Dimension and Rank

Geometric Algorithms
Lecture 16

Introduction

Recap Problem

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] \quad \mathbf{v}_{4}=\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]
$$

Consider the subspace H generated by \mathbf{v}_{1} and \mathbf{v}_{2}. Show that \mathbf{v}_{3} and \mathbf{v}_{4} form a basis for H.

Answer
 $$
\mathbf{v}_{1}=\left[\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right] \quad \mathbf{v}_{4}=\left[\begin{array}{l} 2 \\ 1 \\ 2 \end{array}\right]
$$

Hint. Show that \mathbf{v}_{1} and \mathbf{v}_{2} are in the span of \mathbf{v}_{3} and \mathbf{v}_{4}

Objectives

1. Learn techniques to find bases for the column space and the null space of a matrix
2. Briefly discuss the coordinate systems.
3. Introduce the fundamental notion of dimension, which quantifies how "large" a space is
4. Relate the dimension of the column space and the null space of a matrix

Keywords

```
basis
column space
null space
coordinate system
change of basis
dimension
rank
rank theorem
invertible matrix theorem (extended)
```


Recap

Recall: The Idea Behind Subspaces

Recall: The Idea Behind Subspaces

"sub" means "part of" or "below"

Recall: The Idea Behind Subspaces

"sub" means "part of" or "below"

A plane in \mathbb{R}^{3} looks like a (possibly tilted) copy of \mathbb{R}^{2}

Recall: The Idea Behind Subspaces

"sub" means "part of" or "below"

A plane in \mathbb{R}^{3} looks like a (possibly tilted) copy of \mathbb{R}^{2}

Subspaces generalize of this idea.

Recall: The Idea Behind Subspaces

"sub" means "part of" or "below"

A plane in \mathbb{R}^{3} looks like a (possibly tilted) copy of \mathbb{R}^{2}

Subspaces generalize of this idea.

For example, there can be a "possibly tilted copy" of \mathbb{R}^{3} sitting in
 \mathbb{R}^{5}

Recall: Subspace (Algebraic Definition)

Definition. A subspace of \mathbb{R}^{n} is a set H of vectors in \mathbb{R}^{n} such that

1. for every \mathbf{u} and \mathbf{v} in H, the vector $\mathbf{u}+\mathbf{v}$ is in H
2. for every \mathbf{u} in H and scalar c, the vector $c \mathbf{u}$ is in H

Recall: Subspace (Algebraic Definition)

Definition. A subspace of \mathbb{R}^{n} is a set H of vectors in \mathbb{R}^{n} such that

1. for every \mathbf{u} and \mathbf{v} in H, the vector $\mathbf{u}+\mathbf{v}$ is in $H \quad H$ is closed under addition
2. for every \mathbf{u} in H and scalar c, the vector $c \mathbf{u}$ is in $H \quad H$ is closed under scaling

Recall: Subspace (Algebraic Definition)

Definition. A subspace of \mathbb{R}^{n} is a set H of vectors in \mathbb{R}^{n} such that

1. for every \mathbf{u} and \mathbf{v} in H, the vector $\mathbf{u}+\mathbf{v}$ is in $H \quad H$ is closed under addition
2. for every \mathbf{u} in H and scalar c, the vector $c \mathbf{u}$ is in $H \quad H$ is closed under scaling
!! Subspaces must "live" somewhere !!

Recall: How to Think About this Definition

It's not possible to
"leave" H by addition or scaling.
(recall this is also how we discussed spans)

Recall: Subspace in \mathbb{R}^{3} (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^{3} :

1. $\{0\}$ just the origin
2. lines (through the origin)
3. planes (through the origin)
4. All of \mathbb{R}^{3}

\mathbb{R}^{3}

Column Space

Column Space

Definition. The column space of a matrix A, written $\operatorname{Col}(A)$ or $\operatorname{Col} A$, is the set of all linear combinations of the columns of A.

