Matrix Inverses

Geometric Algorithms
Lecture 10

Objectives

1. Define a few more important matrix operations
2. Motivate and define matrix inverses
3. Application: Adjacency Matrices

Keywords

Matrix Transpose

Inner Product
Matrix Power
Square Matrix
Matrix Inverse
Invertible Transformation
1-1 Correspondence
numpy. linalg.inv
eterminant
Invertible Matrix Theorem

Recap Problem

Suppose that $A, B=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]$ and $C=\left[\begin{array}{lll}\mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{c}_{3}\end{array}\right]$ are matrices such that

$$
A(B+5 I)=C
$$

Find a solution to the equation $A \mathbf{x}=\mathbf{c}_{2}$.
Hint. Your solution should have a standard basis rector

$$
\begin{aligned}
& \text { Answer: } \left.\left.\mathbf{b}_{2}+5 \begin{array}{c}
0 \\
0 \\
0
\end{array}\right] \mathbf{e}_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad A(B+5 I)=C \quad \begin{array}{l}
\left.A\left(\vec{b}_{2}+5 \vec{c}_{2}\right)\right) \\
i 3
\end{array}\right)=\vec{c}_{2} \\
& A\left(\left[\vec{b}, \vec{b}_{2} \vec{b}_{3}\right]+5\left[\vec{e}, \vec{e}_{2} \overrightarrow{e_{3}}\right]\right)=\text { solution } \\
& A\left(\left[\left(\vec{b}_{1}+5 \vec{b}_{1}\right) \quad\left(\vec{b}_{1}+5 \vec{e}_{2}\right)\left(\vec{b}_{3}+5 \vec{e}_{3}\right]\right)=\right. \\
& {\left[\begin{array}{ll}
\cdots\left(\vec{b}_{2}+5 \vec{e}_{2}\right) & \cdots
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
& \vec{c}_{2}
\end{array}\right]}
\end{aligned}
$$

More Matrix Operations

Transpose (Pictorially)

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5
\end{array}\right]
$$

Transpose (Pictorially)

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5
\end{array}\right]
$$

Transpose

Definition. For a $m \times n$ matrix A, the transpose of A, written A^{T}, is the $n \times m$ matrix such that

$$
\left(A^{T}\right)_{i j}=A_{j i}
$$

Example.

$$
\begin{gathered}
A_{1 \imath} \\
{\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]^{T}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]}
\end{gathered}
$$

Algebraic Properties (Transpose)

$$
\begin{aligned}
& \left(A^{T}\right)^{T}=A \quad\left(A^{T}\right)_{i j}^{T}=A_{j i}^{T}=A_{i j} \\
& (A+B)^{T}=A^{T}+B^{T} \\
& \left.(c A)^{T}=c A^{T} \quad \text { where } c \text { is a scalar }\right) \\
& (A B)^{T}=B^{T} A^{T}
\end{aligned}
$$

Algebraic Properties (Transpose)

$\left(A^{T}\right)^{T}=A$
$(A+B)^{T}=A^{T}+B^{T}$
$(c A)^{T}=c A^{T}$ (where c is a scalar)
$(A B)^{T}=B^{T} A^{T}$ Important: the order reverses!

Challenge Problem (Not In-Class)

$$
(A B)_{i j}^{\top}=\left(B^{\top} A^{\top}\right)_{i j}
$$

Show that $(A B)^{T}=B^{T} A^{T}$.
Example: $\left(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right)^{T}=\left(\left[\begin{array}{l}1(1)+0(1) \\ 1(1)+1(1)\end{array}\right.\right.$ $\left.\begin{array}{l}11.3+0(0) \\ 1(1)+1(0)\end{array}\right]$

Transposes and Inner Products

Transposes and Inner Products

$$
(n \times 1)
$$

For a vector $\mathbf{v} \in \mathbb{R}^{n}$, what is \mathbf{v}^{T} ?

Transposes and Inner Products

For a vector $\mathbf{v} \in \mathbb{R}^{n}$, what is \mathbf{v}^{T} ?
It's a $1 \times n$ matrix.

Transposes and Inner Products

For a vector $\mathbf{v} \in \mathbb{R}^{n}$, what is \mathbf{v}^{T} ?
It's a $1 \times n$ matrix.
For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, is $\mathbf{u}^{T} \mathbf{v}$ defined?

