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Objectives

1. Define a few more important matrix operations 

2. Motivate and define matrix inverses 

3. Application: Adjacency Matrices
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Recap Problem

Suppose that ,  and  are 
matrices such that 

 

Find a solution to the equation . 

A B = [b1 b2 b3] C = [c1 c2 c3]

A(B + 5I) = C

Ax = c2

- I -D

↓ - I318 I38 I

identity matrix

Hint . Your solution should have a standard basis rector

in it



Answer: b2 + 5e2
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More Matrix Operations



Transpose (Pictorially)
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Transpose

Definition. For a  matrix , the transpose 
of , written , is the  matrix such that 

 

Example. 

m × n A
A AT n × m

(AT)ij = Aji

[1 −1
0 1 ]

T

= [ 1 0
−1 1]

P

-N
Az



Algebraic Properties (Transpose)

 

 

 (where  is a scalar) 

(AT)T = A

(A + B)T = AT + BT

(cA)T = cAT c

(AB)T = BT AT

T
-

- -(AY"j - A , - Aij



Algebraic Properties (Transpose)

 

 

 (where  is a scalar) 

(AT)T = A

(A + B)T = AT + BT

(cA)T = cAT c

(AB)T = BT AT Important: the order reverses!



Challenge Problem (Not In-Class)

Show that . 

Example: 

(AB)T = BT AT

([1 0
1 1] [1 1

1 0])
T

(ABY : (BA) ij
T

- (131xs
11 -(0) 1)1117 + 1(1) ((13 + 1(0)

Eli
: I is
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Transposes and Inner Products

For a vector , what is ?v ∈ ℝn vT
(nx1)
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Transposes and Inner Products

For a vector , what is ?v ∈ ℝn vT

It's a  matrix.1 × n

For two vectors  and  in , 
is  defined?

u v ℝn

uTv



Transposes and Inner Products

For a vector , what is ?v ∈ ℝn vT

It's a  matrix.1 × n

For two vectors  and  in , 
is  defined?

u v ℝn

uTv
[u1 u2 u3 u4]

v1
v2
v3
v4

=

1 × n n × 1 1 × 1

?



Transposes and Inner Products

For a vector , what is ?v ∈ ℝn vT

It's a  matrix.1 × n

For two vectors  and  in , 
is  defined?

u v ℝn

uTv
[u1 u2 u3 u4]

v1
v2
v3
v4

=

1 × n n × 1 1 × 1

?



Transposes and Inner Products



Transposes and Inner Products

[u1 u2 u3 u4]

v1
v2
v3
v4

= u1v1 + u2v2 + u3v3 + u4v4



Transposes and Inner Products

[u1 u2 u3 u4]

v1
v2
v3
v4

= u1v1 + u2v2 + u3v3 + u4v4

Definition. The inner product of two vectors  
and  in  is

u
v ℝn

⟨u, v⟩ = u ⋅ v = uTv

(1234]

L



Matrix Powers



Matrix Powers

If  is an  matrix, then the product  is 
defined.

A n × n AA



Matrix Powers

If  is an  matrix, then the product  is 
defined.

A n × n AA

Definition. For a  matrix , we write  for 
the -fold product of  with itself.

n × n A Ak

k A
A = A

A
= AA

3 -AAAs-

:



Matrix Powers

If  is an  matrix, then the product  is 
defined.

A n × n AA

Definition. For a  matrix , we write  for 
the -fold product of  with itself.
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k A

What should  be?A0



Matrix Powers

If  is an  matrix, then the product  is 
defined.

A n × n AA

Definition. For a  matrix , we write  for 
the -fold product of  with itself.

n × n A Ak

k A

What should  be?A0

, so it stands to reason that .100 = 1 A0 = I

1an
= x

I A
= A =

& I



Matrix Powers

If  is an  matrix, then the product  is 
defined.

A n × n AA

Definition. For a  matrix , we write  for 
the -fold product of  with itself.

n × n A Ak

k A

What should  be?A0

, so it stands to reason that .100 = 1 A0 = I

(we want )A0Ak = A0+k = Ak

A
= (a , -)

A I = A(e,res)

=[A .
Den Aes]
>

- (a as [s] = A



Final Warnings about Matrix Multiplication



Final Warnings about Matrix Multiplication

1.  is not necessarily equal to , even if 
both are defined.
AB BA

-



Final Warnings about Matrix Multiplication

1.  is not necessarily equal to , even if 
both are defined.
AB BA

2. If  then it is not necessary that 
.

AB = AC
B = C OB = O - B

= C



Final Warnings about Matrix Multiplication

1.  is not necessarily equal to , even if 
both are defined.
AB BA

2. If  then it is not necessary that 
.

AB = AC
B = C

3. If  (the zero matrix) it is not 
necessarily the case that  or .

AB = 0
A = 0 B = 0



Question

Find two nonzero  matrices  and  such that 
. 

