Invertible Matrix Theorem

Geometric Algorithms
Lecture 11

Objectives

1. Recap matrix inverses (it's been a while)
2. Finish up the algebra of matrix inverses
3. Connect everything we've talked about so far via the Invertible Matrix Theorem (IMT)
4. Connect linear algebra to graph theory

Keywords

matrix inverses
invertible matrix theorem
directed/undirected graphs weighted/unweighted graphs
adjacency matrices
symmetric matrices
triangle counting

Recap

Motivation

$$
A \mathbf{x}=\mathbf{b}
$$

When can we solve a matrix equation by "dividing on both sides by A?"

Motivation

$$
A^{-1} A \mathbf{x}=A^{-1} \mathbf{b}
$$

When can we solve a matrix equation by "dividing on both sides by A?"

Motivation

$$
\mathbf{x}=A^{-1} \mathbf{b}
$$

When can we solve a matrix equation by "dividing on both sides by A?"

Recall: Matrix Inverses

Recall: Matrix Inverses

Definition. For a $n \times n$ matrix A, an inverse of A is a $n \times n$ matrix B such that

$$
\begin{aligned}
& A B=I_{n} \quad\left(\text { and } B A=I_{n}\right) \\
& (n \times n)(n+n)
\end{aligned}
$$

Recall: Matrix Inverses

Definition. For a $n \times n$ matrix A, an inverse of A is a $n \times n$ matrix B such that

$$
\begin{aligned}
& \left.\qquad A B=I_{n} \text { (and } B A=I_{n}\right) \\
& \text { nonsingulas }
\end{aligned}
$$

A is invertible if it has an inverse. Otherwise it is singular.

Recall: The Identity Matrix

Recall: The Identity Matrix

Definition. The $n \times n$ identity matrix is the matrix whose diagonal contains all 1s, and all other entries are 0s.

$$
I_{i j}= \begin{cases}1 & i=j \\ 0 & \text { otherwise }\end{cases}
$$

Recall: The Identity Matrix

Definition. The $n \times n$ identity matrix is the matrix whose diagonal contains all 1s, and all other entries are 0s.

$$
I_{i j}= \begin{cases}1 & i=j \\ 0 & \text { otherwise }\end{cases}
$$

Example.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Recall: The Identity Matrix

Recall: The Identity Matrix

The identity matrix implements the "do nothing" transformation. For any \mathbf{v},

$$
I \mathbf{v}=\mathbf{v}
$$

Recall: The Identity Matrix

The identity matrix implements the "do nothing" transformation. For any v,

$$
I \mathbf{v}=\mathbf{v}
$$

It is the "1" of matrices. For any A

$$
I A=A I=A
$$

Recall: The Identity Matrix

The identity matrix implements the "do nothing" transformation. For any v,

$$
I \mathbf{v}=\mathbf{v}
$$

It is the "1" of matrices. For any A

$$
I A=A I=A
$$

These may be different sizes

Recall: The Identity Matrix

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=} \\
2 \times 2 \quad 2 \times 4
\end{array}=\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right]
$$

Fundamental Questions

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we compute it?

Fundamental Questions

Answer 1: Try to compute it.

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we compute it?

Fundamental Questions

Answer 1: Try to compute it.

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we compute it?

Answer 2: the Invertible Matrix Theorem (IMT)

Recall: Computing Inverses in General

$$
A\left[\begin{array}{lll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}
\end{array}\right]=I
$$

If we want a matrix B such that $A B=I$, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_{i} ?

Recall: In General

$$
\left[\begin{array}{lll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & A \mathbf{b}_{3}
\end{array}\right]=I
$$

If we want a matrix B such that $A B=I$, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_{i} ?

Recall: In General

$\left[\begin{array}{lll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & A \mathbf{b}_{3}\end{array}\right]=\left[\begin{array}{lll}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\end{array}\right]$
If we want a matrix B such that $A B=I$, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_{i} ?

Recall: In General

$A \mathbf{b}_{1}=\mathbf{e}_{1} \quad A \mathbf{b}_{2}=\mathbf{e}_{2}$
$A \mathbf{b}_{3}=\mathbf{e}_{3}$
If we want a matrix B such that $A B=I$, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_{i} ?

Recall: In General

$A \mathbf{b}_{1}=\mathbf{e}_{1} \quad A \mathbf{b}_{2}=\mathbf{e}_{2}$
$A \mathbf{b}_{3}=\mathbf{e}_{3}$
If we want a matrix B such that $A B=I$, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_{i} ? We need to solve 3 matrix equations.

Recall: How To: Matrix Inverses

Question. Find the inverse of an invertible $n \times n$ matrix A.