Transposes and Inner Products

For a vector $\mathbf{v} \in \mathbb{R}^{n}$, what is \mathbf{v}^{T} ?
It's a $1 \times n$ matrix.
For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, is $\mathbf{u}^{T} \mathbf{v}$ defined?

```
n\times1 1\times1
1\timesn
```

1\timesn

```
\[
\left[\begin{array}{llll}
u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=?
\]

\section*{Transposes and Inner Products}

For a vector \(\mathbf{v} \in \mathbb{R}^{n}\), what is \(\mathbf{v}^{T}\) ?
It's a \(1 \times n\) matrix.

\[
n \times 1
\]
\(1 \times 1\)
For two vectors \(\mathbf{u}\) and \(\mathbf{v}\) in \(\mathbb{R}^{n}\), is \(\mathbf{u}^{T} \mathbf{v}\) defined?
\[
\left[\begin{array}{llll}
u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right]\left[\begin{array}{l}
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=?
\]

\section*{Transposes and Inner Products}

\section*{Transposes and Inner Products}
\[
\left[\begin{array}{llll}
u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}+u_{4} v_{4}
\]

\section*{Transposes and Inner Products}
\[
\left[\begin{array}{llll}
u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}+u_{4} v_{4}
\]

Definition. The inner product of two vectors u and \(\mathbf{v}\) in \(\mathbb{R}^{n}\) is
\[
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}
\]

\section*{Matrix Powers}

\section*{Matrix Powers}

If \(A\) is an \(n \times n\) matrix, then the product \(A A\) is defined.

\section*{Matrix Powers}

If \(A\) is an \(n \times n\) matrix, then the product \(A A\) is defined.

Definition. For a \(n \times n\) matrix \(A\), we write \(A^{k}\) for the \(k\)-fold product of \(A\) with itself.
\[
\begin{aligned}
& A^{\prime}=A \\
& A^{2}=A A \\
& A^{3}=A A A
\end{aligned}
\]

\section*{Matrix Powers}

If \(A\) is an \(n \times n\) matrix, then the product \(A A\) is defined.

Definition. For a \(n \times n\) matrix \(A\), we write \(A^{k}\) for the \(k\)-fold product of \(A\) with itself.

What should \(A^{0}\) be?

\section*{Matrix Powers}

If \(A\) is an \(n \times n\) matrix, then the product \(A A\) is defined.

Definition. For a \(n \times n\) matrix \(A\), we write \(A^{k}\) for the \(k\)-fold product of \(A\) with itself.

What should \(A^{0}\) be?
\[
1-n=n
\]
\(10^{0}=1\), so it stands to reason that \(A^{0}=I\). I \(A=A=\)
\[
A I
\]

\section*{Matrix Powers}
\[
\begin{aligned}
A I & =A\left[\begin{array}{lll}
\vec{e}, & \vec{e}_{2} & \vec{e}_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
A \vec{e}_{1} & A \vec{e}_{2} & A \vec{e}_{1}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}
\end{array}\right]=A
\end{aligned}
\]

If \(A\) is an \(n \times n\) matrix, then the product \(A A\) is defined.

Definition. For a \(n \times n\) matrix \(A\), we write \(A^{k}\) for the \(k\)-fold product of \(A\) with itself.

What should \(A^{0}\) be?
\(10^{0}=1\), so it stands to reason that \(A^{0}=I\).
(we want \(A^{0} A^{k}=A^{0+k}=A^{k}\) )

\section*{Final Warnings about Matrix Multiplication}

\section*{Final Warnings about Matrix Multiplication}
1. \(A B\) is not necessarily equal to \(B A\), even if both are defined.


\section*{Final Warnings about Matrix Multiplication}
1. \(A B\) is not necessarily equal to \(B A\), even if both are defined.
2. If \(A B=A C\) then it is not necessary that \(B=C . \quad B=D C\) 多 \(B=C\)

\section*{Final Warnings about Matrix Multiplication}
1. \(A B\) is not necessarily equal to \(B A\), even if both are defined.
2. If \(A B=A C\) then it is not necessary that \(B=C\).
3. If \(A B=0\) (the zero matrix) it is not necessarily the case that \(A=0\) or \(B=0\).

\section*{Question}

Find two nonzero \(2 \times 2\) matrices \(A\) and \(B\) such that \(A B=0\).

Challenge. Choose \(A\) and \(B\) such that they have all nonzero entries.

Answer
\[
\begin{aligned}
& {\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]=0 \quad\left[\begin{array}{ll}
\underline{1} & 0 \\
\underline{0} & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]} \\
