

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is onto
» $A \mathbf{x}=\mathbf{b}$ has a solution for any choice of \mathbf{b}
» $\operatorname{range}(T)=\operatorname{codomain}(T)$

Taking Stock: Onto

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is onto
» $A \mathbf{x}=\mathbf{b}$ has a solution for any choice of \mathbf{b}
» $\operatorname{range}(T)=\operatorname{codomain}(T)$
» the columns of A span \mathbb{R}^{m}

Taking Stock: Onto

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is onto
» $A \mathbf{x}=\mathbf{b}$ has a solution for any choice of \mathbf{b}
» $\operatorname{range}(T)=\operatorname{codomain}(T)$
» the columns of A span \mathbb{R}^{m}
» A has a pivot position in every row

Taking Stock: One-to-One

Taking Stock: One-to-One

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.

Taking Stock: One-to-One

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is one-to-one

Taking Stock: One-to-One

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is one-to-one
» $A \mathbf{x}=\mathbf{b}$ has at most one solution for any b

Taking Stock: One-to-One

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is one-to-one
» $A \mathbf{x}=\mathbf{b}$ has at most one solution for any \mathbf{b}
» $A \mathbf{x}=\mathbf{0}$ has only the trivial solution

Taking Stock: One-to-One

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is one-to-one
» $A \mathbf{x}=\mathbf{b}$ has at most one solution for any \mathbf{b}
» $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
» The columns of A are linearly independent

Taking Stock: One-to-One

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ implemented by the matrix A.
» T is one-to-one
» $A \mathbf{x}=\mathbf{b}$ has at most one solution for any \mathbf{b}
» $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
» The columns of A are linearly independent
» A has a pivot position in every column

How To: One-to-One and Onto

Question. Show that the linear transformation T is one-to-one/onto.

Solution. (one approach) Find the matrix which implements T and see if it has a pivot in every column/row.

Warning: this is not the only way. Always try to think if you can solve it using any of the perspectives

Example: both 1-1 and onto

Rotation about the origin:

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

why?:
1-1: $A \vec{x}=\overrightarrow{0}$ has a unique solution \Rightarrow has 1 pinot per column
onto: I picot per sow

Example: 1-1, not onto

Lifting:

$$
\begin{aligned}
& \mathbb{R}^{2} \mathbb{R}^{3} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}+x_{2}
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

why?:

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Example: onto, not 1-1

Projection from \mathbb{R}^{3} to \mathbb{R}^{2}.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

why?:

Example: not 1-1, not onto

Projection onto the x_{1}-axis:

why?:

$$
\operatorname{ran}(T)=x_{2} \text {-axis }
$$

Question

Is vertical shearing a 1-1 transformation? Justify your answer.

$$
\begin{aligned}
& \text { Answer: Yes } \\
& {\left[\begin{array}{cc}
1 & 0 \\
-1.5 & 1
\end{array}\right] \sim\left[\begin{array}{c}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

(moving on)

Composing Linear Transformations

Shearing and Reflecting (Geometrically)

Shearing and Reflecting Matrix

$\left[\begin{array}{l}1 \\ 1\end{array}\right] \mapsto\left[\begin{array}{c}-2 \\ 1\end{array}\right]$

Shearing and Reflecting (Algebraically)

$$
\left.\underset{\text { reflect }}{\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]} \underset{\text { shear }}{\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right.}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)
$$

First multiply by shear matrix, then multiply by reflection matrix

Shearing and Reflecting (Algebraically)

First multiply by shear matrix, then multiply by reflection matrix

This gives us the same transformation.

Shearing and Reflecting

$$
\left[\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right] \mathbf{x}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \mathbf{x}\right)
$$

The Key Fact

The Key Fact

Fact. The composition of two linear transformation is a linear transformation.

The Key Fact

Fact. The composition of two linear transformation is a linear transformation.
Verify: $T(S(a \vec{u}+b \vec{v}))=a T(S(\vec{u}))+b(T(S(\vec{r}))$

The Key Fact

Fact. The composition of two linear transformation is a linear transformation. Verify:

This means the composition of two matrix transformation can be represented as a single matrix.

The Key Question

Given two linear transformations, how to we compute the matrix which implements their composition?

The Key Question

Given two linear transformations, how to we compute the matrix which implements their composition?

Matrix Multiplication

Matrix Multiplication

Shearing and Reflecting

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=} \\
& {\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left(x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=} \\
& x_{1}\left[\begin{array}{cc}
-1 & 0 \\
0 & 1 \\
b_{1}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)_{b_{2}}
\end{aligned}
$$

General Composition (2D)

$$
\begin{aligned}
& A\left(\left[\begin{array}{ll}
\mathbf{b}_{1} & \mathbf{b}_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[A \overrightarrow{b_{1}}, A \vec{b}_{2}\right] \vec{x} \\
& \Delta\left(x_{1} \vec{b}_{1}+x_{2} \vec{b}_{2}\right)= \\
& x_{1} A \vec{b}_{1}+x_{2} \vec{b}_{2}=
\end{aligned}
$$

Matrix Multiplication

Definition. For a $m \times n$ matrix A and a $n \times p$ matrix B with columns $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{p}$ the product $A B$ is the $m \times p$ matrix given by

$$
A B=A\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{p}
\end{array}\right]=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

Replace each column of B with A multiplied by that column.

