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Introduction



Recap Problem

Consider the matrix





Find a general form solution for the equation 
.


A = [
−1 −4 2
−1 −4 1
2 8 1]

Ax = 0



Answer [
1 4 0
0 0 1
0 0 0]

[
−1 −4 2 0
−1 −4 1 0
2 8 1 0]

step 1: build the augmented 
matrix for this equation



Answer [
1 4 0
0 0 1
0 0 0]

[
−1 −4 2 0
−1 −4 1 0
2 8 1 0]

step 2: convert to reduce 
echelon form



Answer [
1 4 0
0 0 1
0 0 0]

[
−1 −4 2 0
0 0 −1 0
2 8 1 0]
R2 ← R2 − R1



Answer [
1 4 0
0 0 1
0 0 0]

[
−1 −4 2 0
0 0 −1 0
0 0 0 0]
R3 ← R3 + 2R1



Answer [
1 4 0
0 0 1
0 0 0]

[
−1 −4 0 0
0 0 −1 0
0 0 0 0]
R1 ← R1 + 2R2



Answer [
1 4 0
0 0 1
0 0 0]

[
1 4 0 0
0 0 1 0
0 0 0 0]

R1 ← − R1
R2 ← − R2



Answer [
1 4 0
0 0 1
0 0 0]

[
1 4 0 0
0 0 1 0
0 0 0 0]

step 3: find the pivot positions and 
determine what variables to make 

basic and free

x1 x2 x3



Answer [
1 4 0
0 0 1
0 0 0]

step 4: write down the general form 
solution by the procedure from 

Lecture 3

x1 = − 4x2

x2 is free
x3 = 0



Objectives

1. Finish discussion of LU factorization, with an 
eye towards performance


2. Look at linear algebraic methods in graphics


3. Briefly discuss Homework 7
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Recap



Recall: LU Factorization at a High Level

Given a  matrix , we are going to 
factorize  as


m × n A
A

Echelon form of A

UL

A =

1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0



The forward part of Gaussian 
elimination is matrix 

factorization

Recall: A New Perspective on Gaussian Elimination



Recall: Elementary Matrices and Row Operations

Definition. An elementary matrix is a matrix obtained 
by applying a single row operation to the identity 
matrix .


Example.


Fact. Any elementary row can be implemented by an 
elementary matrix.

I

[
1 0 0
0 1 0
0 0 1] [

1 0 0
0 1 3
0 0 1]

R2 ← R2 + 3R3



Recall: Gaussian Elimination and Elementary Matrices

Consider a sequence of elementary row 
operations from  to an echelon form.


Each step can be represent as a product with an 
elementary matrix.

A

A ∼ A1 ∼ A2 ∼ … ∼ Ak



Recall: Gaussian Elimination and Elementary Matrices

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A



Recall: Gaussian Elimination and Elementary Matrices

This exactly tells us that if  is the final echelon form 
we get then

U

U = (EkEk−1…E2E1)A = EA
where  implements a sequence of row operations.E
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Recall: Gaussian Elimination and Elementary Matrices

This exactly tells us that if  is the final echelon form 
we get then

U

U = (EkEk−1…E2E1)A = EA
where  implements a sequence of row operations.E

So

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A

Invertible

A = E−1U = (E−1
1 E−1

2 …E−1
k−1E

−1
k )U



Recall: Gaussian Elimination and Elementary Matrices

This exactly tells us that if  is the final echelon form 
we get then

U

U = (EkEk−1…E2E1)A = EA
where  implements a sequence of row operations.E

So

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A

Invertible

A = E−1U = (E−1
1 E−1

2 …E−1
k−1E

−1
k )U

"L" part



LU Factorization Algorithm

1  FUNCTION LU_Factorization( ):


2      L  identity matrix


3      U  


4      convert U to an echelon form by GE forward step # without swaps


5      FOR each row operation OP in the prev step:


6          E  the matrix implementing OP


7          L  L @ E     # note the multiplication on the right


8      RETURN (L, U)

A

←

← A

←

← −1

this isn't actually how this implemented



demo



How To: LU Factorization by hand

Question. Find a LU Factorization for the 
matrix  (assuming no swaps).


Solution.


» Start with  as the identity matrix. 
» Find  by the forward part of GE. 
» For each operation , set  to .