& A\left[\vec{b}, \vec{b}_{2}\right]=0 \quad A \vec{x}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[A \vec{b}, A \overrightarrow{b_{2}}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array} \sqrt{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad B=\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\right.}
\end{aligned}
\]

\section*{So Far: Matrix Operations}

\section*{So Far: Matrix Operations}
transpose \(A^{T}\)

\section*{So Far: Matrix Operations}
transpose scaling\(A^{T}\)
\[
c A
\]

\section*{So Far: Matrix Operations}
transpose
scaling
\(c A\)
addition (subtraction)
\(A+B\)
\[
A+(-1) B=A-B
\]

\section*{So Far: Matrix Operations}
transpose ..... \(A^{T}\)
scaling ..... \(c A\)
addition (subtraction) ..... \(A+B\)

\[
A+(-1) B=A-B
\]
multiplication (powers)
\[
A B
\]

\section*{So Far: Matrix Operations}
transpose
scaling
addition (subtraction)
multiplication (powers) \(A B\)
\(A^{T}\)
cA
\(A+B \quad A+(-1) B=A-B\)
\(A B \quad A^{k}\)

What's missing?

Matrix Inverses

\section*{Basic Algebra}
\[
2 x=10
\]

\section*{Basic Algebra}
\[
2 x=10
\]

How do we solve this equation?

\section*{Basic Algebra}
\[
2 x=10
\]

How do we solve this equation?
Divide on both sides by 2 to get \(x=5\).

\section*{Basic Algebra}

\section*{\(2 x=10\)}

How do we solve this equation?
Divide on both sides by 2 to get \(x=5\).
Multiply each side by \(\frac{1}{2}\) a.k.a. \(2^{-1}\).

\section*{Basic Algebra}

\section*{\(2 x=10\)}

How do we solve this equation?
Divide on both sides by 2 to get \(x=5\).
Multiply each side by \(\frac{1}{2}\) a.k.a. \(2^{-1}\).
\(\frac{1}{2}\) is the reciprocal or multiplicative inverse of 2.

\section*{Basic Algebra}
\[
2^{-1}(2 x)=2^{-1}(10)
\]

\section*{Basic Algebra}
\[
2^{-1}(2 x)=2^{-1}(10)
\]

How do we solve this equation?

\section*{Basic Algebra}
\[
2^{-1}(2 x)=2^{-1}(10)
\]

How do we solve this equation?
Divide on both sides by 2 to get \(x=5\).

\section*{Basic Algebra}
\[
2^{-1}(2 x)=2^{-1}(10)
\]

How do we solve this equation?
Divide on both sides by 2 to get \(x=5\).
Multiply each side by \(\frac{1}{2}\) a.k.a. \(2^{-1}\).

\section*{Basic Algebra}
\[
2^{-1}(2 x)=2^{-1}(10)
\]

How do we solve this equation?
Divide on both sides by 2 to get \(x=5\).
Multiply each side by \(\frac{1}{2}\) a.k.a. \(2^{-1}\).
\(\frac{1}{2}\) is the reciprocal or multiplicative inverse of 2.

\section*{Basic Algebra}
\[
1 x=5
\]

How do we solve this equation?
Divide on both sides by 2 to get \(x=5\).
Multiply each side by \(\frac{1}{2}\) a.k.a. \(2^{-1}\).
\(\frac{1}{2}\) is the reciprocal or multiplicative inverse of 2.

\section*{Basic Algebra}
\[
x=5
\]

How do we solve this equation?
Divide on both sides by 2 to get \(x=5\).
Multiply each side by \(\frac{1}{2}\) a.k.a. \(2^{-1}\).
\(\frac{1}{2}\) is the reciprocal or multiplicative inverse of 2.

\section*{Wouldn't it be nice...}
\[
A \mathbf{x}=\mathbf{b}
\]

\section*{Wouldn't it be nice...}

\section*{\(A \mathbf{x}=\mathbf{b}\)}

How do we solve this equation?

\section*{Wouldn't it be nice...}

\section*{\(A \mathbf{x}=\mathbf{b}\)}

How do we solve this equation?
Multiply each side by \(A^{-1}\) to get \(\mathbf{x}=A^{-1} \mathbf{b}\).

\section*{Wouldn't it be nice...}

\section*{\(A \mathbf{x}=\mathbf{b}\)}

How do we solve this equation?
Multiply each side by \(A^{-1}\) to get \(\mathbf{x}=A^{-1} \mathbf{b}\).
\(A^{-1}\) is the multiplicative inverse of \(A\)

\section*{Wouldn't it be nice...}
\[
A^{-1} A \mathbf{x}=A^{-1} \mathbf{b}
\]

How do we solve this equation?
Multiply each side by \(A^{-1}\) to get \(\mathbf{x}=A^{-1} \mathbf{b}\).
\(A^{-1}\) is the multiplicative inverse of \(A\)

\section*{Wouldn't it be nice...}
\[
I \mathbf{x}=A^{-1} \mathbf{b}
\]

How do we solve this equation?
Multiply each side by \(A^{-1}\) to get \(\mathbf{x}=A^{-1} \mathbf{b}\).
\(A^{-1}\) is the multiplicative inverse of \(A\)

\section*{Wouldn't it be nice...}
\[
\mathbf{x}=A^{-1} \mathbf{b}
