LU Factorization + Graphics

Geometric Algorithms
Lecture 14

Introduction

Recap Problem

Consider the matrix

$$
A=\left[\begin{array}{ccc}
-1 & -4 & 2 \\
-1 & -4 & 1 \\
2 & 8 & 1
\end{array}\right]
$$

Find a general form solution for the equation $A \mathbf{x}=\mathbf{0}$.

Answer

$$
\left[\begin{array}{cccc}
-1 & -4 & 2 & 0 \\
-1 & -4 & 1 & 0 \\
2 & 8 & 1 & 0
\end{array}\right]
$$

step 1: build the augmented matrix for this equation

Answer

$$
\left[\begin{array}{cccc}
-1 & -4 & 2 & 0 \\
-1 & -4 & 1 & 0 \\
2 & 8 & 1 & 0
\end{array}\right]
$$

step 2: convert to reduce echelon form

Answer

$$
\left[\begin{array}{lll}
1 & 4 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
-1 & -4 & 2 & 0 \\
0 & 0 & -1 & 0 \\
2 & 8 & 1 & 0
\end{array}\right]} \\
R_{2} \leftarrow R_{2}-R_{1}
\end{gathered}
$$

Answer

$$
\left[\begin{array}{lll}
1 & 4 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
-1 & -4 & 2 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
R_{3} \leftarrow R_{3}+2 R_{1}
\end{gathered}
$$

Answer

$$
\begin{gathered}
{\left[\begin{array}{cccc}
-1 & -4 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
R_{1} \leftarrow R_{1}+2 R_{2}
\end{gathered}
$$

Answer

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 4 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\quad \begin{array}{l}
R_{1} \leftarrow-R_{1} \\
R_{2} \leftarrow-R_{2}
\end{array}
\end{gathered}
$$

Answer

$$
\begin{gathered}
x_{1} \\
x_{2} \\
x_{3}
\end{gathered}, \begin{aligned}
& 1 \\
& 1
\end{aligned} 4
$$

step 3: find the pivot positions and determine what variables to make basic and free

Answer

$$
\begin{aligned}
& x_{1}=-4 x_{2} \\
& x_{2} \text { is free } \\
& x_{3}=0
\end{aligned}
$$

step 4: write down the general form solution by the procedure from Lecture 3

Objectives

1. Finish discussion of LU factorization, with an eye towards performance
2. Look at linear algebraic methods in graphics
3. Briefly discuss Homework 7

Keywords

elementary matrices
LU factorization
wireframe objects
homogeneous coordinates
translation
perspective projections

Recap

Recall: LU Factorization at a High Level

Given a $m \times n$ matrix A, we are going to factorize A as

Echelon form of A

$$
A=\frac{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
* & 1 & 0 & 0 \\
* & * & 1 & 0 \\
* & * & * & 1
\end{array}\right]}{L} \frac{U}{\left[\begin{array}{lllll}
\square & * & * & * & * \\
0 & \square & * & * & * \\
0 & 0 & 0 & \square & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
$$

Recall: A New Perspective on Gaussian Elimination

The forward part of Gaussian elimination is matrix factorization

Recall: Elementary Matrices and Row Operations

Definition. An elementary matrix is a matrix obtained by applying a single row operation to the identity matrix I.

Example.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}+3 R_{3}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

Fact. Any elementary row can be implemented by an elementary matrix.

Recall: Gaussian Elimination and Elementary Matrices

$$
A \sim A_{1} \sim A_{2} \sim \ldots \sim A_{k}
$$

Consider a sequence of elementary row operations from A to an echelon form.

Each step can be represent as a product with an elementary matrix.

