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Introduction



Recap Problem

(LAA 4.9.3) On any given day a student 1s
healthy or 1ll. Of the students healthy today,
% will be 1Ll tomorrow, and 55% of 1ll
students will remain 1ll tomorrow.

Write down the stochastic matrix for this
situation.

Draw the state diagram for this situation.
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Objectives

1. Motivate matrix factorization 1n general, and
the LU factorization 1n specific

2. Recall elementary row operations and connect
them to matrices

3. Look at the LU factorization, how to find 1t,
and how to use 1t
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From Numbers to Matrices

Much of Llinear algebra 1s about extending our
intuitions about numbers to matrices.

For whole numbers, a factor of » 1s a number m
such that m divides n.

2 1s a factor of 10, 7 1s a factor of 49,...



Said another way



Said another way

For whole numbers, m 1s a factor of n 1f there
1S a number k such that

n = mk



Said another way

For whole numbers, m 1s a factor of n 1f there
1S a number k such that

n = mk

n can be "split" i1nto m and k. This 1s called a
factorization of n.



Said another way

For whole numbers, m 1s a factor of n 1f there
1S a number k such that

n = mk

n can be "split" i1nto m and k. This 1s called a
factorization of n.

10=2(05), 49=T7(7)) s «



An Aside: Polynomials

We've also likely seen this with polynomials,
e.g.

467+ 1lx+6 =0+ DEx+2)(x+3)

This i1s a polynomial factorization.
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Matrix Factorization

A factorization of a matrix A 1s an equation
which expresses A as a product of one or more
matrices, e.d.,

A=BC

So far, we've been given two factors and asked
to find their product.

Factorization 1is the harder direction.
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A Warning: Intuitions only go so far

One nice feature of numbers 1s that they have a
unique factorization 1into prime factors.

There 1s no such thing for matrices.

This 1s a blessing and a curse:

We have more than one kind of factorization
but they tell us different things.
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Reasons to Factorize

Writing A as the product of multiple matrices can
» make computing with A faster LU Decomposition
» make working with A easier

» expose 1mportant information about A



The Problem

Question. For an matrix A, solve the equations

AXl — bl ’ AX2 — b2 EoE AXk—l — bk—l y AXk — bk

In other words: we want to solve a bunch of
matrix equations over the same matrix.
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The Problem

Question. For a matrix A, solve (for X) in the
equation U Lo ¥

AX = B

where X and B are matrices of appropriate
dimension.
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Question. For a matrix A, Ssolve (for X) in the
equation

AX =05

where X and B are matrices of appropriate
dimension.

This 1s (essentially) the same question.



The Problem

Question. Solve AX =B.
IT A 1s invertible, then we have a solution:

Find A~! and then X=A"!B.



The Problem

Question. Solve AX = B.
IT A 1s invertible, then we have a solution:
Find A~! and then X=A"!B.

What if A~! 1s not invertible?
Even 1f 1t 1s, can we do 1t faster?



LU Factorization at a High Level

Given a mXxn matrix A, we are going to
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echelon form of A
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LU Factorization at a High Level

Given a mxn matrix A, we are going to
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factorize A as

echelon form of A
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What are "L" and "U"?

L stands for "lower" as 1n lower triangular.

U stands for "upper" as 1in upper trianqgular.
(This only happens when A is square.)
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Elementary Matrices
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The Fundamental Question

A — Ll } echelon form of A

We know how to build U, that's just the forward
phase of Gaussian elimination.

How do we build L?

The 1dea. L "implements" the row operations of
the forward phase.