\]

How do we solve this equation?
Multiply each side by \(A^{-1}\) to get \(\mathbf{x}=A^{-1} \mathbf{b}\).
\(A^{-1}\) is the multiplicative inverse of \(A\)

\section*{Do all matrices have inverses?}

\section*{Do all matrices have inverses?}

No.

\section*{When does a matrix have an inverse?}

\section*{Square Matrices}

Definition. A \(m \times n\) matrix \(A\) is square if \(m=n\)
\[
\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
\]
i.e., it has same number of rows as columns.

\section*{Why are square matrices special?}

\section*{Why are square matrices special?}

They are the only kind of matrices...

\section*{Why are square matrices special?}

They are the only kind of matrices...
» that can have a pivot in every row and every column.

\section*{Why are square matrices special?}

They are the only kind of matrices...
» that can have a pivot in every row and every column.
» whose transformations can be both 1-1 and onto.

\section*{Why are square matrices special?}

They are the only kind of matrices...
» that can have a pivot in every row and every column.
» whose transformations can be both 1-1 and onto.
» whose columns can have full span and be linearly independent.

\section*{Why are square matrices special?}

They are the only kind of matrices...
» that can have a pivot in every row and every column.
» whose transformations can be both 1-1 and onto.
» whose columns can have full span and be
linearly independent.
» that can have inverses.

\section*{Dimension Tracking}


\section*{Dimension Tracking}
\[
\underset{(k \times m)}{A^{-1}} \underset{(m \times n)}{\boldsymbol{A}} \underset{(n \times 1)}{\mathbf{X}}=\overbrace{(k \times m)}^{\boldsymbol{A}^{-1} \mathbf{b}} \underset{(m \times 1)}{\mathbf{B}^{k+1}}
\]

Dimension Tracking
\[
\begin{aligned}
& A\left(A^{-1} b\right)=\underbrace{b}_{m a n} \\
& \mathbf{x}=A^{-1} \mathbf{b} \\
& \sum_{n \times 1} \frac{(k \times m)(m \times 1)}{(k \times 1)} \\
& k=n
\end{aligned}
\]

\section*{Dimension Tracking}
\[
\mathbf{x}=A^{-1} \mathbf{b}
\]

The only way for the dimensions to make sense is if \(A\) is square

\section*{Matrix Inverses}

\section*{Matrix Inverses}

Definition. For a \(n \times n\) matrix \(A\), an inverse of \(A\) is a \(n \times n\) matrix \(B\) such that
\[
A B=I_{n} \text { and } B A=I_{n}
\]

\section*{Matrix Inverses}

Definition. For a \(n \times n\) matrix \(A\), an inverse of \(A\) is a \(n \times n\) matrix \(B\) such that
\[
A B=I_{n} \text { and } B A=I_{n}
\]
\(A\) is invertible if it has an inverse. Otherwise it is singular.

\section*{Matrix Inverses}

Definition. For a \(n \times n\) matrix \(A\), an inverse of \(A\) is a \(n \times n\) matrix \(B\) such that
\[
A B=I_{n} \text { and } B A=I_{n}
\]
\(A\) is invertible if it has an inverse. Otherwise it is singular.
Example. \(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]\)


\section*{Example: Geometric}

Reflection across the \(x_{1}\)-axis in \(\mathbb{R}^{2}\) is it's own inverse.

Verify:


\section*{Example: No inverse}
\[
\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 3 & 1 \\
0 & 0 & 0
\end{array}\right]_{\neq}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\]

Verify:


Inverses are Unique

Theorem. If \(B\) and \(C\) are inverses of \(A\), then \(B=C\).
Verify:
\[
B=B I=B(A C)=(B A) C=I C=C
\]

\section*{Inverses are Unique}

Theorem. If \(B\) and \(C\) are inverses of \(A\), then \(B=C\).

Verify:
If \(A\) is invertible, then we write \(A^{-1}\) for the inverse of \(A\).

\section*{Solutions for Invertible Matrix Equations}

Theorem. For a \(n \times n\) matrix \(A\), if \(A\) is invertible then
\[
A \mathbf{x}=\mathbf{b}
\]
has a unique solution for any choice of \(\mathbf{b}\). Verify: \(\begin{aligned} \vec{x}=\vec{A} \vec{b} \quad \vec{c}=I \vec{c}=\left(A^{-1} A\right) \vec{c} & =A^{-1}(A \vec{c}) \\ & =A^{-1} \vec{b}\end{aligned}\)

\section*{Unique Solutions}