Recall: Gaussian Elimination and Elementary Matrices

$$
A \sim E_{1} A \sim E_{2} E_{1} A \sim \ldots \sim E_{k} E_{k-1} \ldots E_{2} E_{1} A
$$

Recall: Gaussian Elimination and Elementary Matrices

$$
A \sim E_{1} A \sim E_{2} E_{1} A \sim \ldots \sim E_{k} E_{k-1} \ldots E_{2} E_{1} A
$$

This exactly tells us that if U is the final echelon form we get then

$$
U=\left(E_{k} E_{k-1} \ldots E_{2} E_{1}\right) A=E A
$$

where E implements a sequence of row operations.

Recall: Gaussian Elimination and Elementary Matrices

$$
A \sim E_{1} A \sim E_{2} E_{1} A \sim \ldots \sim E_{k} E_{k-1} \ldots E_{2} E_{1} A
$$

This exactly tells us that if U is the final echelon form we get then

> Invertible

$$
U=\left(E_{k} E_{k-1} \ldots E_{2} E_{1}\right) A=E A
$$

where E implements a sequence of row operations.

Recall: Gaussian Elimination and Elementary Matrices

$A \sim E_{1} A \sim E_{2} E_{1} A \sim \ldots \sim E_{k} E_{k-1} \ldots E_{2} E_{1} A$
This exactly tells us that if U is the final echelon form we get then

> Invertible

$$
U=\left(E_{k} E_{k-1} \ldots E_{2} E_{1}\right) A=E A
$$

where E implements a sequence of row operations.
So

$$
A=E^{-1} U=\left(E_{1}^{-1} E_{2}^{-1} \ldots E_{k-1}^{-1} E_{k}^{-1}\right) U
$$

Recall: Gaussian Elimination and Elementary Matrices

$A \sim E_{1} A \sim E_{2} E_{1} A \sim \ldots \sim E_{k} E_{k-1} \ldots E_{2} E_{1} A$
This exactly tells us that if U is the final echelon form we get then

$$
U=\left(E_{k} E_{k-1} \ldots E_{2} E_{1}\right) A=E A
$$

where E implements a sequence of row operations.
So

$$
A=E^{-1} U=\left(E_{1}^{-1} E_{2}^{-1} \ldots E_{k-1}^{-1} E_{k}^{-1}\right) U
$$

LU Factorization Algorithm

1 FUNCTION LU_Factorization(A):
$\mathrm{L} \leftarrow$ identity matrix
$\mathrm{U} \leftarrow A$
convert U to an echelon form by GE forward step \# without swaps
FOR each row operation OP in the prev step:
$\mathrm{E} \leftarrow$ the matrix implementing $O P$
$\mathrm{L} \leftarrow \mathrm{L}$ @ $\mathrm{E}^{-1} \quad$ \# note the multiplication on the right
RETURN (L, U) this isn't actually how this implemented

demo

How To: LU Factorization by hand

Question. Find a LU Factorization for the matrix A (assuming no swaps).

Solution.

» Start with L as the identity matrix. » Find U by the forward part of GE.
» For each operation $R_{i} \leftarrow R_{i}+k R_{j}$, set $L_{i j}$ to $-k$.

Solving Systems using the LU Factorization

Connecting back to Matrix Equations

$A \mathbf{x}=\mathbf{b}$

Question. Solve the above matrix equation (in other words, find a general form solution).

Connecting back to Matrix Equations

$A \mathbf{x}=\mathbf{b}$

Question. Solve the above matrix equation (in other words, find a general form solution).

What does the LU factorization give us?

Connecting back to Matrix Equations

$$
(L U) \mathbf{x}=\mathbf{b}
$$

Question. Solve the above matrix equation (in other words, find a general form solution).

Substitute $L U$ for A

Connecting back to Matrix Equations

$$
L(U \mathbf{x})=\mathbf{b}
$$

Question. Solve the above matrix equation (in other words, find a general form solution).

Connecting back to Matrix Equations

$$
U \mathbf{x}=L^{-1} \mathbf{b}
$$

Question. Solve the above matrix equation (in other words, find a general form solution).

