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Objectives

1. Define a few more 1important matrix operations
2. Motivate and define matrix 1nverses

3. Application: Adjacency Matrices
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More Matrix Operations
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Transpose :

Definition. For a mxn matrix A, the transpose
of A, written A!, is the nxm matrix such that

(A T)zj — Aji A\ | Q |
Example. \?T\\\\\ g

Nt : R

T
ll —1] =[1 o]
O 1 D\’\/\ _1 1




Algebraic Properties (Transpose)
T T N
(A o= N (\‘3
AT = A
(A+B!' =A"+B!
(cA) = cAT (where ¢ is a scalar)

(AB)! = BTA'



Algebraic Properties (Transpose)

AT = A
A+ B! =AT+ B!
(cA) = cAT (where ¢ is a scalar)

(AB) = B'A* Important: the order reverses!



Challenge Problem (Not In-Class)

Show that (AB)! =
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is u'v defined?
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Transposes and Inner Products

' T
For a vector veR", what 1s v'?

It's a 1 xn matrix. 1 X7 nX 1 1 x 1
For two vectors u and v 1n R”, vy

' d fined? v,

1S u'v de W Uy iy 2| = >
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Transposes and Inner Products

(U Uy U3 U] = UV + v, + v + Uy,



Transposes and Inner Products T

_
R ERER
Vi
%)
(U Uy U3 U] v, = UV + v, + v + Uy,
V4

Definition. The 1inner product of two vectors u

and v 1n R" 1s
(u,v)=u-v=@ /
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defined.

Definition. For a nxn matrix A, we write A* for

the k—fold product of A with 1tself.
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Matrix Powers

IT A 1s an nxn matrix, then the product AA 1S
defined.

Definition. For a nxn matrix A, we write A* for
the k—fold product of A with 1tself.
= W\

What should A be? | = 7

10°=1, so it stands to reason that A°=7. + &~



~ ()
AT = ('\ifx ‘i/b Q’”s/]
“[NE, AE, e
LA e, A=K
IT A 1s an nxn matrix, then the product AA 1S
defined.

Matrix Powers

Definition. For a nxn matrix A, we write A* for
the k—fold product of A with 1tself.

What should A be?

10=1, so it stands to reason that A" =1.

(we want AYAX = A0tk = AK)



Final Warnings about Matrix Multiplication



Final Warnings about Matrix Multiplication

1. AB 1s not necessarily equal to BA, even 1f
both are defined.
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Final Warnings about Matrix Multiplication

1. AB 1s not necessarily equal to BA, even 1f
both are defined.

2. IT AB=AC then 1t 1s not necessary that
B = C.

3. If AB=0 (the zero matrix) it is not
necessarily the case that A=0 or B=0.



Question

Find two nonzero 2x2 matrices A and B such that
AB = 0.

Challenge. Choose A and B such that they have
all nonzero entries.







So Far: Matrix Operations
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So Far: Matrix Operations

transpose Al
scaling cA
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So Far: Matrix Operations

transpose Al
scaling cA
addition (subtraction) A+B

multiplication (powers) AB

A+(-1)B=A —B
Ak



So Far: Matrix Operations

transpose Al

scaling cA

addition (subtraction) A+B A+(-1)B=A-B
multiplication (powers) AB AKX

What's missing?



Matrix Inverses



Basic Algebra

2x = 10
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Basic Algebra

2x = 10

How do we solve this equation?

Divide on both sides by 2 to get x=>5.

. . |
Multiply each side by E-a.k;a. 21,

| : . o : :
5 1s the reciprocal or multiplicative 1nverse of 2.
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Basic Algebra

2-12x) = 271(10)

How do we solve this equation?

Divide on both sides by 2 to get x=>5.
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Basic Algebra

2-12x) = 271(10)

How do we solve this equation?

Divide on both sides by 2 to get x=>5.

. . |
Multiply each side by E-a.k;a. 21,

| : . o : :
5 1s the reciprocal or multiplicative 1nverse of 2.



Basic Algebra

Ix =15

How do we solve this equation?

Divide on both sides by 2 to get x=>5.

. . |
Multiply each side by E-a.k;a. 21,

| : . o : :
5 1s the reciprocal or multiplicative 1nverse of 2.



Basic Algebra
X =3

How do we solve this equation?

Divide on both sides by 2 to get x=>5.