Challenge. Choose  and  such that they have 
all nonzero entries.

2 × 2 A B
AB = 0

A B



Answer

[1 0
0 0] [0 0

0 1]Sili
= =11 = 188]

A (5
,

5) = 0 xx = 08]
(A 5 . 3- GER L= 5: -i)



So Far: Matrix Operations



So Far: Matrix Operations

transpose                  AT



So Far: Matrix Operations

transpose                  AT
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So Far: Matrix Operations

transpose                  AT

scaling                    cA

addition (subtraction)        A + B A + (−1)B = A − B



So Far: Matrix Operations

transpose                  AT

scaling                    cA

addition (subtraction)        A + B A + (−1)B = A − B

multiplication (powers)         AB Ak



So Far: Matrix Operations

transpose                  AT

scaling                    cA

addition (subtraction)        A + B A + (−1)B = A − B

multiplication (powers)         AB Ak

What's missing?



Matrix Inverses



Basic Algebra

2x = 10
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Basic Algebra
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Basic Algebra

How do we solve this equation?

Divide on both sides by  to get .2 x = 5

Multiply each side by  a.k.a. .
1
2 2−1

 is the reciprocal or multiplicative inverse of .1
2 2

2x = 10



Basic Algebra

2−1(2x) = 2−1(10)



Basic Algebra

How do we solve this equation?

2−1(2x) = 2−1(10)
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Basic Algebra

How do we solve this equation?

Divide on both sides by  to get .2 x = 5

Multiply each side by  a.k.a. .
1
2 2−1

2−1(2x) = 2−1(10)



Basic Algebra

How do we solve this equation?

Divide on both sides by  to get .2 x = 5

Multiply each side by  a.k.a. .
1
2 2−1

 is the reciprocal or multiplicative inverse of .1
2 2

2−1(2x) = 2−1(10)



Basic Algebra

How do we solve this equation? 

Divide on both sides by  to get . 

Multiply each side by  a.k.a. . 

 is the reciprocal or multiplicative inverse of .

2 x = 5
1
2 2−1

1
2 2

1x = 5



Basic Algebra

How do we solve this equation? 

Divide on both sides by  to get . 

Multiply each side by  a.k.a. . 

 is the reciprocal or multiplicative inverse of .

2 x = 5
1
2 2−1

1
2 2

x = 5



Wouldn't it be nice...

Ax = b



Wouldn't it be nice...

How do we solve this equation?

Ax = b



Wouldn't it be nice...

How do we solve this equation?

Multiply each side by  to get .A−1 x = A−1b

Ax = b



Wouldn't it be nice...

How do we solve this equation?

Multiply each side by  to get .A−1 x = A−1b
 is the multiplicative inverse of A−1 A

Ax = b



Wouldn't it be nice...

How do we solve this equation? 

Multiply each side by  to get . 

 is the multiplicative inverse of 

A−1 x = A−1b
A−1 A

A−1Ax = A−1b



Wouldn't it be nice...

How do we solve this equation? 

Multiply each side by  to get . 

 is the multiplicative inverse of 

A−1 x = A−1b
A−1 A

Ix = A−1b



Wouldn't it be nice...

How do we solve this equation? 

Multiply each side by  to get . 

 is the multiplicative inverse of 

A−1 x = A−1b
A−1 A

x = A−1b



Do all matrices have 
inverses?



Do all matrices have 
inverses?

No.



When does a matrix have 
an inverse?



Square Matrices

Definition. A  matrix  is square if  

 

i.e., it has same number of rows as columns.

m × n A m = n

* * * *
* * * *
* * * *
* * * *



Why are square matrices special?
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» that can have a pivot in every row and every 
column.
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» whose columns can have full span and be 
linearly independent.



Why are square matrices special?

They are the only kind of matrices...

» that can have a pivot in every row and every 
column.

» whose transformations can be both 1-1 and onto.

» whose columns can have full span and be 
linearly independent.

» that can have inverses.