Solution. Solve the equation $A \mathbf{x}=\mathbf{e}_{i}$ for every standard basis vector. Put those solutions $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{n}$ into a single matrix

$$
\left[\begin{array}{llll}
\mathbf{S}_{1} & \mathbf{S}_{2} & \ldots & \mathbf{S}_{n}
\end{array}\right]
$$

Recall: How To: Matrix Inverses

Question. Find the inverse of an invertible $n \times n$ matrix A.

Solution. Row reduce the matrix $\left[\begin{array}{ll}A & I\end{array}\right]$ to a matrix $\left[\begin{array}{ll}I & B\end{array}\right]$. Then B is the inverse of A.

This is really the same thing. It's a simultaneous reduction.

demo

Algebra of Matrix Inverses

How To: Verifying an Inverse

Question. Given an invertible matrix B and some matrix C, demonstrate that $B^{-1}=C$.

Answer. Show that $B C=I$ (or $C B=I$, but you don't have to do both).

This works because inverses are unique.

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A, the matrix A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

Verify:

$$
\begin{aligned}
A^{-1} A & =I \Rightarrow \\
A & =\left(A^{-1}\right)^{-1}
\end{aligned}
$$

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A, the matrix A^{T} is invertible and

Verify:

$$
\begin{aligned}
& \text { table and } \\
& \left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} \quad(A B)^{\top}=B^{\top} A^{\top}+{ }^{\top} .
\end{aligned}
$$

$$
\begin{aligned}
& A^{\top}\left(A^{-1}\right)^{\top}=\left(A^{-1} A\right)^{\top}=(I)^{\top} \\
& T
\end{aligned}
$$

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrices A and B, the matrix $A B$ is invertible and

Question

Suppose that A is a $n \times n$ invertible matrix such that $A=A^{T}$ and B is a $m \times n$ matrix.

Simplify the expression $A\left(B A^{-1}\right)^{T}$ using the algebraic properties we've seen.

Answer: B^{T}

$$
\begin{gathered}
A\left(B A^{-1}\right)^{T} \\
A=A^{T}
\end{gathered}
$$

$$
=A\left(A^{\top}\right)^{-1} B^{\top}
$$

$$
=A A^{-1} B^{\top}
$$

$$
=B^{\top}
$$

Invertible Matrix Theorem

Motivation

Question. How do we know if a square matrix is invertible?

Answer. Every perspective we've taken so far can help us answer this question.

Invertible Matrix Theorem

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

1. A^{T} is invertible

Verify: We just did this

Invertible Matrix Theorem

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.
2. $A \mathbf{x}=\mathbf{b}$ has at least one solution for every \mathbf{b} 3. $A \mathbf{x}=\mathbf{b}$ has at most one solution for every \mathbf{b} 4. $A \mathbf{x}=\mathbf{b}$ has at exactly one solution for every b

Verify:

$$
A \vec{x}=\vec{b}
$$

$$
\vec{x}=b \quad A^{-1} \vec{b} \text { is the unique solution }
$$

Invertible Matrix Theorem

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.
5. A has a pivot in every column
6. A has a pivot in every row 7. A is row equivalent to I_{n}

Verify: A has unique solution \Rightarrow no free variables

Invertible Matrix Theorem

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.
8. $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
9. The columns of A are linearly independent 10. The columns of A span \mathbb{R}^{n}

Verify: picot / column \Rightarrow LI

$$
\text { pivot/ row } \Rightarrow f-1 l \text { span }
$$

Recall: Onto Transformations

Recall: Onto Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at least one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

Recall: Onto Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at least one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

Recall: Onto Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at least one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

Recall: One-to-one Transformations

Recall: One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at most one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

Recall: One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if any vector \mathbf{b} in \mathbb{R}^{m} is the image of at most one vector \mathbf{v} in \mathbb{R}^{n} (where $T(\mathbf{v})=\mathbf{b}$).

T is not one-to-one

T is one-to-one

Recall: Invertible Transformations

Definition. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if there is a linear transformation S such that

$$
S(T(\mathbf{v}))=\mathbf{v} \text { and } T(S(\mathbf{v}))=\mathbf{v}
$$

for any \mathbf{v} in \mathbb{R}^{n}.
Multiplication

Recall: One-to-One Correspondence

Recall: One-to-One Correspondence

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-to-one correspondence (bijection) if any vector b in \mathbb{R}^{n} is the image of exactly one vector \mathbf{v} in $\mathbb{R}^{n}($ where $T(\mathbf{v})=\mathbf{b})$.

Recall: One-to-One Correspondence

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-to-one correspondence (bijection) if any vector b in \mathbb{R}^{n} is the image of exactly one vector \mathbf{v} in \mathbb{R}^{n} (where $\left.T(\mathbf{v})=\mathbf{b}\right)$.