A

L
U

Ri ← Ri + kRj Lij −k



Solving Systems using the

LU Factorization



Connecting back to Matrix Equations

Question. Solve the above matrix equation (in 
other words, find a general form solution).

Ax = b



Connecting back to Matrix Equations

Question. Solve the above matrix equation (in 
other words, find a general form solution).

Ax = b

What does the LU factorization give us?



Connecting back to Matrix Equations

Question. Solve the above matrix equation (in 
other words, find a general form solution).

(LU)x = b

Substitute  for LU A



Connecting back to Matrix Equations

Question. Solve the above matrix equation (in 
other words, find a general form solution).

L(Ux) = b

Rearrange matrix-vector multiplications



Connecting back to Matrix Equations

Question. Solve the above matrix equation (in 
other words, find a general form solution).

Multiply by  on both sidesL−1

Ux = L−1b



Connecting back to Matrix Equations

Question. Solve the above matrix equation (in 
other words, find a general form solution).

A solution to  is the 
same as a solution to 

Ax = b
Ux = L−1b

Ux = L−1b



Solving systems with the LU (Pictorially)

If  maps  to , then  maps  to some vector  
which is mapped to  by .

A x b U x y
b L

Ux = y = L−1b



How To: Solving Systems with the LU
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 is a LU factorization.
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How To: Solving Systems with the LU

Question. Solve the equation  given that 
 is a LU factorization.

Ax = b
A = LU

Solution.

  1. Solve  to get the unique solution .Lx = b v = L−1b

  2. Solve  to get a solution .Ux = v w
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How To: Solving Systems with the LU

Question. Solve the equation  given that 
 is a LU factorization.

Ax = b
A = LU

Solution.

  1. Solve  to get the unique solution .Lx = b v = L−1b

  2. Solve  to get a solution .Ux = v w

 is a solution to w Ax = b

This is significantly faster than solving Ax = b



FLOPs for Gaussian Elimination

Given an  matrix, we have the following FLOP estimates:


» Gaussian Elimination:  FLOPS


» GE Forward:  FLOPS


» GE Backward:  FLOPS


n × n

∼
2n3

3

∼
2n3

3

∼ n2
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FLOPs for Gaussian Elimination

Given an  matrix, we have the following FLOP estimates:


» Gaussian Elimination:  FLOPS


» GE Forward:  FLOPS


» GE Backward:  FLOPS


n × n

∼
2n3

3

∼
2n3

3

∼ n2

dominant term

Solving  takes  FLOPSAx = b ∼
2
3

n3



FLOPS for Lx = b

 is a lower triangular matrix. The system can 
be solved in  FLOPS by forward substitution.
L

∼ n2

1 0 0
a21 1 0
a31 a32 1

x =
b1

b2

b3

x1 = b1

x2 = b2 − a21x1

x3 = b3 − a31x1 − a32x2



 is in echelon form. We only need to perform 
back substitution, which can be done in  
FLOPS.

U
∼ n2

FLOPS for Ux = v

◼ * * * * |
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0 |

v

1 0 * 0 * |
0 1 * 0 *
0 0 0 1 *
0 0 0 0 0 |

w
back substitution



FLOPS for solving LU systems

» LU Factorization:  FLOPS


» Solving :  FLOPS (by "forward" elimination)


» Solving :  FLOPS (already in echelon form)


LU Factorization:  FLOPS 

∼
2n3

3

Lx = b ∼ n2

Ux = c ∼ n2

∼
2n3

3



FLOPS for solving LU systems

» LU Factorization:  FLOPS


» Solving :  FLOPS (by "forward" elimination)


» Solving :  FLOPS (already in echelon form)


LU Factorization:  FLOPS 

∼
2n3

3

Lx = b ∼ n2

Ux = c ∼ n2

∼
2n3

3

dominant term



FLOPS for Matrix Inverse

After we find , finding the solution  is 
the cost of matrix-vector multiplication.


Matrix Inversion:  FLOPS


Matrix-Vector Multiplication:  FLOPS


Matrix inversion:  FLOPS


A−1 A−1b

∼ 2n3

∼ 2n2

∼ 2n3



FLOPS for Matrix Inverse

After we find , finding the solution  is 
the cost of matrix-vector multiplication.