Dimension Tracking

A x = b
R R
↓ W

(mxn) (nx1) (mx1



Dimension Tracking

A−1A x = A−1b
x
+

e

(1xm) (men (nxD (kxm) (mx1)



Dimension Tracking

x = A−1b

-

a
"b) =

b
(n x

1)
(A t- mis I ↑-

w

n I
I -

mar

W
Cnix(mx1)

-

(kx1)
k = n



Dimension Tracking

x = A−1b
The only way for the dimensions to 

make sense is if  is squareA



Matrix Inverses



Matrix Inverses

Definition. For a  matrix , an inverse of  
is a  matrix  such that

n × n A A
n × n B

 and AB = In BA = In



Matrix Inverses

Definition. For a  matrix , an inverse of  
is a  matrix  such that

n × n A A
n × n B

 and AB = In BA = In

 is invertible if it has an inverse. Otherwise 
it is singular.
A



Matrix Inverses

Definition. For a  matrix , an inverse of  
is a  matrix  such that

n × n A A
n × n B

 and AB = In BA = In

 is invertible if it has an inverse. Otherwise 
it is singular.
A

Example. [1 0
1 1]

−1
= [ 1 0

−1 1] (Ei](H: 1i] =

(8i] = I



Example: Geometric

Reflection across the -axis in  is it's own 
inverse. 

Verify:

x1 ℝ2

(ii)(6:1) : (6i]



Example: No inverse

Verify:

[
1 2 −1
0 3 1
0 0 0 ] -I(i

-01( &] :I



Inverses are Unique

Theorem. If  and  are inverses of , then 
. 

Verify:

B C A
B = C

B = BT = B(AC) = (B1)) = I = (



Inverses are Unique

Theorem. If  and  are inverses of , then 
. 

Verify:

B C A
B = C

If  is invertible, then we write  
for the inverse of .

A A−1

A



Solutions for Invertible Matrix Equations

Theorem. For a  matrix , if  is invertible 
then 

 

has a unique solution for any choice of . 

Verify:

n × n A A

Ax = b
b

> A
- 1 ( ->-

-1

I I Ab i = Ti = (A A)c =

- A
-
1-

C

-

b

-

Suppose ↳
,
xi

= b



Unique Solutions

If  has a unique solution for any choice 
of , then it has 

» exactly one solution for any choice of 

Ax = b
b

b



Unique Solutions

If  has a unique solution for any choice 
of , then it has 

» at least one solution for any choice of  

» at most one solution for any choice of 

Ax = b
b

b
b



Unique Solutions

If  has a unique solution for any choice 
of , then it has 

»  is onto 

»  is one-to-one 

where  is implemented by 

Ax = b
b

T

T

T A



Connection to Transformations

Definition. A linear transformation  is 
invertible if there is a linear transformation 
 such that 

 and  

for any  in .

T : ℝn → ℝn

S

S(T(v)) = v T(S(v)) = v
v ℝn

>

A A * =
< AA" = I

-
-I



Connection to Transformations



Connection to Transformations

Theorem. A  matrix  is invertible if and 
only if the matrix transformation  is 
invertible.

n × n A
x ↦ Ax



Connection to Transformations

Theorem. A  matrix  is invertible if and 
only if the matrix transformation  is 
invertible.

n × n A
x ↦ Ax

A matrix is invertible if it's possible to 
"undo" its transformation without "losing 
information".



Connection to Transformations

Theorem. A  matrix  is invertible if and 
only if the matrix transformation  is 
invertible.

n × n A
x ↦ Ax

A matrix is invertible if it's possible to 
"undo" its transformation without "losing 
information".

Non-Example. Projection onto the -axis.x1

⑤

③

8. .

&i⑤



Connection to Transformations



Connection to Transformations

Definition. A transformation  is a one-
to-one correspondence (bijection) if any vector 
 in  is the image of exactly one vector  in 
 (where ).

T : ℝn → ℝn

b ℝn v
ℝn T(v) = b



Connection to Transformations

Definition. A transformation  is a one-
to-one correspondence (bijection) if any vector 
 in  is the image of exactly one vector  in 
 (where ).

T : ℝn → ℝn

b ℝn v
ℝn T(v) = b
A transformation is a 1-1 correspondence if it 
is 1-1 and onto.



Connection to Transformations

Definition. A transformation  is a one-
to-one correspondence (bijection) if any vector 
 in  is the image of exactly one vector  in 
 (where ).

T : ℝn → ℝn

b ℝn v
ℝn T(v) = b
A transformation is a 1-1 correspondence if it 
is 1-1 and onto.

Invertible transformations are 1-1 correspondences.