If \(A \mathbf{x}=\mathbf{b}\) has a unique solution for any choice of \(\mathbf{b}\), then it has
» exactly one solution for any choice of b

\section*{Unique Solutions}

If \(A \mathbf{x}=\mathbf{b}\) has a unique solution for any choice of \(\mathbf{b}\), then it has
» at least one solution for any choice of b
» at most one solution for any choice of b

\section*{Unique Solutions}

If \(A \mathbf{x}=\mathbf{b}\) has a unique solution for any choice of \(\mathbf{b}\), then it has
» \(T\) is onto
» \(T\) is one-to-one
where \(T\) is implemented by \(A\)

\section*{Connection to Transformations}

Definition. A linear transformation \(T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) is invertible if there is a linear transformation
\(S\) such that
\[
S(T(\mathbf{v}))=\mathbf{v} \text { and } T(S(\mathbf{v}))=\mathbf{v}
\]
for any \(\mathbf{v}\) in \(\mathbb{R}^{n}\).
Multiplication


\section*{Connection to Transformations}

\section*{Connection to Transformations}

Theorem. A \(n \times n\) matrix \(A\) is invertible if and only if the matrix transformation \(\mathbf{x} \mapsto A \mathbf{x}\) is invertible.

\section*{Connection to Transformations}

Theorem. A \(n \times n\) matrix \(A\) is invertible if and only if the matrix transformation \(\mathbf{x} \mapsto A \mathbf{x}\) is invertible.

A matrix is invertible if it's possible to "undo" its transformation without "losing information".

\section*{Connection to Transformations}

Theorem. A \(n \times n\) matrix \(A\) is invertible if and only if the matrix transformation \(\mathbf{x} \mapsto A \mathbf{x}\) is invertible.

A matrix is invertible if it's possible to "undo" its transformation without "losing information".

Non-Example. Projection onto the \(x_{1}\)-axis.

\section*{Connection to Transformations}

\section*{Connection to Transformations}

Definition. A transformation \(T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) is a one-to-one correspondence (bijection) if any vector b in \(\mathbb{R}^{n}\) is the image of exactly one vector \(\mathbf{v}\) in \(\mathbb{R}^{n}\) (where \(T(\mathbf{v})=\mathbf{b}\) ).

\section*{Connection to Transformations}

Definition. A transformation \(T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) is a one-to-one correspondence (bijection) if any vector b in \(\mathbb{R}^{n}\) is the image of exactly one vector \(\mathbf{v}\) in \(\mathbb{R}^{n}\) (where \(\left.T(\mathbf{v})=\mathbf{b}\right)\).

A transformation is a 1-1 correspondence if it is 1-1 and onto.

\section*{Connection to Transformations}

Definition. A transformation \(T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) is a one-to-one correspondence (bijection) if any vector b in \(\mathbb{R}^{n}\) is the image of exactly one vector \(\mathbf{v}\) in \(\mathbb{R}^{n}\) (where \(\left.T(\mathbf{v})=\mathbf{b}\right)\).

A transformation is a 1-1 correspondence if it is 1-1 and onto.

Invertible transformations are 1-1 correspondences.

\section*{Kinds of Transformations (Pictorially)}


1-1 correspondence

onto, not 1-1

not 1-1, not onto

\section*{Computing Matrix Inverses}

In General
\[
A\left[\begin{array}{lll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}
\end{array}\right]=I
\]

Can we solve for each \(\mathbf{b}_{i}\) ?:
\(\left[A \vec{b}, A \vec{b}_{0}, A \vec{b}_{3}\right]=\left[\begin{array}{lll}\vec{l}, & \vec{e}_{2} & \vec{e}_{3}\end{array}\right]\)
\[
A x=e_{i} \quad A x=\vec{e}_{2} \quad A x=\vec{e}_{3}
\]

\section*{How To: Matrix Inverses}

\section*{How To: Matrix Inverses}

Question. Find the inverse of an invertible \(n \times n\) matrix \(A\).

\section*{How To: Matrix Inverses}

Question. Find the inverse of an invertible \(n \times n\) matrix \(A\).

Solution. Solve the equation \(A \mathbf{x}=\mathbf{e}_{i}\) for every standard basis vector. Put those solutions \(\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{n}\) into a single matrix

\section*{How To: Matrix Inverses}

Question. Find the inverse of an invertible \(n \times n\) matrix \(A\).