Tracking Dimensions

this only works if the number of columns of the left matrix matches the number of rows of the right matrix

$$
\begin{aligned}
& \left.m \|\left[\begin{array}{lll}
* & n \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=m \right\rvert\,\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right] \\
& (m \times n) \\
& (n \times k) \\
& (m \times k)
\end{aligned}
$$

Important Note

Even if $A B$ is defined, it may be that $B A$ is not defined

Non-Example

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right]
$$

$$
2 \times 3 \times 2
$$

Non-Example

$$
\left.\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\frac{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]}{2 \times 3}\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right]
$$

These are not defined.

Example

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]}
\end{array}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
4
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
5
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
3 \\
6
\end{array}\right]\right]
$$

The Key Fact (Restated)

For any matrices A and B (such that $A B$ is defined) and any vector \mathbf{v}

$$
A(B \mathbf{v})=(A B) \mathbf{v}
$$

The matrix implementing the composition is the product of the two underlying matrices.

Row-Column Rule

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Given a $m \times n$ matrix A and a $n \times p$ matrix B, the entry in row i and column j of $A B$ is defined above.

Example

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\right.
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right] ~\left[\begin{array}{c}
\\
\\
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
\end{array}\right.
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right] ~\left[\begin{array}{c}
\\
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
\end{array}\right.
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right] ~\left[\begin{array}{c}
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
\end{array}\right.
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right] ~\left[\begin{array}{c}
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
\end{array}\right.
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right] ~\left[\begin{array}{c}
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
\end{array}\right.
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{gathered}\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\left.\begin{array}{rl}
4\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]
\end{array} \begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\begin{gathered}
{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]}
\end{gathered}\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

Row-Column Rule (Pictorially)

$$
\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Row-Column Rule (Pictorially)

$$
\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Row-Column Rule (Pictorially)

$$
\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Row-Column Rule (Pictorially)

$$
\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Question

Compute $\left[\begin{array}{ccc}2 \times 3 & \begin{array}{cc}3 \times 2 \\ 1 & 0\end{array} & -1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 2 & 0 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}? & ? \\ ? & 7\end{array}\right]$
short version: What is the entry in the 2nd row and 2nd column?

Answer

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
2 & 0 \\
-1 & 2
\end{array}\right]
$$

Matrix Operations

Connection with Matrix-Vector Multiplication

Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

$$
A\left[\mathbf{b}_{1}\right]=\left[A \mathbf{b}_{1}\right]=A \mathbf{b}_{1}
$$

Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

$$
A\left[\mathbf{b}_{1}\right]=\left[A \mathbf{b}_{1}\right]=A \mathbf{b}_{1}
$$

This is just vector multiplication.

Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

$$
A\left[\mathbf{b}_{1}\right]=\left[A \mathbf{b}_{1}\right]=A \mathbf{b}_{1}
$$

This is just vector multiplication.
We can think of $\left[\begin{array}{llll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}\end{array}\right]$ as collection of simultaneous matrix-vector multiplications

Matrix "Interface"

multiplication

addition
scaling
what does $A B$ mean when A and B are matrices?
what does $A+B$ mean when A and B are matrices?
what does $c A$ mean when A is matrix and c is a real number?

Matrix "Interface"

multiplication

addition
scaling
what does $A B$ mean when A and B are matrices?
what does $A+B$ mean when A and B are matrices?
what does $c A$ mean when A is matrix and c is a real number?

These should be consistent with matrix-vector interface and vector interface

Matrix Addition

$\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]+\left[\begin{array}{ll}\mathbf{b}_{1} \ldots & \mathbf{b}_{n}\end{array}\right]=\left[\begin{array}{lll}\left(\mathbf{a}_{1}+\mathbf{b}_{1}\right) & \ldots & \left(\mathbf{a}_{n}+\mathbf{b}_{n}\right)\end{array}\right]$
Addition is done column-wise (or equivalently, element-wise)

$$
\text { e.g. }\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{cc}
2 & 3 \\
-2 & -3
\end{array}\right]=\left[\begin{array}{ll}
(1+2) & (2+3) \\
(3-2) & (4-3)
\end{array}\right]=\left[\begin{array}{ll}
3 & 5 \\
1 & 1
\end{array}\right]
$$

Matrix Addition

$$
\left.\right]+\left[\mathbf{b}_{1} \ldots \mathbf{b}_{n}\right]=\left[\left(\mathbf{a}_{1}+\mathbf{b}_{1}\right) \quad \ldots \quad\left(\mathbf{a}_{n}+\mathbf{b}_{n}\right)\right]
$$

Addition is done column-wise (or equivalently, element-wise)

$$
\text { e.g. }\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{cc}
2 & 3 \\
-2 & -3
\end{array}\right]=\left[\begin{array}{ll}
(1+2) & (2+3) \\
(3-2) & (4-3)
\end{array}\right]=\left[\begin{array}{ll}
3 & 5 \\
1 & 1
\end{array}\right]
$$

This is exactly the same as vector addition, but for matrices.