Multiply by L^{-1} on both sides

Connecting back to Matrix Equations

$$
U \mathbf{x}=L^{-1} \mathbf{b}
$$

Question. Solve the above matrix equation (in other words, find a general form solution).

> A solution to $A \mathbf{x}=\mathbf{b}$ is the same as a solution to $U \mathbf{x}=L^{-1} \mathbf{b}$

Solving systems with the LU (Pictorially)

If A maps \mathbf{x} to \mathbf{b}, then U maps \mathbf{x} to some vector \mathbf{y} which is mapped to b by L.

How To: Solving Systems with the LU

How To: Solving Systems with the LU

Question. Solve the equation $A \mathbf{x}=\mathbf{b}$ given that $A=L U$ is a LU factorization.

How To: Solving Systems with the LU

Question. Solve the equation $A \mathbf{x}=\mathbf{b}$ given that $A=L U$ is a LU factorization.

Solution.

How To: Solving Systems with the LU

Question. Solve the equation $A \mathbf{x}=\mathbf{b}$ given that $A=L U$ is a LU factorization.

Solution.

1. Solve $L \mathbf{x}=\mathbf{b}$ to get the unique solution $\mathbf{v}=L^{-1} \mathbf{b}$.

How To: Solving Systems with the LU

Question. Solve the equation $A \mathbf{x}=\mathbf{b}$ given that $A=L U$ is a LU factorization.

Solution.

1. Solve $L \mathbf{x}=\mathbf{b}$ to get the unique solution $\mathbf{v}=L^{-1} \mathbf{b}$. 2. Solve $U \mathbf{x}=\mathbf{v}$ to get a solution \mathbf{w}.

How To: Solving Systems with the LU

Question. Solve the equation $A \mathbf{x}=\mathbf{b}$ given that $A=L U$ is a LU factorization.

Solution.

1. Solve $L \mathbf{x}=\mathbf{b}$ to get the unique solution $\mathbf{v}=L^{-1} \mathbf{b}$.
2. Solve $U \mathbf{x}=\mathbf{v}$ to get a solution \mathbf{w}.
w is a solution to $A x=b$

How To: Solving Systems with the LU

Question. Solve the equation $A \mathbf{x}=\mathbf{b}$ given that $A=L U$ is a LU factorization.

Solution.
This is significantly faster than solving $A \mathbf{x}=\mathbf{b}$ 1. Solve $L \mathbf{x}=\mathbf{b}$ to get the unique solution $\mathbf{v}=L^{-1} \mathbf{b}$.
2. Solve $U \mathbf{x}=\mathbf{v}$ to get a solution w.
w is a solution to $A \mathbf{x}=\mathbf{b}$

FLOPs for Gaussian Elimination

Given an $n \times n$ matrix, we have the following FLOP estimates:
» Gaussian Elimination: $\sim \frac{2 n^{3}}{3}$ FLOPS
» GE Forward: $\sim \frac{2 n^{3}}{3}$ FLOPS
» GE Backward: $\sim n^{2}$ FLOPS

FLOPs for Gaussian Elimination

Given an $n \times n$ matrix, we have the following FLOP estimates:
» Gaussian Elimination: $\sim \frac{2 n^{3}}{3}$ FLOPS
» GE Forward: $\sim \frac{2 n^{3}}{3}$ FLOPS dominant term
» GE Backward: $\sim n^{2}$ FLOPS

FLOPs for Gaussian Elimination

Given an $n \times n$ matrix, we have the following FLOP estimates:
» Gaussian Elimination: $\sim \frac{2 n^{3}}{3}$ FLOPS
» GE Forward: $\sim \frac{2 n^{3}}{3}$ FLOPS dominant term
» GE Backward: $\sim n^{2}$ FLOPS
Solving $A x=\mathbf{b}$ takes $\sim \frac{2}{3} n^{3}$ FLOPS

FLOPS for $L \mathbf{x}=\mathbf{b}$

L is a lower triangular matrix. The system can be solved in $\sim n^{2}$ FLOPS by forward substitution.