Solution. Solve the equation \(A \mathbf{x}=\mathbf{e}_{i}\) for every standard basis vector. Put those solutions \(\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{n}\) into a single matrix
\[
\left[\begin{array}{llll}
\mathbf{S}_{1} & \mathbf{S}_{2} & \ldots & \mathbf{S}_{n}
\end{array}\right]
\]

\section*{How To: Matrix Inverses}

\section*{How To: Matrix Inverses}

Question. Find the inverse of the \(n \times n\) matrix \(A\).

\section*{How To: Matrix Inverses}

Question. Find the inverse of the \(n \times n\) matrix \(A\). Solution. Row reduce the matrix \(\left[\begin{array}{ll}A & I\end{array}\right]\) to a matrix \([I B]\). Then \(B\) is the inverse of \(A\).

\section*{How To: Matrix Inverses}

Question. Find the inverse of the \(n \times n\) matrix \(A\). Solution. Row reduce the matrix \(\left[\begin{array}{ll}A & I\end{array}\right]\) to a matrix \([I B]\). Then \(B\) is the inverse of \(A\).

This is really the same thing. It's a simultaneous reduction.


\section*{How To: Matrix Inverse Computationally}

\section*{How To: Matrix Inverse Computationally}

Question. Find the inverse of the \(n \times n\) matrix \(A\).

\section*{How To: Matrix Inverse Computationally}

Question. Find the inverse of the \(n \times n\) matrix \(A\). Solution. Use numpy.linalg.inv()

\section*{How To: Matrix Inverse Computationally}

Question. Find the inverse of the \(n \times n\) matrix \(A\). Solution. Use numpy.linalg.inv() Warning: this only works if the matrix is invertible.

\section*{demo}

\section*{Special Case: \(2 \times 2\) Matrice Inverses}

\section*{Special Case: \(2 \times 2\) Matrice Inverses}
\[
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a c-b d}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\]

\section*{Special Case: \(2 \times 2\) Matrice Inverses}
\[
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a c-b d}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\]

The determinant of a \(2 \times 2\) matrix is the value \(a d-b c\).

\section*{Special Case: \(2 \times 2\) Matrice Inverses}
\[
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a c-b d}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\]

The determinant of a \(2 \times 2\) matrix is the value \(a d-b c\).

The inverse is defined only if the determinant is nonzero.

\section*{Special Case: \(2 \times 2\) Matrice Inverses}
\[
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{1}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\]

The determinant of a \(2 \times 2\) matrix is the value \(a d-b c\).

The inverse is defined only if the determinant is nonzero.
(see the notes on linear transformations for more information about determinants)

\section*{Example}
\[
\left[\begin{array}{cc}
-6 & 14 \\
3 & -7
\end{array}\right]
\]

\section*{Example}
\[
\left[\begin{array}{cc}
-6 & 14 \\
3 & -7
\end{array}\right]
\]

Is the above matrix invertible?

\section*{Example}
\[
\left[\begin{array}{cc}
-6 & 14 \\
3 & -7
\end{array}\right]
\]

Is the above matrix invertible?
No. The determinant is \((-6)(-7)-14(3)=42-42=0\)

\section*{Algebra of Matrix Inverses}

\section*{Algebraic Properties (Matrix Inverses)}

Theorem. For a \(n \times n\) invertible matrix \(A\)
\[
\left(A^{-1}\right)^{-1}=A
\]

Verify:

\section*{Algebraic Properties (Matrix Inverses)}

Theorem. For a \(n \times n\) invertible matrix \(A\), the matrix \(A^{T}\) is invertible and
\[
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
\]

Verify:

\section*{Algebraic Properties (Matrix Inverses)}

Theorem. For a \(n \times n\) invertible matrices \(A\) and \(B\), the matrix \(A B\) is invertible and
\[
(A B)^{-1}=B^{-1} A^{-1}
\]

Verify:

\section*{Question}

Suppose that \(A\) is a \(n \times n\) invertible matrix such that \(A=A^{T}\) and \(B\) is a \(m \times n\) matrix.

Simplify the expression \(A\left(B A^{-1}\right)^{T}\) using the algebraic properties we've seen.

Answer: \(B^{T}\)