Matrix Addition and Scaling

$$
c\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{llll}
c \mathbf{a}_{1} & c \mathbf{a}_{2} & \ldots & c \mathbf{a}_{n}
\end{array}\right]
$$

Scaling and adding happen element-wise (or, equivalently, column-wise).

$$
\text { e.g. } 2\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{cc}
2(1) & 2(2) \\
2(-1) & 2(3)
\end{array}\right]=\left[\begin{array}{cc}
2 & 4 \\
-2 & 6
\end{array}\right]
$$

Matrix Addition and Scaling

$c\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]=\left[\begin{array}{llll}c \mathbf{a}_{1} & c \mathbf{a}_{2} & \ldots & c \mathbf{a}_{n}\end{array}\right]$
Scaling and adding happen element-wise (or, equivalently, column-wise).

$$
\text { e.g. } 2\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{cc}
2(1) & 2(2) \\
2(-1) & 2(3)
\end{array}\right]=\left[\begin{array}{cc}
2 & 4 \\
-2 & 6
\end{array}\right]
$$

This is exactly the same as vector scaling, but for matrices.

Algebraic Properties (Addition and Scaling)

In these properties A, B, and C are matrices of the same size and r and s are scalars (\mathbb{R})

$$
\begin{aligned}
& A+B=B+A \\
& (A+B)+C=A+(B+C) \\
& A+0=A \\
& r(A+B)=r A+r B \\
& (r+s) A=r A+s A
\end{aligned}
$$

Algebraic Properties (Addition and Scaling)

In these properties A, B, and C are matrices of the appropriate size so that everything is defined, and r is a scalar

$$
\begin{aligned}
& A(B C)=(A B) C \\
& A(B+C)=A B+A C \\
& (B+C) A=B C+C A \\
& r(A B)=(r A) B=A(r B) \\
& I_{m} A=A=A I_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Verifying } A(B+C)=A B+A C \\
& A\left(\left[\vec{b}, \vec{b}_{0}\right]+\left[\vec{c}_{1}, \vec{c}_{2}\right]\right)=\rho A B+A L \\
& A\left[\vec{b}_{1}+\vec{c}_{1} \vec{b}_{2}+\vec{c}_{2}\right]= \\
& {\left[A\left(\vec{b}_{1}+\vec{c}_{1}\right) A\left(\vec{b}_{2}+\vec{c}_{2}\right)\right]=} \\
& {\left[A \vec{b}_{1}+A \vec{c}_{1} \quad A \vec{b}_{2}+A \vec{c}_{2}\right]=} \\
& {\left[A \vec{b}_{1} A \vec{b}_{2}\right]+\left[A \vec{c}_{1}+A \vec{c}_{0}\right]=}
\end{aligned}
$$

Matrix Multiplication is not Commutative

 Important. $A B$ may not be the same as BA(it may not even be defined)

Question (Conceptual)

Find a pair of 2D linear transformations T_{1} and T_{2} such that T_{1} followed by T_{2} is not the same as T_{2} followed by T_{1}.
(also find a pair where they are the same)

Answer: Rotation and Reflection

Computational Aspects of Matrix Multiplication

Matrix Operations in Numpy

Let a and b be 2D numpy arrays and let c be a floating point number.

$$
\begin{array}{ll}
\gg \mathrm{a} & \text { (matrix multiplication) } \\
>\mathrm{a}+\mathrm{b} & \text { (matrix addition) } \\
>c * a & \text { (matrix scaling) }
\end{array}
$$

We've seen these, we've used them a bit, we'll use them much more.

A Note on Complexity

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Suppose A and B are $n \times n$ matrices.
This operations takes n multiplications and n divisions (2n FLOPS total)

Repeating for each entry gives $\sim 2 n^{3}$ FLOPS

A Note on Parallelization

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

The main part of this procedure is highly parallelizable.

A Note on Parallelization

```
a = np.array(...)
b = np.array(...)
prod = np.zeros([a.shape[0], b.shape[1]])
for i in range(a.shape[0]):
    for j in range(b.shape[1]):
prod[i, j] = np.dot(a[i], b[:,j])
```

The main part of this procedure is highly parallelizable.

One processor per entry gets you to $\sim 2 n$ FLOPS

A Note on Libraries

There are a lot of other considerations for doing linear algebra on computers.

Best leave it to experts (or do research in the area).

LAPACK is the state of the art library for matrix operations.

numpy uses LAPACK

Summary

We can reason about matrix equations by reasoning directly about properties of linear transformations.

Matrix multiplication coincides with composition of linear transformations.

There is an algebra of matrices which is consistent with the algebra of vectors.