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
a_{21} & 1 & 0 \\
a_{31} & a_{32} & 1
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad \begin{aligned}
& x_{1}=b_{1} \\
& x_{2}=b_{2}-a_{21} x_{1} \\
& x_{3}=b_{3}-a_{31} x_{1}-a_{32} x_{2}
\end{aligned}
$$

FLOPS for $U \mathbf{x}=\mathbf{v}$

U is in echelon form. We only need to perform back substitution, which can be done in $\sim n^{2}$ FLOPS.

$$
\left[\begin{array}{cccccc}
\mathbf{\square} & * & * & * & * & \mid \\
0 & \mathbf{@} & * & * & * & \mathbf{v} \\
0 & 0 & 0 & \mathbf{■} & * & \mathbf{v} \\
0 & 0 & 0 & 0 & 0 & \mid
\end{array}\right] \xrightarrow{\text { back substitution }}\left[\begin{array}{cccccc}
1 & 0 & * & 0 & * & \mid \\
0 & 1 & * & 0 & * & \mathbf{w} \\
0 & 0 & 0 & 1 & * & \mathbf{1} \\
0 & 0 & 0 & 0 & 0 & \mid
\end{array}\right]
$$

FLOPS for solving LU systems

»LU Factorization: $\sim \frac{2 n^{3}}{3}$ FLOPS
» Solving $L \mathbf{x}=\mathbf{b}: \quad \sim n^{2}$ FLOPS (by "forward" elimination)
» Solving $U \mathbf{x}=\mathbf{c}: \sim n^{2}$ FLOPS (already in echelon form)
LU Factorization: $\sim \frac{2 n^{3}}{3}$ FLOPS

FLOPS for solving LU systems

» LU Factorization: $\sim \frac{2 n^{3}}{3}$ FLOPS dominant term
» Solving $L \mathbf{x}=\mathbf{b}: \quad \sim n^{2}$ FLOPS (by "forward" elimination)
» Solving $U \mathbf{x}=\mathbf{c}: \sim n^{2}$ FLOPS (already in echelon form)
LU Factorization: $\sim \frac{2 n^{3}}{3}$ FLOPS

FLOPS for Matrix Inverse

After we find A^{-1}, finding the solution $A^{-1} \mathbf{b}$ is the cost of matrix-vector multiplication. Matrix Inversion: $\sim 2 n^{3}$ FLOPS Matrix-Vector Multiplication: $\sim 2 n^{2}$ FLOPS Matrix inversion: $\sim 2 n^{3}$ FLOPS

FLOPS for Matrix Inverse

After we find A^{-1}, finding the solution $A^{-1} \mathbf{b}$ is the cost of matrix-vector multiplication. Matrix Inversion: $\sim 2 n^{3}$ FLOPS dominant term Matrix-Vector Multiplication: $\sim 2 n^{2}$ FLOPS Matrix inversion: $\sim 2 n^{3}$ FLOPS

FLOP Comparison

	Preprocessing	Solving
Gaussian Elimination	0	$\sim \frac{2}{3} n^{3}$
Matrix Inversion	$\sim 2 n^{3}$	$\sim 2 n^{2}$
LU Factorization	$\sim \frac{2}{3} n^{3}$	$\sim 2 n^{2}$

If you solve several matrix equations for the same matrix, LU factorization is faster than matrix inversion on the first equation, and the same (in the worst case) in later equation.

Another Consideration: Density

Another Consideration: Density

A matrix is sparse if it has mostly zeros.

Another Consideration: Density

A matrix is sparse if it has mostly zeros. If A is sparse, then L and U probably are too.