Column Space

Definition. The column space of a matrix A, written $\operatorname{Col}(A)$ or $\operatorname{Col} A$, is the set of all linear combinations of the columns of A.

The column space of a matrix is the span of its columns.

Column Space

Definition. The column space of a matrix A, written $\operatorname{Col}(A)$ or $\operatorname{Col} A$, is the set of all linear combinations of the columns of A.

The column space of a matrix is the span of its columns.

The column space of a matrix is the range of the linear transformation it implements.

Subspace of What?

$$
m \left\lvert\, \begin{array}{cc}
\frac{n}{\left[\begin{array}{ccccc}
\mid & \mid & \ldots & \mid & \mid \\
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n-1} & \mathbf{a}_{n} \\
\mid & \mid & \ldots & \mid & \mid
\end{array}\right]} \quad \text { is a subspace of } \\
\begin{array}{c}
c_{1} \mathbf{a}_{1}+c_{2} \mathbf{a}_{2}+\ldots c_{n} \mathbf{a}_{n} \text { is a } \\
\text { vector in } \mathbb{R}^{m}
\end{array} & \mathbb{R}^{m}
\end{array} \quad\right. \text { (}
$$

Null Space

Null Space

Definition. The null space of a matrix A, written $\operatorname{Nul}(A)$ or $\operatorname{Nul} A$, is the set of all solutions to the homogenous equation

$$
A \mathbf{x}=\mathbf{0}
$$

Null Space

Definition. The null space of a matrix A, written $\operatorname{Nul}(A)$ or $\operatorname{Nul} A$, is the set of all solutions to the homogenous equation

$$
A \mathbf{x}=\mathbf{0}
$$

The null space of a matrix A is the set of all vectors that are mapped to the zero vector by A.

Subspace of What?

$m \times n \quad n \times 1 \quad m \times 1$
$\operatorname{Nul}(A)$
is a subspace of
\mathbb{R}^{n}
v is a vector
in \mathbb{R}^{n}

Recall: Basis

Recall: Basis

Definition. A basis for a subspace H of \mathbb{R}^{n} is a linearly independent set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ of vectors that spans H (in symbols: $\left.H=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}\right)$.

A basis is a minimal set of vectors which spans all of H.

Recall: What's interesting about the standard basis?

Recall: What's interesting about the standard basis?

The n standard basis vectors in \mathbb{R}^{n} :
» are linearly independent
» span all of \mathbb{R}^{n}

Recall: What's interesting about the standard basis?

The n standard basis vectors in \mathbb{R}^{n} :
» are linearly independent » span all of \mathbb{R}^{n}

Their span is as "large" as possible while the set of vectors generating the span is as "small" as possible.

Recall: Example: Standard basis

The standard basis is a basis of \mathbb{R}^{n}.

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots
\end{array}\right]=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+\ldots+v_{n} \mathbf{e}_{n}
$$

Every column vector can be written in exactly one way as a linear combination of standard basis vectors

Recall: Example: Column Space of Invertible Matrices

Fact. The columns of an invertible $n \times n$ matrix form a basis of \mathbb{R}^{n}.

Verify: IMT tell us

$$
\begin{aligned}
& \text { colvmis of } A \text { re } \\
& \text { columns of } A \text { span }
\end{aligned}
$$

Bases of Column Space and Null Space

The Goal of this Section

Determine how to find bases for the column space and the null space of a given matrix.

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for $\operatorname{Nul}(A)$.

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for $\operatorname{Nul}(A)$.

