Subspaces

Geometric Algorithms
Lecture 15

Introduction

Recap Problem

$$
A=\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
2 & 0 & 2 & 3 \\
1 & 4 & 0 & 2
\end{array}\right] \sim\left[\begin{array}{llll}
3 & 0 & 1 & 5 \\
2 & 8 & 0 & 4 \\
2 & 0 & 2 & 3
\end{array}\right]=B
$$

Consider the following pair of matrices A and B which are row equivalent. Write down a sequence of row operations from A to B and find a matrix E such that $E A=B$.

$$
\text { Answer } \begin{gathered}
R_{1} \leftarrow R_{1}+R_{2} \\
R_{3} \leftarrow 2 R_{3} \\
R_{2}, R_{3} \leftarrow R_{3}, R_{2}
\end{gathered} \left\lvert\,\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 2 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
2 & 0 & 2 & 3 \\
1 & 4 & 0 & 2
\end{array}\right]=\left[\begin{array}{llll}
3 & 0 & 1 & 5 \\
2 & 8 & 0 & 4 \\
2 & 0 & 2 & 3
\end{array}\right]\right.
$$

Objectives

1. Introduce the fundamental notions of subspaces and bases.
2. Extend our intuitions about planes in \mathbb{R}^{3} to subspaces in \mathbb{R}^{n}.
3. Connected subspaces to matrices so that we can use the techniques we been honing in this course.

Keywords

subspaceclosed under additionclosed under scalingcolumn spacenull spacebasis

Subspaces

The Idea Behind Subspaces

The Idea Behind Subspaces

"sub" means "part of" or "below"

The Idea Behind Subspaces

```
"sub" means "part of" or "below"
```

A plane in \mathbb{R}^{3} looks like a (possibly tilted) copy of \mathbb{R}^{2}

The Idea Behind Subspaces

```
"sub" means "part of" or "below"
```

A plane in \mathbb{R}^{3} looks like a (possibly tilted) copy of \mathbb{R}^{2}

Subspaces generalize of this idea.

The Idea Behind Subspaces

"sub" means "part of" or "below"
A plane in \mathbb{R}^{3} looks like a (possibly tilted) copy of \mathbb{R}^{2}

Subspaces generalize of this idea.

For example, there can be a "possibly tilted copy" of \mathbb{R}^{3} sitting in
 \mathbb{R}^{5}

An Aside: Flatland, Relativity, Higher Dimensions

An Aside: Flatland, Relativity, Higher Dimensions

Imagine if the universe were 2D. Then we would be flat objects seeing in 1D.

An Aside: Flatland, Relativity, Higher Dimensions

Flatland by Edwin A. Abbott
Imagine if the universe were 2D. Then we would be flat objects seeing in 1D.
You would never "know" if that plane was sitting in some 3D space, and you'd never know if it was tilted.

An Aside: Flatland, Relativity, Higher Dimensions

Flatland by Edwin A. Abbott
Imagine if the universe were 2D. Then we would be flat objects seeing in 1D.
You would never "know" if that plane was sitting in some 3D space, and you'd never know if it was tilted.

You'd have to be "on the outside" to see this.

An Aside: Flatland, Relativity, Higher Dimensions

Flatland by Edwin A. Abbott

Imagine if the universe were 2D. Then we would be flat objects seeing in 1D.
You would never "know" if that plane was sitting in some 3D space, and you'd never know if it was tilted.

You'd have to be "on the outside" to see this.

The moral. We have to be careful regarding our intuitions about higherdimensional subspaces.

An Aside: Flatland, Relativity, Higher Dimensions

Imagine if the universe were 2D. Then we would be flat objects seeing in 1D.
You would never "know" if that plane was sitting in some 3D space, and you'd never know if it was tilted.

You'd have to be "on the outside" to see this.

The moral. We have to be careful regarding our intuitions about higherdimensional subspaces.

A 3D subspace of \mathbb{R}^{7} "looks like" 3D space from the inside, but from the outside it may be "tilted."