Another Consideration: Density

A matrix is sparse if it has mostly zeros.
If A is sparse, then L and U probably are too. But A^{-1} may have many nonzero entries (in other words, A^{-1} is dense)

Another Consideration: Density

A matrix is sparse if it has mostly zeros.
If A is sparse, then L and U probably are too. But A^{-1} may have many nonzero entries (in other words, A^{-1} is dense)

Sparse matrices are faster to compute with and better with respect to storage.

(switching gears...)

Graphics

Disclaimer

I am not an expert in this field.

Motivation (or Pretty Pictures)

Graphics doesn't need much motivation. We spend so much time interacting graphics in one form or another.

But in case you haven't thought too much about it, some examples...

Movies

Jurassic Park (1993)

Alice in Wonderland (2010)

Motion Capture

Two Towers (2002)

Video Games

Unreal Engine 5 (2020)

Scientific Visualization

First image of a black hole (2022)

Photography

NASA | Walter looss | Steve McCurry
Harold Edgerton | NASA | National Geographic

Graphics and Linear Algebra

3D Graphics

There are many facets of computer graphics, but we will be focusing on one problem today:

Manipulating and Transforming 3D
 objects and rendering them on a screen.

3D Graphics Pipeline

3D Graphics Pipeline

1. Create a 3D model of objects + scene.

3D Graphics Pipeline

1. Create a 3D model of objects + scene.
2. Convert the surfaces of the objects in the model into approximations called wire frames or tessellations built out of a massive number of polygons (often triangles).

3D Graphics Pipeline

1. Create a 3D model of objects + scene.
2. Convert the surfaces of the objects in the model into approximations called wire frames or tessellations built out of a massive number of polygons (often triangles).
3. Manipulate the polygons via linear transformations and then linearly render it in 2D (in a way that preserves perspective).

3D Graphics Pipeline

1. Create a 3D model of objects + scene.
2. Convert the surfaces of the objects in the model into approximations called wire frames or tessellations built out of a massive number of polygons (often triangles).
3. Manipulate the polygons via linear transformations and then linearly render it in 2D (in a way that preserves perspective).

Wire Frames

A wire frame is representation of a surface as a collection of polygons and line segments.

Transformations on line segments and polygons are linear.

Transformations

We've seen many 2D transformations
» Reflections
» Expansion
» Shearing
" Projection
We've seen some 3D transformations
» Rotations
» Projections

Composing Transformations

Recall. Multiplying matrices composes their associated transformations.

So complex graphical transformations can be combined into a single matrix.

Shearing and Reflecting (Geometrically)

More Transformations

What we're adding today:
» More on rotations
» translations
» perspective projections

More Transformations

What we're adding today:
» More on rotations
» translations
» perspective projections
These aren't linear, but they are incredibly important so we have to address them.

3D Rotation Matrices

$$
R_{x}^{\theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{y}^{\theta}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \quad R_{z}^{\theta}=\left[\begin{array}{ccc}
\cos \theta \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

3D Rotation Matrices

$$
R_{x}^{\theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{y}^{\theta}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \quad R_{z}^{\theta}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

These are the matrices for counterclockwise rotation around x, y, and z axes.

3D Rotation Matrices

$R_{x}^{\theta}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right] \quad R_{y}^{\theta}=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right] \quad R_{z}^{\theta}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
These are the matrices for counterclockwise rotation around x, y, and z axes.
(note the change in sign for y)

3D Rotation Matrices

$$
R_{x}^{\theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{y}^{\theta}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \quad R_{z}^{\theta}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

These are the matrices for counterclockwise rotation around x, y, and z axes.
(note the change in sign for y)
Fact. Any rotation can be done by some matrix of the form

$$
R_{z}^{\theta} R_{y}^{\gamma} R_{x}^{\eta}
$$

Roll, Pitch and Yaw

roll changes the side-to-side tilt pitch changes the up-down tilt
yaw changes
direction

General Rotations

$$
R_{z}^{\theta} R_{y}^{\gamma} R_{y}^{\gamma} R_{x}^{\eta}
$$

General Rotations

Exactly what rotation you get is not obvious (this a hard problem in control theory).