Matrix Inversion:  FLOPS


Matrix-Vector Multiplication:  FLOPS


Matrix inversion:  FLOPS


A−1 A−1b

∼ 2n3

∼ 2n2

∼ 2n3

dominant term



FLOP Comparison

Preprocessing Solving

Gaussian Elimination

Matrix Inversion

LU Factorization

∼
2
3

n3

∼
2
3

n3 ∼ 2n2

∼ 2n3 ∼ 2n2

0



If you solve several matrix equations for the 
same matrix, LU factorization is faster than 

matrix inversion on the first equation, and the 
same (in the worst case) in later equation.



Another Consideration: Density
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A matrix is sparse if it has mostly zeros.



Another Consideration: Density

A matrix is sparse if it has mostly zeros.

If  is sparse, then  and  probably are too.A L U



Another Consideration: Density

A matrix is sparse if it has mostly zeros.

If  is sparse, then  and  probably are too.A L U

But  may have many nonzero entries (in other 
words,  is dense)

A−1

A−1



Another Consideration: Density

A matrix is sparse if it has mostly zeros.

If  is sparse, then  and  probably are too.A L U

But  may have many nonzero entries (in other 
words,  is dense)

A−1

A−1

Sparse matrices are faster to compute with and 
better with respect to storage.



(switching gears...)



Graphics



Disclaimer

I am not an expert in this field.




Motivation (or Pretty Pictures)

Graphics doesn't need much motivation.


We spend so much time interacting graphics in 
one form or another.


But in case you haven't thought too much about 
it, some examples...

source: CS184 Lecture Slides, UC Berkeley, Ng Ren 



Movies
Jurassic Park (1993)

Alice in Wonderland (2010)



Motion Capture
Two Towers (2002)



Video Games
Unreal Engine 5 (2020)



Scientific Visualization
First image of a black hole (2022)



Photography



Graphics and Linear Algebra



3D Graphics

There are many facets 
of computer graphics, 
but we will be 
focusing on one 
problem today:


Manipulating and 
Transforming 3D 
objects and rendering 
them on a screen.



3D Graphics Pipeline



3D Graphics Pipeline

1. Create a 3D model of objects + scene.
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2. Convert the surfaces of the objects in the model 
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3D Graphics Pipeline

1. Create a 3D model of objects + scene.

2. Convert the surfaces of the objects in the model 
into approximations called wire frames or 
tessellations built out of a massive number of 
polygons (often triangles).

3. Manipulate the polygons via linear transformations 
and then linearly render it in 2D (in a way that 
preserves perspective).

Today



Wire Frames
A wire frame is 
representation of a 
surface as a collection 
of polygons and line 
segments.


Transformations on line 
segments and polygons 
are linear.

https://commons.wikimedia.org/wiki/File:Wireframe_Render_of_Digital_Clothing_Bathingrobe_3D_Model.jpg



Transformations

We've seen many 2D transformations


» Reflections 
» Expansion 
» Shearing 
» Projection


We've seen some 3D transformations


» Rotations 
» Projections



Composing Transformations

Recall. Multiplying 
matrices composes their 
associated 
transformations.


So complex graphical 
transformations can be 
combined into a single 
matrix.



Shearing and Reflecting (Geometrically)

reflectshear



More Transformations

What we're adding today:


» More on rotations 
» translations 
» perspective projections



More Transformations

What we're adding today:


» More on rotations 
» translations 
» perspective projections

These aren't linear, but they are incredibly 
important so we have to address them.



3D Rotation Matrices

Rθ
x =

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

Rθ
y =

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ
Rθ

z =
cos θ −sin θ 0
sin θ cos θ 0

0 0 1



3D Rotation Matrices

These are the matrices for counterclockwise rotation 
around x, y, and z axes.

Rθ
x =

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

Rθ
y =

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ
Rθ

z =
cos θ −sin θ 0
sin θ cos θ 0

0 0 1



3D Rotation Matrices

These are the matrices for counterclockwise rotation 
around x, y, and z axes.

(note the change in sign for y)

Rθ
x =

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

Rθ
y =

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ
Rθ

z =
cos θ −sin θ 0
sin θ cos θ 0

0 0 1



3D Rotation Matrices

These are the matrices for counterclockwise rotation 
around x, y, and z axes.

