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Lecture 9



Objectives

1. (From last time) Connect questions about matrix 
equations and linear transformations 

2. Motivate matrix multiplication 

3. Define matrix multiplication 

4. Look at the algebra of matrix multiplication
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Recap



Recall: Matrices as Transformations

Matrices allow us to transform vectors. 

The transformed vector lies in the span of its 
columns.

x ↦ Ax
map a vector  to the vector x Av



Recall: Motivating Questions

What kind of functions can we define in this 
way? 

How do we interpret what the transformation 
does to a set of vectors? 

How does this relate back to matrix equations?



Recall: A New Interpretation of the Matrix Equation

?            is there a vector which     
                   transforms into ? 

Solve        find a vector which   
                   transforms into  

Ax = b ≡ A
b

Ax = b ≡ A
b



Recall: A New Interpretation of the Matrix Equation

?            is there a vector which     
                   transforms into ? 

Solve        find a vector which   
                   transforms into  

Ax = b ≡ A
b

Ax = b ≡ A
b

What about other questions?



One-to-One and Onto 
Transformations



Other Questions Like...

Does  have a solution for any choice of ? 

Does  have a unique solution?

Ax = b b
Ax = 0

columns of A have full spar .

ind
columns of A we li...



Other Questions Like...

Do the columns of  have full span? 

Are the columns of  linearly independent?

A

A



Other Questions Like...

Does  have at least one solution for any 
choice of ? 

Does  have at most one solution for any 
choice of ?

Ax = b
b

Ax = b
b

A O has
righ

solution
.
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Other Questions Like...

Does  have at least one solution for any 
choice of ? 

Does  have at most one solution for any 
choice of ?

Ax = b
b

Ax = b
b

Wait, what's going on with this second one?



A New Perspective on Linear Independence

 has a               has at most one 
unique solution           solution for any 
                          choice of  

why?:

Ax = 0 ≡ Ax = b
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Onto Transformations



Onto Transformations

Definition. A transformation  is onto 
if any vector  in  is the image of at least 
one vector  in  (where ).

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b
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 is onto if its range = its codomainT

Onto Transformations

Definition. A transformation  is onto 
if any vector  in  is the image of at least 
one vector  in  (where ).

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b

It i



One-to-one Transformations



One-to-one Transformations

Definition. A transformation  is one-
to-one if any vector  in  is the image of at 
most one vector  in  (where ).

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b
Lit T is linea ,

>
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One-to-one Transformations

Definition. A transformation  is one-
to-one if any vector  in  is the image of at 
most one vector  in  (where ).

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald



Comparing PicturesEsurjectivity
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Comparing Pictures

 is onto if its range = its codomainT
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Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix .

T : ℝn → ℝm
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Taking Stock: Onto

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix .

T : ℝn → ℝm

A

»  is ontoT
»  has a solution for any choice of Ax = b b
» %&'()(T) = *+,+-&.'(T)
» the columns of  span A ℝm

»  has a pivot position in every rowA



Taking Stock: One-to-One
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Taking Stock: One-to-One

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix .
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A
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Taking Stock: One-to-One

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix .

T : ℝn → ℝm

A

»  is one-to-oneT
»  has at most one solution for any Ax = b b
»  has only the trivial solutionAx = 0
» The columns of  are linearly independentA
»  has a pivot position in every columnA



How To: One-to-One and Onto

Question. Show that the linear transformation  is 
one-to-one/onto. 

Solution. (one approach) Find the matrix which 
implements  and see if it has a pivot in every 
column/row. 

Warning: this is not the only way. Always try to think 
if you can solve it using any of the perspectives

T

T



Example: both 1-1 and onto

Rotation about the origin: 

 

why?:

[cos θ −sin θ
sin θ cos θ ]
f

N 1:↳

solution
&

1 - 1 : AF
= 5 has a unique

vot :

on to : Pivot in even



Example: 1-1, not onto

Lifting: 

 

why?:

[x1
x2] ↦

x1
x2

x1 + x2

2 3 -R R

-

> 02
R

1-1 : (6) r(i] (i) - (i)
I ?]- Pol



Example: onto, not 1-1

Projection from  to . 

 

why?:

ℝ3 ℝ2

x1
x2
x3

↦ [x1
x2]

C(68]①

e

18) - (3) (37e %3 18] - 187

(iii (i) (i) (i)



Example: not 1-1, not onto

Projection onto the -axis: 

 

why?:

x1

[1 0
0 0]

I
0

dont have C pirot in

ever row 3r oran



Question
Is vertical shearing 
a 1-1 transformation? 
Justify your answer.

er
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*
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Answer: Yes [Te ,) a)

(i) > (i .
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[15]



 (moving on)



Composing Linear 
Transformations



Shearing and Reflecting (Geometrically)

reflectshear



Shearing and Reflecting Matrix

 

 

[1
0] ↦

[0
1] ↦

[1
1] ↦

e1

e2 e1 + e2

(i)
-i)

sil &
I ?)