General Rotations

Exactly what rotation you get is not obvious (this a hard problem in control theory).

Remember. !!Matrix multiplication does not commute!!

General Rotations

Exactly what rotation you get is not obvious (this a hard problem in control theory).

Remember. !!Matrix multiplication does not commute!!
So changing η above doesn't just rotate the object around the x-axis (that axis might be tilted along the pitch axis, for example).

demo

Translation

In 2D

Translation

Given a vector t a translation is the transformation

In 2D

Translation

Given a vector \mathbf{t} a translation is the transformation

$$
T(\mathbf{x})=\mathbf{x}+\mathbf{t}
$$

In 2D

Translation

Given a vector t a translation is the transformation

$$
T(\mathbf{x})=\mathbf{x}+\mathbf{t}
$$

As we've seen, translation is not linear:

Translation

Given a vector \mathbf{t} a translation is the transformation

$$
T(\mathbf{x})=\mathbf{x}+\mathbf{t}
$$

As we've seen, translation is not linear:

$$
T(\mathbf{0})=\mathbf{t}
$$

Translation

Given a vector \mathbf{t} a translation is the transformation

$$
T(\mathbf{x})=\mathbf{x}+\mathbf{t}
$$

As we've seen, translation is

$$
\begin{aligned}
& \text { For this to be interesting } \quad \text { In 2D } \\
& T(\mathbf{0})=\mathbf{t} \\
& \mathrm{t} \text { will be nonzero }
\end{aligned}
$$

Translation (3D)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \mapsto\left[\begin{array}{l}
x+a \\
y+b \\
z+c
\end{array}\right]
$$

Observation. This would be linear if we had another variable.

Translation (3D)

$$
\left[\begin{array}{c}
x \\
y \\
z \\
q
\end{array}\right] \mapsto\left[\begin{array}{c}
x+a q \\
y+b q \\
z+c q \\
q
\end{array}\right]
$$

Observation. This would be linear if we had another variable.

Translation (3D)

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \mapsto\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \mapsto\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \mapsto\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \mapsto\left[\begin{array}{l}
a \\
b \\
c \\
1
\end{array}\right]
$$

Observation. This would be linear if we had another variable.

Translation (3D)

$$
\left[\begin{array}{llll}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Observation. This would be linear if we had another variable.

So if we are willing to keep around an extra entry, we can do translation linearly.

Homogeneous Coordinates

For initializing to homogeneous coordinates, we set this to 1
Cartesian to homogeneous
The homogeneous coordinate for vector in \mathbb{R}^{3} is the same except "sheared" into the 4th dimension.

We use the extra entry to perform simple nonlinear transformations in a linear setting.

Translation (3D)

Definition. The 3D translation matrix for homogeneous coordinates which translates by $(a, b, c)^{T}$ is the following.

Example. $\left[\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]\left[\begin{array}{c}x+2 \\ y+2 \\ z+2 \\ 1\end{array}\right]$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Matrix Transformations for Homogeneous Coordinates

$$
\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Matrix Transformations for Homogeneous Coordinates

$$
\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Now all our transformations need to be 4×4 matrices.

Matrix Transformations for Homogeneous Coordinates

$$
\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Now all our transformations need to be 4×4 matrices.

But it's easy make 3×3 matrices work for homogeneous coordinates.

Matrix Transformations for Homogeneous Coordinates

$$
\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Now all our transformations need to be 4×4 matrices.

But it's easy make 3×3 matrices work for homogeneous coordinates.

> If a transformation is linear, it doesn't need the extra coordinate.

Example: Homogeneous Rotation

Rotating counterclockwise about the x-axis in homogeneous coordinates is given by

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Perspective Projections

Vanishing Points

Parallel lines in space don't necessarily look parallel at a distance, they angle towards a point in the distance.

This is a side effect of perspective projection.