. . |
Multiply each side by E-a.k;a. 21,

| : . o : :
5 1s the reciprocal or multiplicative 1nverse of 2.
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Wouldn't it be nice...
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How do we solve this equation?

Multiply each side by A~! to get x=A4""b.

A~! is the multiplicative inverse of A



Wouldn't it be nice...

Ix=A"1b

How do we solve this equation?
Multiply each side by A~! to get x=A4""b.

A~! is the multiplicative inverse of A



Wouldn't it be nice...

—1
x=A""Db
How do we solve this equation?

Multiply each side by A~! to get x=A4""b.

A~! is the multiplicative inverse of A



Do all matrices have
1NVEerses?




Do all matrices have
1NVEerses?

NO.



When does a matrix have
an 1nverse?




Square Matrices

Definition. A mxn matrix A is square if m=n

K K K K
K K K K
K K K K
K K K K

1.e., 1t has same number of rows as columns.



Why are square matrices special?
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Why are square matrices special?

They are the only kind of matrices...

» that can have a pivot 1n every row and every
co Lumn.

» whose transformations can be both 1-1 and onto.

» whose columns can have full span and be
Llinearly 1ndependent.

» that can have 1nverses.



Dimension Tracking
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Dimension Tracking




Dimension Tracking

x =A"1b

The only way for the dimensions to
make sense 1s 1f A 1s square



Matrix Inverses



Matrix Inverses

Definition. For a nxn matrix A, an 1inverse of A
1S a nxXn matrix B such that
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Matrix Inverses

Definition. For a nxn matrix A, an 1inverse of A
1S a nxXn matrix B such that

AB=1 and BA=1,

A 1s 1invertible if it has an inverse. Otherwise
it is singular.



Matrix Inverses

Definition. For a nxn matrix A, an 1inverse of A
1S a nxXn matrix B such that

AB=1 and BA=1,

A 1s 1invertible if it has an inverse. Otherwise

it is singular. ~ /X Y& \D o
_ \ \

1
1 ol [1 0O S -
Example. [1 1] = [_1 1] pa— & T
O

J



Example: Geometric

Reflection across the x;—axis in R* is it's own
inverse.




Example: No inverse

Verify:

( A
do© O

|
0 3

0 0O

— 1
1
0

@




Inverses are Unique

Theorem. If B and C are 1nverses of A, then
B=~C.

verity: @ = 2 ?-‘Eg(th>>':CE$<3<;': 1c =



Inverses are Unique

Theorem. If B and C are 1nverses of A, then
B=~C.

Verify:

If A is invertible, then we write A-!
for the 1nverse of A.



Solutions for Invertible Matrix Equations

Theorem. For a nxn matrix A, 1f A 1s 1nvertible
then

AX=Db
has a unique solution for any choice of b.

—\ N <
- ~ . = ™ Q
Verify: — 7 T = L< JUNINE ) (\\*{O

N

*

%VQQ DY C AN



Unique Solutions

IT Ax=b has a unique solution for any choice
of b, then 1t has

» exactly one solution for any choice of b




Unique Solutions

IT Ax=b has a unique solution for any choice
of b, then 1t has

» at least one solution for any choice of b

» at most one solution for any choice of b




Unique Solutions

IT Ax=b has a unique solution for any choice
of b, then 1t has

» T 1S onto

» 7 1S one—to—one

where T 1s 1mplemented by A



Connection to Transformations

Definition. A linear transformation 7:R"— R"” 1is
invertible if there is a linear transformation
S such that s AL LT

],\V\D\Q SRR P\I’\ L

S(T(v))=v and T(S(v)) =v

for a ny v 1n R”". Multiplication
~ byA NG

Multiplication

by A~
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only 1f the matrix transformation x~— Ax 1S
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Connection to Transformations

Theorem. A nxn matrix A 1s 1nvertible 1f and
only 1f the matrix transformation x— Ax 1S
invertible.

A matrix 1s 1nvertible 1f 1t's possible to
"undo" 1ts transformation without "losing
information".



Connection to Transformations \\ i,
Theorem. A nxn matrix A 1s 1nvertible 1f and

only 1f the matrix transformation x— Ax 1S
invertible.

A matrix 1s 1nvertible 1f 1t's possible to
"undo" 1ts transformation without "losing
information".

Non-Example. Projection onto the x,—axis.
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Connection to Transformations

Definition. A transformation T:R" - R"” 1S a one-
to-one correspondence (bijection) if any vector
b 1n R" 1s the 1mage of exactly one vector v 1n
R"” (where T(v)=b).