Recall: Elementary Row Operations

scaling multiply a row by a number
1nterchange switch two rows
replacement add two rows (and replace one

with the sum)

rep. + scl. add a scaled equation to another
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The First Key Observation

Elementary row operations are linear transformations
(viewed as transformation on columns)

Example: Scale row 2 by 5

all Cllz a13 all a12 Cl13
a1 G~ d Ry < Sk, 5a,, 5a,, Sa
21 22 23 —_— 71 k) 273

(31 d3p d33 31 d3p  d33
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Example: Scaling

Vl Vl
V2 > 5 Vz
V3 V3

Restricted to one column, we see this 1s the
above transformation.
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Let's verify this 1s linear:

ee \ ZV\,\*U\\X\; «
el &X Lad)

AL
_ W, ) vy Y V\/\ vC\n/\
Vit o EUKL B N t -

| |

e T ) b b ;

Ny Ny




ing
le: Scali
mp

Exa

Vo
V3

S
l

lC

a

d

L

e e

O

)

e,




Example: Scaling
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Let's verify this matrix does what 1ts suppose to do:
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Another Example: Scaling + Replacement

diq 5P) 413
253 %%, 5%

di1 dyp dps
r1 dyy dp3 -
(asy — 2ay;) (azp —2ay,) (azz — 2a;3)

31 d3p d33




Another Example: Scaling + Replacement

Let's build the transformation:
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Another Example: Scaling + Replacement

Let's build the matrix which implements 1t:

(\JS . DL\
=)
2 3




Another Example: Scaling + Replacement

Let's verify 1t does what 1t's suppose to do:
F’O\\\ C:\\’L A B
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Elementary row operations are
- linear, so they are
1mp lemented by matrices



General Elementary Scaling Matrix
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General Elementary Scaling Matrix

1 0 0 0O
0 1 0 O
0 0 £ O
0 0 0 1

IT we want to perform R, « kR, then we need the
identity matrix but with the entry A;; =k.



General Elementary Scaling Matrix

1 0 0 0O
0 1 0 O
0 0 £ O
0 0 0 1

IT we want to perform R, « kR, then we need the
identity matrix but with the entry A;; =k.

IT we want to perform R. < kR, then we need the
identity matrix but with then entry A, =xk.
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General Scaling + Replacement Matrix

OO = O
O = OO
— O O O

1
0
0
k
IT we want to perform R, « R, +kR,, then we need

the 1dentity matrix but with the entry A, =k.

If we want to perform R, < R, +kR;, then we need
the 1dentity matrix but with the entry A, =«k.



General Swap Matrix

O = OO
o O O O

0
1
0
1

OO O =

IT we want to swap R, and R;, then we need the
identity matrix, but with R, and R, swapped.



Elementary Matrices {‘D 9\\

Definition. An elementary matrix is a matrix
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Elementary Matrices

Definition. An elementary matrix is a matrix
obtained by applying a single row operation to
the i1dentity matrix I.

These are exactly the matrices
we were just looking at.



Elementary Matrices and Row Operations

Fact. Any elementary row can be implemented by

an elementary matrix. Y
Verify: V0 e
: F (>\ — lx X\ (o CWYGK



How lo: Finding Elementary Matrices

Question. Find the matrix implementing the
elementary row operation op.

Solution. Apply op to the identity matrix of the
appropriate size. -
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Products of Elementary Matrices

Taking stock:

» Elementary matrices 1implement elementary row
operations.

» Remember that Matrix multiplication 1s
transformation composition (i.e., do one then the

other).

So we can implement any sequence of row operations
as a product of elementary matrices.



How to: Matrices implementing Row Operations

Question. Find the matrix implementing a
sequence of row operations op,, op,, ...

Solution. Apply the row operations in sequence
to the 1dentity matrix of the appropriate size.



Question

Find the matrix implementing the following
sequence of elementary row operations on a 3Xn
matrix.

R, < 3R,
R, <« R + R,
swap R, and R;

Then multiply i1t with the all-ones 3x3 matrix.
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Second Key Observation

Elementary row operations are invertible linear
transformations.

This also means the product of elementary
matrices 1s 1nvertible.

(E\E,E:E)™' = E; 'E; 'E; E;

'l the order reverses !



Question (Conceptual)

Describe the inverse transformation for each
elementary row operation.



Answer

The 1nverse of scaling by k 1s scaling by 1/k.

The inverse of R, < R,+R;, 1S R, < R,—R..

The 1nverse of swapplng 1S swapplng agaln.