A transformation is a 1-1 correspondence if it is 1-1 and onto.

Recall: One-to-One Correspondence

Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-to-one correspondence (bijection) if any vector b in \mathbb{R}^{n} is the image of exactly one vector \mathbf{v} in \mathbb{R}^{n} (where $\left.T(\mathbf{v})=\mathbf{b}\right)$.

A transformation is a 1-1 correspondence if it is 1-1 and onto.

Invertible transformations are 1-1 correspondences.

Invertible Matrix Theorem

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.
11. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto 12. $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
13. $\mathbf{x} \mapsto A \mathbf{x}$ is a one-to-one correspondence
14. $\mathbf{x} \mapsto A \mathbf{x}$ is invertible

Verify:

Taking Stock: IMT

The following are logically equivalent:

1. A is invertible
2. A^{T} is invertible
3. $A \mathbf{x}=\mathbf{b}$ has at least one solution for any b
4. $A \mathbf{x}=\mathbf{b}$ has at most one solution for any \mathbf{b}
5. $A \mathbf{x}=\mathbf{b}$ has a unique solution for any b
6. A has n pivots (per row and per column)
7. A is row equivalent to I
8. $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
9. The columns of A are linearly independent
10. The columns of A span \mathbb{R}^{n}
11. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto
12. $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
13. $\mathrm{x} \mapsto A \mathbf{x}$ is a one-to-one correspondence
14.x $\mapsto A x$ is invertible

These all express the same thing

(this is a stronger statement than we just verified)

Taking Stock: IMT

The following are logically equivalent:

1. A is invertible
2. A^{T} is invertible
3. $A \mathbf{x}=\mathbf{b}$ has at least one solution for any b
4. $A \mathbf{x}=\mathbf{b}$ has at most one solution for any \mathbf{b}
5. $A \mathbf{x}=\mathbf{b}$ has a unique solution for any b
6. A has n pivots (per row and per column)
7. A is row equivalent to I
8. $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
9. The columns of A are linearly independent
10. The columns of A span \mathbb{R}^{n}
11. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto
12. $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
13. $\mathrm{x} \mapsto A \mathbf{x}$ is a one-to-one correspondence
14.x $\mapsto A x$ is invertible

These all express the same thing

```
(this is a stronger statement than
            we just verified)
```

!! only for square matrices

We get a lot of information for free

We get a lot of information for free

Theorem. If A is square, then

$$
A \text { is 1-1 if and only if } \quad A \text { is onto }
$$

We get a lot of information for free

Theorem. If A is square, then

$$
A \text { is 1-1 if and only if } \quad A \text { is onto }
$$

We only need to check one of these.

We get a lot of information for free

Theorem. If A is square, then

$$
A \text { is 1-1 if and only if } \quad A \text { is onto }
$$

We only need to check one of these.
Warning. Remember this only applies square matrices.

We get a lot of information for free

We get a lot of information for free

Theorem. If A is square, then

$$
A \text { is invertible } \equiv \quad A x=0 \text { implies } \mathbf{x}=0
$$

We get a lot of information for free

Theorem. If A is square, then
A is invertible $\equiv \quad A x=0$ implies $x=0$
Invertibility is completely determined by how A behaves on 0.

Question (Conceptual)

True or False: If A is invertible, and B is row equivalent to A (we can transform B into A by a sequence of row operations), then B is also invertible.

Answer: True

Row reductions don't change the number of pivots.

Question

$$
3 \times 3
$$

If $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ is invertible, then is $\left[\begin{array}{lll}\left(\mathbf{a}_{1}+\mathbf{a}_{2}-2 \mathbf{a}_{3}\right) & \left(\mathbf{a}_{2}+5 \mathbf{a}_{3}\right) & \left.\mathbf{a}_{3}\right]\end{array}\right]$ also invertible? Justify your answer.

Answer

Consider $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]^{T}$. We can get to $\left[\begin{array}{lll}\left(\mathbf{a}_{1}+\mathbf{a}_{2}-2 \mathbf{a}_{3}\right) & \left(\mathbf{a}_{2}+5 \mathbf{a}_{3}\right) & \mathbf{a}_{3}\end{array}\right]^{T}$ by row operations

Adjacency Matrices

Graphs

Definition (Informal). A graph is a collection of nodes with edges between them.

Directed vs. Undirected Graphs

A graph is directed if its edges have a direction.