Kinds of Transformations (Pictorially)

1-1 correspondence onto, not 1-1 1-1 not onto not 1-1, not onto

collision collisionnot covered
not covered



Computing Matrix Inverses



In General

Can we solve for each :bi?

A [b1 b2 b3] = I

[A5 .

Ab
,

A 5
, ] = (e , in es]

>

AI
=

- A F - es
22

A I
= ,



How To: Matrix Inverses
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Question. Find the inverse of an invertible  
matrix .

n × n
A



How To: Matrix Inverses

Question. Find the inverse of an invertible  
matrix .

n × n
A

Solution. Solve the equation  for every 
standard basis vector. Put those solutions 

 into a single matrix

Ax = ei

s1, s2, …, sn



How To: Matrix Inverses

Question. Find the inverse of an invertible  
matrix .

n × n
A

Solution. Solve the equation  for every 
standard basis vector. Put those solutions 

 into a single matrix

Ax = ei

s1, s2, …, sn

[s1 s2 … sn]



How To: Matrix Inverses



How To: Matrix Inverses

Question. Find the inverse of the  matrix .n × n A



How To: Matrix Inverses

Question. Find the inverse of the  matrix .n × n A

Solution. Row reduce the matrix  to a 
matrix . Then  is the inverse of .

[A I]
[I B] B A



How To: Matrix Inverses

Question. Find the inverse of the  matrix .n × n A

Solution. Row reduce the matrix  to a 
matrix . Then  is the inverse of .

[A I]
[I B] B A

This is really the same thing. It's a 
simultaneous reduction.

(A1)-(
l



How To: Matrix Inverse Computationally



How To: Matrix Inverse Computationally

Question. Find the inverse of the  matrix .n × n A



How To: Matrix Inverse Computationally

Question. Find the inverse of the  matrix .n × n A

Solution. Use numpy.linalg.inv()



How To: Matrix Inverse Computationally

Question. Find the inverse of the  matrix .n × n A

Solution. Use numpy.linalg.inv()

Warning: this only works if the matrix is 
invertible.



demo



Special Case:  Matrice Inverses2 × 2



Special Case:  Matrice Inverses2 × 2

[a b
c d]

−1
= 1

ac − bd [ d −b
−c a ]



Special Case:  Matrice Inverses2 × 2

The determinant of a  matrix is the value 
.

2 × 2
ad − bc

[a b
c d]

−1
= 1

ac − bd [ d −b
−c a ]



Special Case:  Matrice Inverses2 × 2

The determinant of a  matrix is the value 
.

2 × 2
ad − bc

The inverse is defined only if the determinant 
is nonzero.

[a b
c d]

−1
= 1

ac − bd [ d −b
−c a ]



Special Case:  Matrice Inverses2 × 2

The determinant of a  matrix is the value 
.

2 × 2
ad − bc

The inverse is defined only if the determinant 
is nonzero.
(see the notes on linear transformations for more information about determinants)

[a b
c d]

−1
= 1

ac − bd [ d −b
−c a ]m

ad-bL



Example

[−6 14
3 −7]



Example

Is the above matrix invertible?

[−6 14
3 −7]



Example

Is the above matrix invertible?

No. The determinant is (−6)(−7) − 14(3) = 42 − 42 = 0

[−6 14
3 −7]



Algebra of Matrix Inverses



Algebraic Properties (Matrix Inverses)

Theorem. For a  invertible matrix  

 

Verify: 

n × n A

(A−1)−1 = A



Algebraic Properties (Matrix Inverses)

Theorem. For a  invertible matrix , the 
matrix  is invertible and 

 

Verify: 

n × n A
AT

(AT)−1 = (A−1)T



Algebraic Properties (Matrix Inverses)

Theorem. For a  invertible matrices  and , 
the matrix  is invertible and 

 

Verify: 

n × n A B
AB

(AB)−1 = B−1A−1



Question

Suppose that  is a  invertible matrix such 
that  and  is a  matrix. 

Simplify the expression  using the 
algebraic properties we've seen.

A n × n
A = AT B m × n

A(BA−1)T



Answer: BT A(BA−1)T

A = AT



Invertible Matrix Theorem



How do we know if a matrix is invertible? 

By connecting everything we've said so far.