LU Factorization



Recall: Elementary Row Operations

scaling multiply a row by a number
1nterchange switch two rows
replacement add two rows (and replace one

with the sum)

rep. + scl. add a scaled equation to another



Recall: Elementary Row Operations

We only need these two for the forward phase

1nterchange switch two rows

rep. + scl. add a scaled equation to another



A Simplifying Assumption

We'll assume for now we only need this one

rep. + scl. add a scaled equation to another



Reminder: LU Factorization at a High Level

Given a mXxn matrix A, we are going to
factorize A as

Echelon form of A

1 0 0 0
Ao |* 1 00
K K K 1
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U < A
convert U to an echelon form by GE forward step # without swaps
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E <« the matrix implementing OP
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LU Factorization Algorithm

FUNCTION LU Factorization(A):
L « 1dentity matrix
U < A
convert U to an echelon form by GE forward step # without swaps
FOR each row operation OP in the prev step:
E <« the matrix implementing OP

L « L @ E! # note the multiplication on the right
RETURN (L, U) we'll see how to do this part smarter



Gaussian Elimination and Elementary Matrices
RS A VS
o

ALA ~A ~ ... ~A

Consider a sequence of elementary row
operations from A to an echelon form.

Each step can be represent as a product with an
elementary matrix.
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This exactly tells us that i1f B 1s the final echelon form
we get then

where E 1mplements a sequence of row operations.
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Gaussian Elimination and Elementary Matrices

1/‘ ~/ JE?I/4L "".lzgylzaggl N eee Y JE;kJE%k__l....JEazJEalfqt

This exactly tells us that i1f B 1s the final echelon form

we get then
Invertible

where E 1mplements a sequence of row operatlons Yk«‘*
VA" A b MN Vo T

So

lp 1 — 1 -1
A=E'B=(E'E;'...E_' E-")B



A New Perspective on Gaussian Elimination

The forward part of Gaussian
elimination 1s matrix
factorization



The "L" Part

This a product of elementary matrices

So L=E'=E'E;'..E'E’' ! the order reverses !!

We won't prove this, but 1t's worth thinking
about: why 1s this lower triangular?

And can we build this 1n a more efficient way?



demo



How To: LU Factorization by hand

Question. Find a LU Factorization for the
matrix A (assuming no swaps).

Solution.

» Start with L as the 1identity matrix.
» Find U by the forward part of GE.
» For each operation R, < R;+kR;, set L, to —k.



Solving Systems using the
LU Factorization




How To: Solving systems with the LU

Question. Solve the equation Ax=b given that
A=LU 1s a LU factorization.

Solution. First solve Lx=b to get a solution ¢,
then solve Ax=c¢ to get a solution d.

Verify:



How To: Solving systems with the LU

Question. Solve the equation Ax=b given that
A=LU 1s a LU factorization.

Solution. First solve Lx=b to get a solution ¢,
then solve Ax=c¢ to get a solution d.

Why 1s this better than just solving Ax =b?



FLOPs for Solving General Systems

The following FLOP estimates are based on nxn matrices

. on’
Gaussilan Elimination: N% FLOPS

on’
GE Forward: NT FLOPS

GE Backward: ~ 2n? FLOPS
Matrix Inversion: ~ 2n> FLOPS
Matrix-Vector Multiplication: ~ 2r* FLOPS

Solving by matrix inversion: ~ 2xn° FLOPS

. . _ . 2n>
Solving by Gaussian elimination: N% FLOPS



FLOPS for solving LU systems

. . 2n’
LU Factorization: NT FLOPS

Solving Lx=b: ~2n* FLOPS (by "forward" elimination)

Solving Ux=c¢: ~2n* FLOPS (already in echelon form)

. . . 2n°
Solving by LU Factorization: N% FLOPS



IT you solve several matrix equations for the
same matrix, LU factorization is faster than
matrix inversion on the first equation, and the
same (in the worst case) in later equation.
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Other Considerations: Density

IfT A doesn't have to many entries (A is
sparse), then 1i1ts likely that L and U won't
elther.

But A-! may have many entries (A~! is dense)

Sparse matrices are faster to compute with and
petter with respect to storage.



Summary

We can factorize matrices to make them easiler
to work with, or get more information about
them

LU Factorizations allow us to solve multiple
matrix equations, with one forward step and
multiple backwards steps.