Subspace (Algebraic Definition)

Definition. A subspace of \mathbb{R}^{n} is a set H of vectors in \mathbb{R}^{n} such that

1. for every \mathbf{u} and \mathbf{v} in H, the vector $\mathbf{u}+\mathbf{v}$ is in H
2. for every \mathbf{u} in H and scalar c, the vector $c \mathbf{u}$ is in H

Subspace (Algebraic Definition)

Definition. A subspace of \mathbb{R}^{n} is a set H of vectors in \mathbb{R}^{n} such that

1. for every \mathbf{u} and \mathbf{v} in H, the vector $\mathbf{u}+\mathbf{v}$ is in $H \quad H$ is closed under addition
2. for every \mathbf{u} in H and scalar c, the vector $c \mathbf{u}$ is in H is closed under scaling

Subspace (Algebraic Definition)

Definition. A subspace of \mathbb{R}^{n} is a set H of vectors in \mathbb{R}^{n} such that

1. for every \mathbf{u} and \mathbf{v} in H, the vector $\mathbf{u}+\mathbf{v}$ is in $H \quad H$ is closed under addition
2. for every u in H and scalar c, the vector $c \mathbf{u}$ is in H is closed under scaling
!! Subspaces must "live" somewhere !!

How to Think About this Definition

It's not possible to
"leave" H by addition or scaling.
(recall this is also how we discussed spans)

How To: Verifying Subspaces

How To: Verifying Subspaces

Question. Verify that H is a subspace of \mathbb{R}^{n}.

How To: Verifying Subspaces

Question. Verify that H is a subspace of \mathbb{R}^{n}. Solution.

1. Show that if \mathbf{u} and \mathbf{v} are in H then so is $\mathbf{u}+\mathbf{v}$.

How To: Verifying Subspaces

Question. Verify that H is a subspace of \mathbb{R}^{n}. Solution.

1. Show that if \mathbf{u} and \mathbf{v} are in H then so is $\mathbf{u}+\mathbf{v}$.
2. Show that if \mathbf{u} is in H then so is cu for any scalar c.

How To: Verifying Non-Subspaces

How To: Verifying Non-Subspaces

Question. Verify that H is not a subspace of \mathbb{R}^{n}.

How To: Verifying Non-Subspaces

Question. Verify that H is not a subspace of \mathbb{R}^{n}. Solution.

Find \mathbf{u} and \mathbf{v} in H such that $\mathbf{u}+\mathbf{v}$ is not in H.

How To: Verifying Non-Subspaces

Question. Verify that H is not a subspace of \mathbb{R}^{n}. Solution.

Find \mathbf{u} and \mathbf{v} in H such that $\mathbf{u}+\mathbf{v}$ is not in H. OR

Find u in H such that $c \mathbf{u}$ is not in H for some scalar c.

Subspaces must include the origin

Fact. For any subspace H of \mathbb{R}^{n}, the zero vector is in H. In set notation: $\mathbf{0} \in H$

Verify:

How To: Verifying Non-Subspaces

How To: Verifying Non-Subspaces

Question. Verify that H is not a subspace of \mathbb{R}^{n}.

How To: Verifying Non-Subspaces

Question. Verify that H is not a subspace of \mathbb{R}^{n}. Solution.

Find \mathbf{u} and \mathbf{v} in H such that $\mathbf{u}+\mathbf{v}$ is not in H.

How To: Verifying Non-Subspaces

Question. Verify that H is not a subspace of \mathbb{R}^{n}. Solution.

Find \mathbf{u} and \mathbf{v} in H such that $\mathbf{u}+\mathbf{v}$ is not in H.
OR
Find \mathbf{u} in H such that $c \mathbf{u}$ is not in H for some scalar c.

How To: Verifying Non-Subspaces

Question. Verify that H is not a subspace of \mathbb{R}^{n}.
Solution.
Find \mathbf{u} and \mathbf{v} in H such that $\mathbf{u}+\mathbf{v}$ is not in H.
OR
Find \mathbf{u} in H such that $c \mathbf{u}$ is not in H for some scalar c. OR

Show that 0 is not in H.

Example: The Origin

Fact. The set $\left\{\mathbf{0}_{n}\right\}$ is a subspace of \mathbb{R}^{n}
Verify:

Example: \mathbb{R}^{n}

Fact. The set \mathbb{R}^{n} is a subspace of \mathbb{R}^{n} (in other words, \mathbb{R}^{n} is a subspace of itself).