Connection to Transformations

Definition. A transformation T:R" - R"” 1S a one-
to-one correspondence (bijection) if any vector
b 1n R" 1s the 1mage of exactly one vector v 1n

R"” (where T(v)=b).

A transformation 1s a 1-1 correspondence 1f 1t
1s 1-1 and onto.



Connection to Transformations

Definition. A transformation T:R" - R"” 1S a one-
to-one correspondence (bijection) if any vector
b 1n R" 1s the 1mage of exactly one vector v 1n

R"” (where T(v)=b).

A transformation 1s a 1-1 correspondence 1f 1t
1s 1-1 and onto.

Invertible transformations are 1-1 correspondences.



Kinds of Transformations (Pictorially)

not covered

collision not covered collision
X X Y X X X Y
D D
B B
C C
A A

1-1 correspondence onto, not 1-1 1-1 not onto not 1-1, not onto



Computing Matrix Inverses



In General

Can we solve for each b,?:



How lo: Matrix Inverses
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matrix A.
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Question. Find the inverse of an invertible nxn
matrix A.

Solution. Solve the equation Ax=e, for every
standard basis vector. Put those solutions
$,$,,...,8, 1Nto a single matrix

n



How lo: Matrix Inverses

Question. Find the inverse of an invertible nxn
matrix A.

Solution. Solve the equation Ax=e, for every
standard basis vector. Put those solutions
$,$,,...,8, 1Nto a single matrix

[S; S, ... S]]

n
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Question. Find the inverse of the nxn matrix A.



How lo: Matrix Inverses

Question. Find the inverse of the nxn matrix A.

Solution. Row reduce the matrix [A ] to a
matrix [/ B]. Then B 1s the 1nverse of A.



How lo: Matrix Inverses

Question. Find the inverse of the nxn matrix A.

Solution. Row reduce the matrix [A ] to a
matrix [/ B]. Then B 1s the 1nverse of A.

This 1s really the same thing. It's a

simultaneous reduction. /)
F\ONO\P\

AR




How To: Matrix Inverse Computationally




How To: Matrix Inverse Computationally

Question. Find the inverse of the nxn matrix A.



How To: Matrix Inverse Computationally

Question. Find the inverse of the nxn matrix A.

Solution. Use numpy.linalg.inv()



How To: Matrix Inverse Computationally

Question. Find the inverse of the nxn matrix A.
Solution. Use numpy.linalg.inv()

Warning: this only works 1f the matrix 1s
invertible.



demo
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Special Case: 2 x 2 Matrice Inverses

~1
a b _ 1 [d —b]
c d ac —bd Ll—¢c a
The determinant of a 2x2 matrix is the value
ad — bc.

The 1nverse 1s defined only 1f the determinant
1S nonzero.



Special Case: 2 x 2 Matrice Inverses

~1
a b _ 1 [d —b]
c d b |—c  a
_ ad - b
The determinant of a 2x2 matrix 1s the value

ad — bc.

The 1nverse 1s defined only 1f the determinant
1S nonzero.

(see the notes on linear transformations for more information about determinants)



Example

—6 14
3 -7



Example

3 4

Is the above matrix 1invertible?



Example

3 4

Is the above matrix 1invertible?

No. The determinant 1s (-6)(—=7)—143)=42—-42=0



Algebra of Matrix Inverses



Algebraic Properties (Matrix Inverses)

Theorem. For a nxn 1nvertible matrix A
A~HT=A

Verify:



Algebraic Properties (Matrix Inverses)

Theorem. For a nxn 1nvertible matrix A, the
matrix A" is invertible and

AT =@

Verify.



Algebraic Properties (Matrix Inverses)

Theorem. For a nxn 1invertible matrices A and B,
the matrix AB 1s 1nvertible and

(AB)"' = B~ 1A~

Verify.



Question

Suppose that A 1s a nxn 1nvertible matrix such
that A=A" and B i1s a mxn matrix.

Simplify the expression ABA™Y' using the
algebraic properties we've seen.



A(BA—H!
A=AT

Answer: B!



Invertible Matrix Theorem




High Level

How do we know 1f a matrix 1s 1invertible?

By connecting everything we've said so far.