(note the change in sign for y)

Fact. Any rotation can be done by some matrix of the form

Rθ
z Rγ

y Rη
x

Rθ
x =

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

Rθ
y =

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ
Rθ

z =
cos θ −sin θ 0
sin θ cos θ 0

0 0 1



Roll, Pitch and Yaw

x

y

z

roll changes the 
side-to-side tilt


pitch changes the 
up-down tilt


yaw changes 
direction

https://commons.wikimedia.org/wiki/File:Yaw_Axis_Corrected.svg



General Rotations

Rθ
z Rγ

yRη
x

yaw pitch roll



General Rotations

Exactly what rotation you get is not obvious (this a 
hard problem in control theory).

Rθ
z Rγ

yRη
x

yaw pitch roll



General Rotations

Exactly what rotation you get is not obvious (this a 
hard problem in control theory).

Remember. !!Matrix multiplication does not commute!!

Rθ
z Rγ

yRη
x

yaw pitch roll



General Rotations

Exactly what rotation you get is not obvious (this a 
hard problem in control theory).

Remember. !!Matrix multiplication does not commute!!

So changing  above doesn't just rotate the object 
around the -axis (that axis might be tilted along 
the pitch axis, for example).

η
x

Rθ
z Rγ

yRη
x

yaw pitch roll



demo



Translation

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D



Translation
Given a vector  a translation 
is the transformation

t

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D



Translation
Given a vector  a translation 
is the transformation

t

T(x) = x + t

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D



Translation
Given a vector  a translation 
is the transformation

t

T(x) = x + t

As we've seen, translation is 
not linear:

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D



Translation
Given a vector  a translation 
is the transformation

t

T(x) = x + t

As we've seen, translation is 
not linear:

T(0) = t

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D



Translation
Given a vector  a translation 
is the transformation

t

T(x) = x + t

As we've seen, translation is 
not linear:

T(0) = t
For this to be interesting 

 will be nonzerot

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D



Translation (3D)

Observation. This would be linear if we had 
another variable.

[
x
y
z] ↦

x + a
y + b
z + c



Translation (3D)
x
y
z
q

↦

x + aq
y + bq
z + cq

q
Observation. This would be linear if we had 
another variable.



Translation (3D)
1
0
0
0

↦

1
0
0
0

0
1
0
0

↦

0
1
0
0

0
0
1
0

↦

0
0
1
0

0
0
0
1

↦

a
b
c
1

Observation. This would be linear if we had 
another variable.



Translation (3D)
1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

Observation. This would be linear if we had 
another variable.


So if we are willing to keep around an extra 
entry, we can do translation linearly.



Homogeneous Coordinates 

The homogeneous coordinate for vector in  is the same 
except "sheared" into the 4th dimension.


We use the extra entry to perform simple nonlinear 
transformations in a linear setting.

ℝ3

[
x
y
z] ↦

x
y
z
1

Cartesian to homogeneous 

For initializing to 
homogeneous coordinates, we 

set this to 1



Translation (3D)

Definition. The 3D 
translation matrix for 
homogeneous coordinates 
which translates by 

 is the following.


Example.

(a, b, c)T

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 11 0 0 2

0 1 0 2
0 0 1 2
0 0 0 1

x
y
z
1

x + 2
y + 2
z + 2

1



Matrix Transformations for Homogeneous Coordinates

[
* * *
* * *
* * * ]

* * * 0
* * * 0
* * * 0
0 0 0 1



Matrix Transformations for Homogeneous Coordinates

Now all our transformations need to be  
matrices.

4 × 4

[
* * *
* * *
* * * ]

* * * 0
* * * 0
* * * 0
0 0 0 1



Matrix Transformations for Homogeneous Coordinates

Now all our transformations need to be  
matrices.

4 × 4

But it's easy make  matrices work for 
homogeneous coordinates.

3 × 3

[
* * *
* * *
* * * ]

* * * 0
* * * 0
* * * 0
0 0 0 1



Matrix Transformations for Homogeneous Coordinates

Now all our transformations need to be  
matrices.

4 × 4

But it's easy make  matrices work for 
homogeneous coordinates.

3 × 3

[
* * *
* * *
* * * ]

* * * 0
* * * 0
* * * 0
0 0 0 1

If a transformation is linear, it doesn't 
need the extra coordinate. 