Example: Spans

Fact. For any set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ of \mathbb{R}^{n}, the set $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a subspace of \mathbb{R}^{n}. Verify:

Subspace in \mathbb{R}^{3} (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^{3} :

1. $\{0\}$ just the origin
2. lines (through the origin)
3. planes (through the origin)
4. All of \mathbb{R}^{3}

Non-Example: Bounded Sets

Fact. The set $\{(x, y): x \geq 3\}$ is not a subspace of \mathbb{R}^{2}. Verify:

Question

1. Show that the unit sphere $\left\{(x, y, z): x^{2}+y^{2}+x^{2}=1\right\}$ is not a subspace of \mathbb{R}^{3}.
2. Show that the range of a linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n}.

Answer (1)

Answer (2)

How To: Subspaces and Span

Question. Show that \mathbf{v} lies in the subspace generated by $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$.

Solution. Show that \mathbf{v} is in $\operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$.
We will start using "subspace generated by" and "span of" interchangeably.

Subspaces and Matrices

The Connection between Subspaces and Matrices

The Connection between Subspaces and Matrices

Since matrices can be viewed as...
» collections of vectors
» implementing linear transformations

The Connection between Subspaces and Matrices

Since matrices can be viewed as...
» collections of vectors
» implementing linear transformations
...they have many associated subspaces.

The Connection between Subspaces and Matrices

Since matrices can be viewed as...
» collections of vectors
» implementing linear transformations
...they have many associated subspaces.
Today we'll look at:
» column space
» null space

Column Space

Column Space

Definition. The column space of a matrix A, written $\operatorname{Col}(A)$ or $\operatorname{Col} A$, is the set of all linear combinations of the columns of A.

Column Space

Definition. The column space of a matrix A, written $\operatorname{Col}(A)$ or $\operatorname{Col} A$, is the set of all linear combinations of the columns of A.

The column space of a matrix is the span of its columns.

Column Space

Definition. The column space of a matrix A, written $\operatorname{Col}(A)$ or $\operatorname{Col} A$, is the set of all linear combinations of the columns of A.

The column space of a matrix is the span of its columns.

The column space of a matrix is the range of the linear transformation it implements.

Subspace of What?

$$
m \left\lvert\, \begin{array}{cc}
\frac{n}{\left[\begin{array}{ccccc}
\mid & \mid & \ldots & \mid & \mid \\
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n-1} & \mathbf{a}_{n} \\
\mid & \mid & \ldots & \mid & \mid
\end{array}\right]} \quad \text { is a subspace of } \\
\begin{array}{c}
c_{1} \mathbf{a}_{1}+c_{2} \mathbf{a}_{2}+\ldots c_{n} \mathbf{a}_{n} \text { is a } \\
\text { vector in } \mathbb{R}^{m}
\end{array} & \mathbb{R}^{m}
\end{array} \quad\right. \text { (}
$$

Examples

$$
\begin{aligned}
& A= {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & -1 & 4 \\
2 & -2 & 5 \\
3 & -3 & 6
\end{array}\right] } \\
& \operatorname{Col}(A) \text { is all of } \mathbb{R}^{3} \\
& \operatorname{Col}(B) \text { is just span }\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]\right\}
\end{aligned}
$$

Null Space

Null Space

Definition. The null space of a matrix A, written $\operatorname{Nul}(A)$ or $\operatorname{Nul} A$, is the set of all solutions to the homogenous equation

$$
A \mathbf{x}=\mathbf{0}
$$

Null Space

Definition. The null space of a matrix A, written $\operatorname{Nul}(A)$ or $\operatorname{Nul} A$, is the set of all solutions to the homogenous equation

$$
A \mathbf{x}=\mathbf{0}
$$

The null space of a matrix A is the set of all vectors that are mapped to the zero vector by A.

Subspace of What?

$m \times n \quad n \times 1 \quad m \times 1$
$\operatorname{Nul}(A)$
is a subspace of
\mathbb{R}^{n}
v is a vector
in \mathbb{R}^{n}

The Null Space is a Subspace

Fact. For any $m \times n$ matrix A, the set $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^{n}.