Weighted vs Unweighted graphs

A graph is weighted if its edges have associated values.

unweighted

weighted

Weighted vs Unweighted graphs

A graph is weighted if its edges have associated values.

unweighted
edge weights

weighted

Four Kinds of Graphs

Four Kinds of Graphs

directed undirected

Four Kinds of Graphs

Fundamental Question

Fundamental Question

How do we represent a graph formally in a computer?

Fundamental Question

How do we represent a graph formally in a computer?
There are a couple ways, but one way is to use matrices.

$$
\begin{array}{lll}
A_{12} & A_{34} & A_{46}
\end{array}
$$

Adjacency Matrices

Let G be an undirected unweighted graph with its nodes labeled by numbers 1 through n. We can create the adjacency matrix A for G as follows.
$A_{i j}=\left\{\begin{array}{l}1 \text { there is an edge between } i \text { and } j \\ 0 \text { otherwise }\end{array}\right.$

Symmetric Matrices

Definition. A $n \times n$ matrix is symmetric if

$$
A^{T}=A
$$

Example.

$$
\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Spectral Graph Theory

Once we have an adjacency matrix, we can do linear algebra on graphs.

Example: Squared Adjacency Matrices

Given an adjacency matrix A, can we interpret anything meaningful from A^{2} ?

Example: Squared Adjacency Matrices

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]} \\
& \begin{array}{cc}
A S^{\sim} & \ltimes<\cup
\end{array} \\
& \left(A^{2}\right)_{53}=1(0)+1(1)+0(0)+1(1)+0(0)+0(0)=2
\end{aligned}
$$

Example: Squared Adjacency Matrices

$$
\left(A^{2}\right)_{i j}=A_{i 1} A_{1 j}+A_{i 2} A_{2 j}+\ldots+A_{i n} A_{n j}
$$

Example: Squared Adjacency Matrices

$$
\left(A^{2}\right)_{i j}=A_{i 1} A_{1 j}+A_{i 2} A_{2 j}+\ldots+A_{i n} A_{n j}
$$

$A_{i k} A_{k j}=\left\{\begin{array}{l}1 \text { there are edges } i \text { to } k \text { and } k \text { to } j \\ 0 \text { otherwise }\end{array}\right.$

Example: Squared Adjacency Matrices

$$
\begin{gathered}
\quad\left(A^{2}\right)_{i j}=A_{i 1} A_{1 j}+A_{i 2} A_{2 j}+\ldots+A_{i n} A_{n j} \\
A_{i k} A_{k j}=\left\{\begin{array}{l}
1 \text { there are edges } \mathrm{i} \text { to } \mathrm{k} \text { and } \mathrm{k} \text { to } \mathrm{j} \\
0 \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Example: Squared Adjacency Matrices

$$
\left(A^{2}\right)_{i j}=A_{i 1} A_{1 j}+A_{i 2} A_{2 j}+\ldots+A_{i n} A_{n j}
$$

$A_{i k} A_{k j}=\left\{\begin{array}{l}1 \text { there are edges } \mathrm{i} \text { to } \mathrm{k} \text { and } \mathrm{k} \text { to } \mathrm{j} \\ 0 \text { otherwise }\end{array}\right.$

Application: Triangle Counting

A triangle in an
undirected graph is a set of three distinct nodes with edges between every pair of nodes.

Triangles in a social network represent mutual friends and tight cohesion (among other things)

Application: Triangle Counting (Naive)

```
FUNCTION tri_count_naive(A):
    count = 0
    for i from 1 to n:
        for j from i to n:
        for k from j to n:
        if }\mp@subsup{A}{ij}{}=1\mathrm{ and }\mp@subsup{A}{jk}{}=1\mathrm{ and }\mp@subsup{A}{ki}{}=1: # an edge between each pair
        count += 1:
    RETURN count
```


Application: Triangle Counting

Theorem. For an adjacency matrix A, the number of triangle containing the edge (i, j) is

$$
\left(A^{2}\right)_{i j} * A_{i j}
$$

Verify:

Application: Triangle Counting

FUNCTION tri_count(A):
compute A^{2}
count \leftarrow sum of $\left(A^{2}\right)_{i j} * A_{i j}$ for all distinct i and j RETURN count / 6 \# why divided by 6?

Application: Triangle Counting

FUNCTION tri_count(A):
\# in NumPy '*' is entry-wise multiplication count \leftarrow sum of the entries of $A^{2} * A$ RETURN count / 6

Application: Triangle Counting

FUNCTION tri_count(A):
\# in NumPy '*' is entry-wise multiplication
\# and 'np.sum' sums the entry of a matrix RETURN np.sum((A @ A) * A) / 6

demo

Summary

The algebra of matrices can help us simplify matrix expressions.

The invertible matrix theorem connects all the perspectives we've taken so far.

Adjacency matrices are linear algebraic representations of graphs.