Shearing and Reflecting (Algebraically)

First multiply by shear matrix, then multiply 
by reflection matrix

[−1 0
0 1] ([1 1

0 1] [x1
x2])

shearreflect

A B

(i)(: i3(3) = (5i](:] : 5 !)

=(B((i)) = (i)



Shearing and Reflecting (Algebraically)

First multiply by shear matrix, then multiply 
by reflection matrix

[−1 0
0 1] ([1 1

0 1] [x1
x2])

shearreflect

This gives us the same transformation.



Shearing and Reflecting

[−1 −1
0 1 ] x = [−1 0

0 1] ([1 1
0 1] x)



The Key Fact



The Key Fact

Fact. The composition of two linear 
transformation is a linear transformation.



The Key Fact

Fact. The composition of two linear 
transformation is a linear transformation.

Verify:

(/ai + xi) = at(i) + b((i)

T(s(ar + ba)) =

T(as(i)
+ bs(i)) =

· T(s(r)) + b
+ (s(i))



The Key Fact

Fact. The composition of two linear 
transformation is a linear transformation.

Verify:

This means the composition of two matrix 
transformation can be represented as a 
single matrix.



The Key Question

Given two linear transformations, 
how to we compute the matrix which 
implements their composition?



The Key Question

Given two linear transformations, 
how to we compute the matrix which 
implements their composition?

Matrix Multiplication



Matrix Multiplication



Shearing and Reflecting

[−1 0
0 1] ([1 1

0 1] [x1
x2]) =

(i)(x() +
+ (i)) =

(ii)(x , (b)) (
-bi2(x(i]) =

x((ji)() + x-(i)(i))



General Composition (2D)

A ([b1 b2] [x1
x2]) =

/

[A5 ,

A5) (ii)

A(x ,

5
,

+ x b) =

x
. (Ab ,

) + k(A5)=



Matrix Multiplication

Definition. For a  matrix  and a  
matrix  with columns  the product  
is the  matrix given by 

 

Replace each column of  with  multiplied by 
that column.

m × n A n × p
B b1, b2, …, bp AB
m × p

AB = A [b1 b2 … bp] = [Ab1 Ab2 … Abp]

B A



Tracking Dimensions
this only works if the number of columns of the left 
matrix matches the number of rows of the right matrix

* * *
* * *
* * *
* * *
* * *

[
* * * *
* * * *
* * * * ] =

* * * *
* * * *
* * * *
* * * *
* * * *

(m × n) (n × k) (m × k)

m m

n

n

k
k



Important Note

Even if  is defined, it may 
be that  is not defined

AB
BA

* E but A
is not

is defined



Non-Example

[1 2 3
4 5 6] [1 2

3 4] = [[1 2 3
4 5 6] [1

3] [1 2 3
4 5 6] [2

4]]
2x3 2 +2



Non-Example

[1 2 3
4 5 6] [1 2

3 4] = [[1 2 3
4 5 6] [1

3] [1 2 3
4 5 6] [2

4]]
These are not defined.



Example

[1 2
3 4] [1 2 3

4 5 6] = [[1 2
3 4] [1

4] [1 2
3 4] [2

5] [1 2
3 4] [3

6]]
2 Ox
↳

A(BC) =



The Key Fact (Restated)

For any matrices  and  (such that  is 
defined) and any vector  

 

The matrix implementing the composition is the 
product of the two underlying matrices.

A B AB
v

A(Bv) = (AB)v



Row-Column Rule

Given a  matrix  and a  matrix , the 
entry in row  and column  of  is defined 
above.

m × n A n × p B
i j AB

(AB)ij =
n

∑
k=1

AikBkj



Example

[−1 0
0 1] [1 1

0 1] =-DBO
- (1) + 0(1)DI

...

..



Row-Column Rule (Pictorially)
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n

∑
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AikBkj
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Question

Compute  

short version: What is the entry in the 2nd row 
and 2nd column?

[1 0 −1
0 1 1 ] [

1 1
2 0

−1 2]



Answer

[1 0 −1
0 1 1 ] [

1 1
2 0

−1 2]- & /]
2 x 3 3 x1 =2 + I

E = 0(1) +
1(x) + 1(2) = 2



Matrix Operations



Connection with Matrix-Vector Multiplication



Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?



Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

A[b1] = [Ab1] = Ab1



Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

A[b1] = [Ab1] = Ab1
This is just vector multiplication.



Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

A[b1] = [Ab1] = Ab1
This is just vector multiplication.