Example: Homogeneous Rotation

Rotating counterclockwise about the -axis in 
homogeneous coordinates is given by


x

1 0 0 0
0 cos θ −sin θ 0
0 sin θ cos θ 0
0 0 0 1



Perspective Projections



Vanishing Points

Parallel lines in space 
don't necessarily look 
parallel at a distance, 
they angle towards a 
point in the distance.


This is a side effect 
of perspective 
projection.

https://commons.wikimedia.org/wiki/File:Railroad-Tracks-Perspective.jpg



Vanishing Point
The School of Athens (~1510)



Computing Perspective

Light enters our 
eyes (or camera) at 
a single point from 
all directions.


Closer things 
"appear bigger" in 
our field of vision.



Computing Perspective

Problem. Given a 
viewing position (0, 0, d) 
and a viewing plane 
(xy-axis) determine how a 
point (x, y, z) is 
projected onto the viewing 
plane.



Similar Triangles

(x, 0, z)

(x*, 0, 0)

(0, 0, z)

(0, 0, d)



Similar Triangles

Similar triangles 
are triangles with 
the same angles (in 
the same order).

(x, 0, z)

(x*, 0, 0)

(0, 0, z)

(0, 0, d)



Similar Triangles

Similar triangles 
are triangles with 
the same angles (in 
the same order).

Similar triangles 
preserve side 
ratios.

(x, 0, z)

(x*, 0, 0)

(0, 0, z)

(0, 0, d)



Similar Triangles

Similar triangles 
are triangles with 
the same angles (in 
the same order).

Similar triangles 
preserve side 
ratios.

x
d − z

=
x *
d

(x, 0, z)

(x*, 0, 0)

(0, 0, z)

(0, 0, d)



The Transformation

x* =
dx

d − z
=

x
1 − z/d

y* =
dy

d − z
=

y
1 − z/d



The Transformation

x* =
dx

d − z
=

x
1 − z/d

y* =
dy

d − z
=

y
1 − z/d

Not linear, But we will 
homogeneous coordinates to 

address this



A Trick with Homogeneous Coordinates
x
y
z
h

↦
x/h
y/h
z/h

homogeneous to Cartesian



A Trick with Homogeneous Coordinates

We can compute perspective using homogeneous 
coordinates if we allow the extra entry to vary.

x
y
z
h

↦
x/h
y/h
z/h

homogeneous to Cartesian



A Trick with Homogeneous Coordinates

We can compute perspective using homogeneous 
coordinates if we allow the extra entry to vary.

When we convert back to normal coordinates, we divide 
by the extra entry (this is consistent with before).

x
y
z
h

↦
x/h
y/h
z/h

homogeneous to Cartesian



Perspective Projection

Definition. The perspective projection (and 
matrix) is given by





When we convert back to usual coordinates, we 
divide by  as desired.

1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1/d 1

x
y
z
1

=

x
y
0

1 − z/d

1 − z/d



Homework 7



The Rough Outline



The Rough Outline

1. Take in a wire frame, represented as a collection of  
line segments (pairs of points in ).

m
ℝ3
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m
ℝ3

2. Convert these points into a  matrix , one column 
for each endpoint, in homogeneous coordinates.

4 × 2m D

3. Build a transformation matrix  to manipulate the 
wireframe and project it onto a viewing plane.
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The Rough Outline

1. Take in a wire frame, represented as a collection of  
line segments (pairs of points in ).

m
ℝ3

2. Convert these points into a  matrix , one column 
for each endpoint, in homogeneous coordinates.

4 × 2m D

3. Build a transformation matrix  to manipulate the 
wireframe and project it onto a viewing plane.

A

4. Convert the columns of  into points in , and then pair 
them back up into endpoints of line segments.

D ℝ2



The Rough Outline

1. Take in a wire frame, represented as a collection of  
line segments (pairs of points in ).

m
ℝ3

2. Convert these points into a  matrix , one column 
for each endpoint, in homogeneous coordinates.

4 × 2m D

3. Build a transformation matrix  to manipulate the 
wireframe and project it onto a viewing plane.

A

4. Convert the columns of  into points in , and then pair 
them back up into endpoints of line segments.

D ℝ2

5. Draw the resulting image on the screen.



demo



A Couple Words of Warning

Check your system early. Make sure you can run 
matplotlib widgets.


Post on piazza if there seems to be a platform 
dependent issue.