Verify:

Examples

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & -1 & 4 \\
2 & -2 & 5 \\
3 & -3 & 6
\end{array}\right]
$$

$\operatorname{Nul}(A)=\{\mathbf{0}\}$
Verify:
$\operatorname{Nul}(B)=\operatorname{span}\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{T}\right\}$

Linear Transformations Perspective

If A implements the linear transformation T then:
» $\operatorname{Col}(A)$ is the same as $\operatorname{ran}(T)$, where vectors are "sent" by T
» $\operatorname{Nul}(A)$ is the set of vectors "zeroed out" by T, which is sometimes called the kernel of T .

Comparing Column Space and Null Space

The column space and the null space live can live in entirely different spaces.

The point. They are not easily comparable

Contrast Between Nul \boldsymbol{A} and $\operatorname{Col} \boldsymbol{A}$ for an $m \times n$ Matrix A

$\mathrm{Nul} A$	$\mathrm{Col} A$
1. $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}.	1. $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.
2. $\mathrm{Nul} A$ is implicitly defined; that is, you are given only a condition $(A \mathbf{x}=\mathbf{0})$ that vectors in $\operatorname{Nul} A$ must satisfy.	2. $\operatorname{Col} A$ is explicitly defined; that is, you are told how to build vectors in $\operatorname{Col} A$.
3. It takes time to find vectors in $\operatorname{Nul} A$. Row operations on $\left[\begin{array}{ll}A & \mathbf{0}\end{array}\right]$ are required.	3. It is easy to find vectors in $\operatorname{Col} A$. The columns of A are displayed; others are formed from them.
4. There is no obvious relation between $\operatorname{Nul} A$ and the entries in A.	4. There is an obvious relation between $\operatorname{Col} A$ and the entries in A, since each column of A is in $\operatorname{Col} A$.
5. A typical vector \mathbf{v} in $\operatorname{Nul} A$ has the property that $A \mathbf{v}=\mathbf{0}$.	5. A typical vector \mathbf{v} in $\operatorname{Col} A$ has the property that the equation $A \mathbf{x}=\mathbf{v}$ is consistent.
6. Given a specific vector \mathbf{v}, it is easy to tell if \mathbf{v} is in Nul A. Just compute $A \mathbf{v}$.	6. Given a specific vector \mathbf{v}, it may take time to tell if \mathbf{v} is in $\mathrm{Col} A$. Row operations on $\left[\begin{array}{ll}A & \mathbf{v}\end{array}\right]$ are required.
7. $\operatorname{Nul} A=\{0\}$ if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.	7. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.
8. $\operatorname{Nul} A=\{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.	8. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.

(just for reference)

Bases

The idea behind a basis

The idea behind a basis

We've already said spans are subspaces, but the converse true too.

The idea behind a basis

We've already said spans are subspaces, but the converse true too.

Every subspace is the span of a collection of vectors.

The idea behind a basis

We've already said spans are subspaces, but the converse true too.

Every subspace is the span of a collection of vectors.

A basis is a "minimal" choice of these vectors.

The idea behind a basis

We've already said spans are subspaces, but the converse true too.

Every subspace is the span of a collection of vectors.

A basis is a "minimal" choice of these vectors.
A basis is a "compact representation" of a subspace.

Recall: Standard Basis

Definition. The n-dimensional standard basis vectors (or standard coordinate vectors) are the vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ where

$$
\left.\mathbf{e}_{i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
i-1 \\
0 \\
0
\end{array}\right] \begin{array}{c}
1 \\
i+1 \\
\vdots \\
n
\end{array}\right]
$$

Recall: Standard Basis

Definition (Alternative). The n-dimensional standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are the columns of the $n \times n$ identity matrix.

$$
I=\left[\begin{array}{llll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \ldots & \mathbf{e}_{n}
\end{array}\right]
$$

What was interesting about the standard basis?

What was interesting about the standard basis?

The n standard basis vectors in \mathbb{R}^{n} :
» are linearly independent
» span all of \mathbb{R}^{n}

What was interesting about the standard basis?

The n standard basis vectors in \mathbb{R}^{n} :
» are linearly independent
» span all of \mathbb{R}^{n}
Their span is as "large" as possible while the set of vectors generating the span is as "small" as possible.

Basis

Basis

Definition. A basis for a subspace H of \mathbb{R}^{n} is a linearly independent set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ of vectors that spans H (in symbols: $\left.H=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}\right)$.

A basis is a minimal set of vectors which spans all of H.

Example: Standard basis

The standard basis is a basis of \mathbb{R}^{n}.