\(A\left(B A^{-1}\right)^{T}\)
\[
A=A^{T}
\]

\section*{Invertible Matrix Theorem}

\section*{High Level}

How do we know if a matrix is invertible?
By connecting everything we've said so far.

\section*{Invertible Matrix Theorem (IMT)}

\section*{Invertible Matrix Theorem (IMT)}
1. \(A\) is invertible

\section*{Invertible Matrix Theorem (IMT)}
1. \(A\) is invertible
2. \(A^{T}\) is invertible

\section*{Invertible Matrix Theorem (IMT)}
1. \(A\) is invertible
2. \(A^{T}\) is invertible
3. \(A \mathbf{x}=\mathbf{b}\) has at least one solution for any \(\mathbf{b}\)

\section*{Invertible Matrix Theorem (IMT)}
1. \(A\) is invertible
2. \(A^{T}\) is invertible
3. \(A \mathbf{x}=\mathbf{b}\) has at least one solution for any \(\mathbf{b}\)
4. \(A \mathbf{x}=\mathbf{b}\) has at most one solution for any \(\mathbf{b}\)

\section*{Invertible Matrix Theorem (IMT)}
1. \(A\) is invertible
2. \(A^{T}\) is invertible
3. \(A \mathbf{x}=\mathbf{b}\) has at least one solution for any \(\mathbf{b}\)
4. \(A \mathbf{x}=\mathbf{b}\) has at most one solution for any \(\mathbf{b}\)
5. \(A \mathbf{x}=\mathbf{b}\) has a unique solution for any \(\mathbf{b}\)

\section*{Invertible Matrix Theorem (IMT)}
1. \(A\) is invertible
2. \(A^{T}\) is invertible
3. \(A \mathbf{x}=\mathbf{b}\) has at least one solution for any \(\mathbf{b}\)
4. \(A \mathbf{x}=\mathbf{b}\) has at most one solution for any \(\mathbf{b}\)
5. \(A \mathbf{x}=\mathbf{b}\) has a unique solution for any \(\mathbf{b}\)
6. \(A\) has \(n\) pivots (per row and per column)

\section*{Invertible Matrix Theorem (IMT)}
1. \(A\) is invertible
2. \(A^{T}\) is invertible
3. \(A \mathbf{x}=\mathbf{b}\) has at least one solution for any \(\mathbf{b}\)
4. \(A \mathbf{x}=\mathbf{b}\) has at most one solution for any \(\mathbf{b}\)
5. \(A \mathbf{x}=\mathbf{b}\) has a unique solution for any \(\mathbf{b}\)
6. \(A\) has \(n\) pivots (per row and per column)
7. \(A\) is row equivalent to \(I\)

\section*{Invertible Matrix Theorem (IMT)}

\section*{Invertible Matrix Theorem (IMT)}
8. \(A \mathbf{x}=\mathbf{0}\) has only the trivial solution

\section*{Invertible Matrix Theorem (IMT)}
8. \(A \mathbf{x}=\mathbf{0}\) has only the trivial solution
9. The columns of \(A\) are linearly independent

\section*{Invertible Matrix Theorem (IMT)}
8. \(A \mathbf{x}=\mathbf{0}\) has only the trivial solution
9. The columns of \(A\) are linearly independent 10. The columns of \(A \operatorname{span} \mathbb{R}^{n}\)

\section*{Invertible Matrix Theorem (IMT)}
8. \(A \mathbf{x}=\mathbf{0}\) has only the trivial solution
9. The columns of \(A\) are linearly independent 10. The columns of \(A\) span \(\mathbb{R}^{n}\)
11. The linear transformation \(\mathbf{x} \mapsto A \mathbf{x}\) is onto

\section*{Invertible Matrix Theorem (IMT)}
8. \(A \mathbf{x}=\mathbf{0}\) has only the trivial solution
9. The columns of \(A\) are linearly independent 10. The columns of \(A\) span \(\mathbb{R}^{n}\)
11. The linear transformation \(\mathbf{x} \mapsto A \mathbf{x}\) is onto 12. \(x \mapsto A x\) is one-to-one

\section*{Invertible Matrix Theorem (IMT)}
8. \(A \mathbf{x}=\mathbf{0}\) has only the trivial solution
9. The columns of \(A\) are linearly independent 10. The columns of \(A \operatorname{span} \mathbb{R}^{n}\)
11. The linear transformation \(\mathbf{x} \mapsto A \mathbf{x}\) is onto
12. \(x \mapsto A x\) is one-to-one
13. \(\mathbf{x} \mapsto A \mathbf{x}\) is a one-to-one correspondence

\section*{Invertible Matrix Theorem (IMT)}
8. \(A \mathbf{x}=\mathbf{0}\) has only the trivial solution
9. The columns of \(A\) are linearly independent 10. The columns of \(A \operatorname{span} \mathbb{R}^{n}\)
11. The linear transformation \(\mathbf{x} \mapsto A \mathbf{x}\) is onto
12.x \(\mapsto A x\) is one-to-one
13. \(\mathbf{x} \mapsto A \mathbf{x}\) is a one-to-one correspondence

14:x \(\mapsto A x\) is invertible

\section*{We get a lot of information for free}

\section*{We get a lot of information for free}