We can think of  as collection of 
simultaneous matrix-vector multiplications

[Ab1 Ab2 … Abp]



Matrix "Interface"

multiplication    what does  mean when  and 
                   are matrices? 

addition          what does  mean when  
                  and  are matrices? 

scaling           what does  mean when  is 
                  matrix and  is a real number?

AB A
B

A + B A
B

cA A
c



Matrix "Interface"

multiplication    what does  mean when  and 
                   are matrices? 

addition          what does  mean when  
                  and  are matrices? 

scaling           what does  mean when  is 
                  matrix and  is a real number?

AB A
B

A + B A
B

cA A
c

These should be consistent with matrix-vector 
interface and vector interface



Matrix Addition

[a1 … an] + [b1… bn] = [(a1 + b1) … (an + bn)]
Addition is done column-wise (or equivalently, 
element-wise) 

e.g. [1 2
3 4] + [ 2 3

−2 −3] = [(1 + 2) (2 + 3)
(3 − 2) (4 − 3)] = [3 5

1 1]



Matrix Addition

[a1 … an] + [b1… bn] = [(a1 + b1) … (an + bn)]
Addition is done column-wise (or equivalently, 
element-wise) 

e.g. [1 2
3 4] + [ 2 3

−2 −3] = [(1 + 2) (2 + 3)
(3 − 2) (4 − 3)] = [3 5

1 1]
This is exactly the same as vector addition, but for matrices.



Matrix Addition and Scaling

c [a1 a2 … an] = [ca1 ca2 … can]
Scaling and adding happen element-wise (or, 
equivalently, column-wise). 

e.g. 2 [ 1 2
−1 3] = [ 2(1) 2(2)

2(−1) 2(3)] = [ 2 4
−2 6]



Matrix Addition and Scaling

c [a1 a2 … an] = [ca1 ca2 … can]
Scaling and adding happen element-wise (or, 
equivalently, column-wise). 

e.g. 2 [ 1 2
−1 3] = [ 2(1) 2(2)

2(−1) 2(3)] = [ 2 4
−2 6]

This is exactly the same as vector scaling, but for matrices.



Algebraic Properties (Addition and Scaling)

 

 

 

 

 

A + B = B + A

(A + B) + C = A + (B + C)

A + 0 = A

r(A + B) = rA + rB

(r + s)A = rA + sA

r(sA) = (rs)A

In these properties , 
, and  are matrices 

of the same size and  
and  are scalars ( )

A
B C

r
s ℝ

Now we need to know/memorize these.



Algebraic Properties (Addition and Scaling)

 

 

 

 

A(BC) = (AB)C

A(B + C) = AB + AC

(B + C)A = BC + CA

r(AB) = (rA)B = A(rB)

ImA = A = AIn

In these properties , 
, and  are matrices 

of the appropriate size 
so that everything is 
defined, and  is a 
scalar

A
B C

r

Now we need to know/memorize these.

cation



Verifying A(B + C) = AB + AC



Matrix Multiplication is not Commutative

Important.  may not be the 
same as  
(it may not even be defined)

AB
BA



Question (Conceptual)

Find a pair of 2D linear transformations  and 
 such that  followed by  is not the same as 
 followed by . 

(also find a pair where they are the same)

T1
T2 T1 T2
T2 T1



Answer: Rotation and Reflection



Computational Aspects of Matrix 
Multiplication



Matrix Operations in Numpy

Let a and b be 2D numpy arrays and let c be a 
floating point number. 

    » a @ b    (matrix multiplication) 

    » a + b    (matrix addition) 

    » c * a    (matrix scaling) 

We've seen these, we've used them a bit, we'll 
use them much more.



A Note on Complexity

Suppose  and  are  matrices. 

This operations takes  multiplications and  
divisions (  FLOPS total) 

Repeating for each entry gives  FLOPS

A B n × n

n n
2n

∼ 2n3

(AB)ij =
n

∑
k=1

AikBkj



A Note on Parallelization

(AB)ij =
n

∑
k=1

AikBkj

The main part of this procedure is highly 
parallelizable.



A Note on Parallelization

The main part of this procedure is highly 
parallelizable. 

One processor per entry gets you to  FLOPS∼ 2n

a = np.array(...) 
b = np.array(...) 
prod = np.zeros([a.shape[0], b.shape[1]]) 
for i in range(a.shape[0]): 
    for j in range(b.shape[1]): 
        prod[i, j] = np.dot(a[i], b[:,j])



A Note on Libraries

There are a lot of other considerations for 
doing linear algebra on computers. 

Best leave it to experts (or do research in the 
area). 

LAPACK is the state of the art library for 
matrix operations. 

numpy uses LAPACK



Summary

We can reason about matrix equations by 
reasoning directly about properties of linear 
transformations. 

Matrix multiplication coincides with 
composition of linear transformations. 

There is an algebra of matrices which is 
consistent with the algebra of vectors.