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots
\end{array}\right]=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+\ldots+v_{n} \mathbf{e}_{n}
$$

Column vectors are just weights for a linear combination of the standard basis

Example: Column Space of Invertible Matrices

Fact. The columns of an invertible $n \times n$ matrix form a basis of \mathbb{R}^{n}.

Verify:

Example: Subsets of Spanning Sets

Example: Subsets of Spanning Sets

Theorem. If the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ span a subspace H then a subset of them form a basis of H.

Example: Subsets of Spanning Sets

Theorem. If the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, ., ., \mathbf{v}_{k}$ span a subspace H then a subset of them form a basis of H.

We can remove vectors from a spanning set until we get a basis.

Example: Subsets of Spanning Sets

Theorem. If the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ span a subspace H then a subset of them form a basis of H.

We can remove vectors from a spanning set until we get a basis.

How do we do this?

Example: Subsets of Spanning Sets

Theorem. If the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, ., ., \mathbf{v}_{k}$ span a subspace H then a subset of them form a basis of H.

We can remove vectors from a spanning set until we get a basis.

How do we do this?
As usual, by connecting back to matrices.

Question

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
-2 \\
3
\end{array}\right]\right\}
$$

Is this set of vectors a basis for \mathbb{R}^{3} ?

Answer

Solving tip. A set of vectors in \mathbb{R}^{n} spans \mathbb{R}^{n} if the standard basis is in their span.

Bases of Column Space and Null Space

The Goal of this Last Section

Determine how to find bases for the column space and the null space of a given matrix.

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for $\operatorname{Nul}(A)$.

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for $\operatorname{Nul}(A)$.

The idea. Describe the solutions of $A x=0$ as linear combination of vectors

Example
 $A \sim$
 $$
\left[\begin{array}{ccccc} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]
$$

Suppose A has the above reduced echelon form. Let's write down a general form solution for A :

Parametric Solutions

We can think of our general form solution as a (linear) transformation.

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned} \equiv \begin{gathered}
\text { "given values for } \\
x_{2}, x_{3}, \text { and } x_{4}, \text { I } \\
\text { can give you a } \\
\text { solution" }
\end{gathered}
$$

Parametric Solutions

We can think of our general form solution as a (linear) transformation.

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned} \quad \equiv \quad\left[\begin{array}{c}
s \\
t \\
u
\end{array}\right] \mapsto\left[\begin{array}{c}
2 s+t-3 u \\
s \\
(-2) t+2 u \\
t \\
u
\end{array}\right]
$$

Parametric Solutions

We can think of our general form solution as a (linear) transformation. !! this transformation is only linear $!!$

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned} \quad \equiv \quad\left[\begin{array}{c}
s \\
t \\
u
\end{array}\right] \mapsto\left[\begin{array}{c}
2 s+t-3 u \\
s \\
(-2) t+2 u \\
t \\
u
\end{array}\right]
$$

Example

$$
\left[\begin{array}{c}
s \\
t \\
u
\end{array}\right] \mapsto\left[\begin{array}{c}
2 s+t-3 u \\
s \\
(-2) t+2 u \\
t \\
u
\end{array}\right]
$$

Let's find the matrix implementing this linear transformation:

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Every solution to $A \mathbf{x}=\mathbf{0}$ can be written as an image of this transformation.

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Every solution to $A \mathbf{x}=\mathbf{0}$ can be written as an image of this transformation.

So every solution can be written as a linear combination of its columns.

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Every solution to $A \mathbf{x}=\mathbf{0}$ can be written as an image of this transformation.

So every solution can be written as a linear combination of its columns.

The columns of this matrix span $\operatorname{Nul}(A)$.

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The columns of this matrix are linearly independent.

Verify:

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The columns of this matrix span $\operatorname{Nul}(A)$.
The columns of this matrix are linearly independent.

The columns of this matrix form a basis for $\operatorname{Nul}(A)$.

Example

Alternatively, we can think of writing a general form solution so that it is a linear combination of vectors with free variables as weights:

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned}
$$

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for $\operatorname{Nul}(A)$.

Solution.

1. Find a general form solution for $A \mathbf{x}=\mathbf{0}$.
2. Write this solution as a linear combination of vectors where the free variables are the weights.
3. The resulting vectors form a basis for $\operatorname{Nul}(A)$.