Theorem. If \(A\) is square, then
\[
A \text { is 1-1 if and only if } \quad A \text { is onto }
\]

\section*{We get a lot of information for free}

Theorem. If \(A\) is square, then
\[
A \text { is 1-1 if and only if } \quad A \text { is onto }
\]

We only need to check one of these.

\section*{We get a lot of information for free}

Theorem. If \(A\) is square, then
\[
A \text { is 1-1 if and only if } \quad A \text { is onto }
\]

We only need to check one of these.
Warning. Remember this only applies square matrices.

\section*{We get a lot of information for free}

\section*{We get a lot of information for free}

Theorem. If \(A\) is square, then
\[
A \text { is invertible } \equiv \quad A x=0 \text { implies } \mathbf{x}=0
\]

\section*{We get a lot of information for free}

Theorem. If \(A\) is square, then
\(A\) is invertible \(\equiv \quad A x=0\) implies \(x=0\)
Invertibility is completely determined by how A behaves on 0.

\section*{Application: Adjacency Matrices}

\section*{Graphs}

Definition (Informal). An undirected graph is a collection of nodes with edges between them.


How do we represent these in computers?
\[
\begin{array}{lll}
A_{12} & A_{34} & A_{46}
\end{array}
\]

Adjacency Matrices
For an undirected graph \(G\) we can create the adjacency matrix \(A\) for \(G\) where:
\(A_{i j}= \begin{cases}1 & \text { there is an edge between } i \text { and } j \\ 0 & \text { otherwise }\end{cases}\)
\(A_{21}\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]\)


\section*{Spectral Graph Theory}

Once we have an adjacency matrix, we can do linear algebra on graphs.

\section*{Example: Squared Adjacency Matrices}

Given an adjacency matrix \(A\)

Can we interpret anything meaningful from \(A^{2}\) ?

\section*{Example: Squared Adjacency Matrices}
\[
\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
\]

\[
\left(A^{2}\right)_{53}=1(0)+1(1)+0(0)+1(1)+0(0)+0(0)=2
\]

\section*{Example: Squared Adjacency Matrices}
\[
\left(A^{2}\right)_{i j}=A_{i 1} A_{1 j}+A_{i 2} A_{2 j}+\ldots+A_{i n} A_{n j}
\]


\section*{Example: Squared Adjacency Matrices}
\[
\left(A^{2}\right)_{i j}=A_{i 1} A_{1 j}+A_{i 2} A_{2 j}+\ldots+A_{i n} A_{n j}
\]
\(A_{i k} A_{k j}=\left\{\begin{array}{l}1 \text { there are edges from } i \text { to } k \text { and } k \text { to } j \\ 0 \text { otherwise }\end{array}\right.\)


\section*{Example: Squared Adjacency Matrices}
\[
\left(A^{2}\right)_{i j}=A_{i 1} A_{1 j}+A_{i 2} A_{2 j}+\ldots+A_{i n} A_{n j}
\]
\(A_{i k} A_{k j}= \begin{cases}1 & \text { there are edges from } \mathbf{i} \text { to } k \text { and } k \text { to } \mathbf{j} \\ 0 & \text { otherwise } \\ A_{34} A_{45}=1(1)=1\end{cases}\)


\section*{Example: Squared Adjacency Matrices}
\[
\left(A^{2}\right)_{i j}=A_{i 1} A_{1 j}+A_{i 2} A_{2 j}+\ldots+A_{i n} A_{n j}
\]
\(A_{i k} A_{k j}= \begin{cases}1 & \text { there are edges from } \mathbf{i} \text { to } k \text { and } k \text { to } \mathbf{j} \\ 0 & \text { otherwise } \\ A_{34} A_{45}=1(1)=1\end{cases}\)


\section*{Application: Triangle Counting}

A triangle in an
undirected graph is a set of three distinct nodes with edges between every pair of nodes.

Triangles in a social network represent mutual friends and tight cohesion (among other things)


\section*{Application: Triangle Counting}

Theorem. For an adjacency matrix \(A\), the number of triangle containing the edge ( \(i, j\) ) is
\[
\left(A^{2}\right)_{i j} A_{i j}
\]

\section*{Application: Triangle Counting}

FUNCTION tri_count(A):
compute \(A^{2}\)
count \(\leftarrow\) sum of \(\left(A^{2}\right)_{i j} A_{i j}\) for all distinct \(i\) and \(j\)
RETURN count / 6 \# why divided by 6?

\section*{Summary}

We can solve matrix equations by inverting the matrix, though not all matrices have inverses. We can compute matrix inverses a simultaneous row reduction.

We can connect all the concepts we've defined so far by thinking about them in terms of invertibility (for square matrices).```