High Level



Invertible Matrix Theorem (IMT)



Invertible Matrix Theorem (IMT)
1.  is invertibleA
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2.  is invertibleAT
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Invertible Matrix Theorem (IMT)
1.  is invertibleA

2.  is invertibleAT

3.  has at least one solution for any Ax = b b
4.  has at most one solution for any Ax = b b
5.  has a unique solution for any Ax = b b
6.  has  pivots (per row and per column)A n



Invertible Matrix Theorem (IMT)
1.  is invertibleA

2.  is invertibleAT

3.  has at least one solution for any Ax = b b
4.  has at most one solution for any Ax = b b
5.  has a unique solution for any Ax = b b
6.  has  pivots (per row and per column)A n

7.  is row equivalent to A I



Invertible Matrix Theorem (IMT)



Invertible Matrix Theorem (IMT)
8.  has only the trivial solutionAx = 0



Invertible Matrix Theorem (IMT)
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9. The columns of  are linearly independentA
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Invertible Matrix Theorem (IMT)
8.  has only the trivial solutionAx = 0
9. The columns of  are linearly independentA

10.The columns of  span A ℝn

11.The linear transformation  is ontox ↦ Ax
12.  is one-to-onex ↦ Ax



Invertible Matrix Theorem (IMT)
8.  has only the trivial solutionAx = 0
9. The columns of  are linearly independentA

10.The columns of  span A ℝn

11.The linear transformation  is ontox ↦ Ax
12.  is one-to-onex ↦ Ax
13.  is a one-to-one correspondencex ↦ Ax



Invertible Matrix Theorem (IMT)
8.  has only the trivial solutionAx = 0
9. The columns of  are linearly independentA

10.The columns of  span A ℝn

11.The linear transformation  is ontox ↦ Ax
12.  is one-to-onex ↦ Ax
13.  is a one-to-one correspondencex ↦ Ax
14.  is invertiblex ↦ Ax



We get a lot of information for free



We get a lot of information for free

Theorem. If  is square, thenA

 is 1-1     if and only if      is ontoA A



We get a lot of information for free

Theorem. If  is square, thenA

 is 1-1     if and only if      is ontoA A

We only need to check one of these.



We get a lot of information for free

Theorem. If  is square, thenA

 is 1-1     if and only if      is ontoA A

We only need to check one of these.

Warning. Remember this only applies square 
matrices.



We get a lot of information for free



We get a lot of information for free

Theorem. If  is square, thenA

 is invertible          implies A ≡ Ax = 0 x = 0



We get a lot of information for free

Theorem. If  is square, thenA

 is invertible          implies A ≡ Ax = 0 x = 0
Invertibility is completely determined by how  
behaves on .

A
0



Application: Adjacency Matrices



Graphs

Definition (Informal). An undirected graph is a 
collection of nodes with edges between them. 

How do we represent these in computers?



Adjacency Matrices
For an undirected 
graph  we can create 
the adjacency matrix  
for  where:

G
A

G

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

A12

A21

A43

A34

A64

A46

Aij = {1 there is an edge between i and j
0 otherwise



Once we have an adjacency 
matrix, we can do linear 

algebra on graphs.

Spectral Graph Theory



Example: Squared Adjacency Matrices

Given an adjacency matrix  

Can we interpret anything 
meaningful from ? 

A

A2



Example: Squared Adjacency Matrices

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

(A2)53 = 1(0) + 1(1) + 0(0) + 1(1) + 0(0) + 0(0) = 2



Example: Squared Adjacency Matrices

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj



Example: Squared Adjacency Matrices

AikAkj = {1 there are edges from i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj



Example: Squared Adjacency Matrices

AikAkj = {1 there are edges from i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

A34A45 = 1(1) = 1
A36A65 = 0(0) = 0



Example: Squared Adjacency Matrices

AikAkj = {1 there are edges from i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

A34A45 = 1(1) = 1
A36A65 = 0(0) = 0

(A2)ij = number of 2-step paths 
from i to j



Application: Triangle Counting
A triangle in an 
undirected graph is a set 
of three distinct nodes 
with edges between every 
pair of nodes. 

Triangles in a social 
network represent mutual 
friends and tight cohesion 
(among other things)



Application: Triangle Counting

Theorem. For an adjacency matrix , the number 
of triangle containing the edge  is 

A
(i, j)

(A2)ijAij



Application: Triangle Counting

FUNCTION tri_count( ): 

  compute  

  count  sum of  for all distinct  and  

  RETURN count / 6    # why divided by 6?

A

A2

← (A2)ijAij i j



Summary

We can solve matrix equations by inverting the 
matrix, though not all matrices have inverses. 

We can compute matrix inverses a simultaneous 
row reduction. 

We can connect all the concepts we've defined 
so far by thinking about them in terms of 
invertibility (for square matrices).