An Observation

The number of vectors in the basis we found is the same as the number of free variables in a general form solution.

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned}
$$

onto column space...

How To: Finding a basis for the column space

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

We already know the columns of A span $\operatorname{Col}(A)$.

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

We already know the columns of A span $\operatorname{Col}(A)$.
So we also already know some subset of columns of A form a basis for $\operatorname{Col}(A)$.

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

We already know the columns of A span $\operatorname{Col}(A)$.
So we also already know some subset of columns of A form a basis for $\operatorname{Col}(A)$.

Which vectors should we choose?

Column Space and Reduced Echelon form

$\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array}\right] \sim\left[\begin{array}{ccccc}1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Column Space and Reduced Echelon form

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The idea. What if we cover up the non-pivot columns?

Column Space and Reduced Echelon form

The idea. What if we cover up the non-pivot columns?
Then we see $\left[\mathbf{a}_{1} \mathbf{a}_{3}\right]$ has 2 pivots.

Column Space and Reduced Echelon form

The idea. What if we cover up the non-pivot columns?
Then we see $\left[\mathbf{a}_{1} \mathbf{a}_{3}\right]$ has 2 pivots.
So the pivot columns are linearly independent.

Column Space and Reduced Echelon form

$\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array}\right] \sim\left[\begin{array}{ccccc}1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Column Space and Reduced Echelon form

Observation. [2 1000$]^{T}$ is a solution to the system $A \mathbf{x}=\mathbf{0}$.

Column Space and Reduced Echelon form

Observation. [2 1000$]^{T}$ is a solution to the system $A \mathbf{x}=\mathbf{0}$.
So $2 \mathbf{a}_{1}+\mathbf{a}_{2}=\mathbf{0}$ and $\mathbf{a}_{2}=(-2) \mathbf{a}_{1}$.

Column Space and Reduced Echelon form

Observation. [2 1000$]^{T}$ is a solution to the system $A \mathbf{x}=\mathbf{0}$.
So $2 \mathbf{a}_{1}+\mathbf{a}_{2}=\mathbf{0}$ and $\mathbf{a}_{2}=(-2) \mathbf{a}_{1}$.
In general, every non-pivot column of A can be written as a linear combination pivots in front of it.

Column Space and Reduced Echelon form

Observation. [2 1000$]^{T}$ is a solution to the system $A \mathbf{x}=\mathbf{0}$.
So $2 \mathbf{a}_{1}+\mathbf{a}_{2}=\mathbf{0}$ and $\mathbf{a}_{2}=(-2) \mathbf{a}_{1}$.
In general, every non-pivot column of A can be written as a linear combination pivots in front of it.

This tells us that \mathbf{a}_{1} and \mathbf{a}_{3} span $\operatorname{Col}(A)$.

Column Space and Reduced Echelon form

$\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array}\right] \sim\left[\begin{array}{ccccc}1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Column Space and Reduced Echelon form

The takeaway. The pivot columns of A form a basis for $\operatorname{Col}(A)$.

Column Space and Reduced Echelon form

The takeaway. The pivot columns of A form a basis for $\operatorname{Col}(A)$.

!! IMPORTANT !!

Choose the columns of A.

$$
\left(\mathbf{e}_{1} \text { and } \mathbf{e}_{2} \text { do not necessarily form a basis for } \operatorname{Col}(A)\right)
$$

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

Solution.

1. Find the pivot columns in an echelon form of A.
2. The associated columns in A form a basis for $\operatorname{Col}(A)$.

General Tip

A lot of information can be gleaned from the (reduced) echelon form of a matrix.

You shouldn't do reductions without thinking, but when you're stuck, reduce and maybe you can find a solution in that matrix.

Question

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 19 & 0 & -4 \\
1 & 0 & 9 & 1 & 1 \\
1 & -1 & 14 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 9 & 0 & 0 \\
0 & 1 & -5 & 0 & 2 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Find a bases for the column space and null space of A.

Answer

Summary

Subspaces define "tilted versions" of \mathbb{R}^{k} in \mathbb{R}^{n} (where $k \leq n$).

Bases are compact representation of subspaces as minimal spanning sets.

Matrices have useful associated subspaces like the column space and null space.