Vanishing Point

The School of Athens (~1510)

Computing Perspective

Light enters our eyes (or camera) at a single point from all directions.

Closer things "appear bigger" in our field of vision.

Computing Perspective

Problem. Given a viewing position (0, 0, d) and a viewing plane (xy-axis) determine how a point (x, y, z) is projected onto the viewing plane.

Similar Triangles

Similar Triangles

Similar triangles are triangles with the same angles (in the same order).

Similar Triangles

Similar triangles

 are triangles with the same angles (in the same order).Similar triangles preserve side ratios.

Similar Triangles

Similar triangles are triangles with the same angles (in the same order).

Similar triangles preserve side ratios.

The Transformation

$$
\begin{aligned}
x^{*} & =\frac{d x}{d-z}=\frac{x}{1-z / d} \\
y^{*} & =\frac{d y}{d-z}=\frac{y}{1-z / d}
\end{aligned}
$$

The Transformation

$$
\begin{aligned}
x^{*} & =\frac{d x}{d-z}=\frac{x}{1-z / d} \\
y^{*} & =\frac{d y}{d-z}=\frac{y}{1-z / d}
\end{aligned}
$$

Not linear, But we will homogeneous coordinates to address this

A Trick with Homogeneous Coordinates

A Trick with Homogeneous Coordinates

We can compute perspective using homogeneous coordinates if we allow the extra entry to vary.

A Trick with Homogeneous Coordinates

$$
\left[\begin{array}{l}
x \\
y \\
z \\
h
\end{array}\right]_{\text {homogeneous to cartesian }}^{\left[\begin{array}{l}
x / h \\
y / h \\
z / h
\end{array}\right]}
$$

We can compute perspective using homogeneous coordinates if we allow the extra entry to vary.

When we convert back to normal coordinates, we divide by the extra entry (this is consistent with before).

Perspective Projection

Definition. The perspective projection (and matrix) is given by

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 / d & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
0 \\
1-z / d
\end{array}\right]
$$

When we convert back to usual coordinates, we divide by $1-z / d$ as desired.

Homework 7

The Rough Outline

The Rough Outline

1. Take in a wire frame, represented as a collection of m line segments (pairs of points in \mathbb{R}^{3}).

The Rough Outline

1. Take in a wire frame, represented as a collection of m line segments (pairs of points in \mathbb{R}^{3}).
2. Convert these points into a $4 \times 2 m$ matrix D, one column for each endpoint, in homogeneous coordinates.

The Rough Outline

1. Take in a wire frame, represented as a collection of m line segments (pairs of points in \mathbb{R}^{3}).
2. Convert these points into a $4 \times 2 m$ matrix D, one column for each endpoint, in homogeneous coordinates.
3. Build a transformation matrix A to manipulate the wireframe and project it onto a viewing plane.

The Rough Outline

1. Take in a wire frame, represented as a collection of m line segments (pairs of points in \mathbb{R}^{3}).
2. Convert these points into a $4 \times 2 m$ matrix D, one column for each endpoint, in homogeneous coordinates.
3. Build a transformation matrix A to manipulate the wireframe and project it onto a viewing plane.
4. Convert the columns of D into points in \mathbb{R}^{2}, and then pair them back up into endpoints of line segments.

The Rough Outline

1. Take in a wire frame, represented as a collection of m line segments (pairs of points in \mathbb{R}^{3}).
2. Convert these points into a $4 \times 2 m$ matrix D, one column for each endpoint, in homogeneous coordinates.
3. Build a transformation matrix A to manipulate the wireframe and project it onto a viewing plane.
4. Convert the columns of D into points in \mathbb{R}^{2}, and then pair them back up into endpoints of line segments.
5. Draw the resulting image on the screen.

demo

A Couple Words of Warning

Check your system early. Make sure you can run matplotlib widgets.

Post on piazza if there seems to be a platform dependent issue.