Invertible Matrix Theorem (IMT)
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Invertible Matrix Theorem (IMT)

1. A 1s 1invertible

2. A" 1s invertible

3. Ax=Db has at least one solution for any b
4. Ax=b has at most one solution for any b
5. Ax=b has a unique solution for any b

6. A has n pivots (per row and per column)



Invertible Matrix Theorem (IMT)

1. A 1s 1nvertible

2. A" 1s invertible

. Ax=Db has at least one solution for any b
. Ax=b has at most one solution for any b
. Ax=b has a unique solution for any b

. A has n pivots (per row and per column)

~N O O B W

. A 1S row equivalent to I/



Invertible Matrix Theorem (IMT)
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8. Ax=0 has only the trivial solution

9. The columns of A are linearly 1ndependent
10.The columns of A span R”

11.The linear transformation x— Ax 1S onto

12.x— Ax 1S one-—-to—-one



Invertible Matrix Theorem (IMT)

8. Ax=0 has only the trivial solution

9. The columns of A are linearly 1independent
10.The columns of A span R”

11.The linear transformation x+— Ax 1S onto
12.x—» Ax 1S one-to-one

13.x » Ax 1S a one-to-one correspondence



Invertible Matrix Theorem (IMT)

8. Ax=0 has only the trivial solution

9. The columns of A are linearly 1independent
10.The columns of A span R”

11.The linear transformation x+— Ax 1S onto
12.x—» Ax 1S one-to-one

13.x » Ax 1S a one-to-one correspondence

14.x—» Ax 1S 1nvertible
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Theorem. If A 1s square, then
A 1s 1-1 if and only if A 1s onto

We only need to check one of these.



We get a lot of Information for free

Theorem. If A 1s square, then
A 1s 1-1 if and only if A 1s onto
We only need to check one of these.

Warning. Remember this only applies square
matrices.



We get a lot of Information for free



We get a lot of Information for free

Theorem. If A 1s square, then

A 1s 1nvertible Ax =0 1mplies x=0



We get a lot of Information for free

Theorem. If A 1s square, then

A 1s 1nvertible Ax =0 1mplies x=0

Invertibility 1s completely determined by how A
behaves on 0.



Application: Adjacency Matrices




Graphs

Definition (Informal). An undirected graph is a
collection of nodes with edges between them.

How do we represent these 1n computers?



Adjacency Matrices

O 1 0O
1 0 1
For an undirected 0 1 0
graph G we can create A0 0 1
the adjacency matrix A 1 10
for G where: 0 0 O

A {1 there is an edge between i and j
" L0 otherwise



Spectral Graph Theory

Once we have an adjacency
matrix, we can do linear
algebra on graphs.



Example: Squared Adjacency Matrices

Given an adjacency matrix A

Can we 1nterpret anything
meaningful from A-?



Example: Squared Adjacency Matrices

O 1 00T1TOHO 1T 0 0 1 O
1 01 0 1 O)jf1r 0 1 0 1 0O
O 1 01 00O 1T 01 0 O
001 01 11j]0O 0 1 0 1 1
1 1T 0O 1 O Ojf1 1.0 1 0 0O
0 00 1T O0O0]{0 0 O0T1TO0O0

(A%)s; = 1(0) + 1(1) + 0(0) + 1(1) + 0(0) + 0(0) = 2



Example: Squared Adjacency Matrices
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Example: Squared Adjacency Matrices

(A% = AjA +ApAs + ...+ ALA,

in‘ "nj

1 there are edges from 1 to k and k to j
AikAkj =

0 otherwise AyAis=1(1) =1
=00) =0




Example: Squared Adjacency Matrices

(A% = AjA +ApAs + ...+ ALA,

in‘ "nj

1 there are edges from 1 to k and k to j
AikAkj =

0 otherwise AyAis=1(1) =1
=00) =0

(Az)“ __|number of 2-step paths
/ from i to j




Application: Triangle Counting

A triangle in an
undirected graph 1s a set
of three distinct nodes
with edges between every
palr of nodes.

Triangles 1n a social
network represent mutual
friends and tight cohesion
(among other things)




Application: Triangle Counting

Theorem. For an adjacency matrix A, the number
of triangle containing the edge (i,j) 1S

2
(A%;4



Application: Triangle Counting

FUNCTION tri count(A):
compute A’

count « sum of (A4%);A; for all distinct i and

RETURN count / © # why divided by 67



Summary

We can solve matrix equations by 1inverting the
matrix, though not all matrices have 1nverses.

We can compute matrix 1nverses a simultaneous
row reduction.

We can connect all the concepts we've defined
so far by thinking about them 1in terms of
invertibility (for square matrices).