The idea. Describe the solutions of $A x=0$ as linear combination of vectors

Example

$$
\left.\left.A \sim\left[\begin{array}{ccccc}
1 & x_{2} & -2 & x_{3} & x_{4} \\
0 & x_{5} \\
0 & 1 & 3 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0
\end{array}\right] \right\rvert\, \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Suppose A has the above reduced echelon form.
Let's write down a general form solution for A :

$$
\left|\begin{array}{l}
x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
x_{2} \text { is tree } \\
x_{3}=-2 x_{4}+2 x_{5} \\
x_{4} \text { is fere } \\
x_{5} \text { is fer }
\end{array}\right| A \vec{x}=\vec{O}
$$

Parametric Solutions

We can think of our general form solution as a (linear) transformation.

$$
\begin{array}{ll}
x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
x_{2} \text { is free } \\
x_{3}=(-2) x_{4}+2 x_{5} \\
x_{4} \text { is free } & \equiv
\end{array} \begin{gathered}
\\
x_{5} \text { is free }
\end{gathered}
$$

Parametric Solutions

We can think of our general form solution as a (linear) transformation.

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned} \quad \equiv \quad\left[\begin{array}{c}
s \\
t \\
u
\end{array}\right] \mapsto\left[\begin{array}{c}
2 s+t-3 u \\
s \\
(-2) t+2 u \\
t \\
u
\end{array}\right]
$$

Parametric Solutions

We can think of our general form solution as a (linear) transformation. !! this transformation is only linear $!!$

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned} \quad \equiv \quad\left[\begin{array}{c}
s \\
t \\
u
\end{array}\right] \mapsto\left[\begin{array}{c}
2 s+t-3 u \\
s \\
(-2) t+2 u \\
t \\
u
\end{array}\right]
$$

Example

$$
\left[\begin{array}{c}
s \\
t \\
u
\end{array}\right] \mapsto\left[\begin{array}{c}
2 s+t-3 u \\
s \\
(-2) t+2 u \\
t \\
u
\end{array}\right]
$$

Let's find the matrix implementing this linear transformation:
$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \longmapsto$

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Every solution to $A \mathbf{x}=\mathbf{0}$ can be written as an image of this transformation.

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Every solution to $A \mathbf{x}=\mathbf{0}$ can be written as an image of this transformation.

So every solution can be written as a linear combination of its columns.

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Every solution to $A \mathbf{x}=\mathbf{0}$ can be written as an image of this transformation.

So every solution can be written as a linear combination of its columns.

The columns of this matrix span $\operatorname{Nul}(A)$.

$$
\left.\begin{array}{c}
x_{2} \text { istria } \\
x_{4} \text { is tree } \\
x_{5} \text { in tree }
\end{array} \begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The columns of this matrix are linearly

$$
\begin{aligned}
& \text { independent: } \\
& \text { Verify: } \quad \begin{array}{l}
\text { 2pppen } \\
(1)+a_{2}(0)+a_{3}(0)=0\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+ \\
a_{1}=0 \\
a_{1}(0)+a_{2}(1)+a_{3}(0)=0 \\
a_{2}=0
\end{array}
\end{aligned}
$$

Example

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The columns of this matrix span $\operatorname{Nul}(A)$.
The columns of this matrix are linearly independent.

The columns of this matrix form a basis for $\operatorname{Nul}(A)$.

Example

Alternatively, we can think of writing a general form solution so that it is a linear combination of vectors with

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned}
$$ free variables as weights:

$$
x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
x_{4}\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]
$$

How to: Finding a basis for the null space

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for $\operatorname{Nul}(A)$.

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for $\operatorname{Nul}(A)$.

Solution.

1. Find a general form solution for $A \mathbf{x}=\mathbf{0}$.

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for $\operatorname{Nul}(A)$.

Solution.

1. Find a general form solution for $A \mathbf{x}=\mathbf{0}$.
2. Write this solution as a linear combination of vectors where the free variables are the weights.

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for $\operatorname{Nul}(A)$.

Solution.

1. Find a general form solution for $A \mathbf{x}=\mathbf{0}$.
2. Write this solution as a linear combination of vectors where the free variables are the weights.
3. The resulting vectors form a basis for $\operatorname{Nul}(A)$.

An Observation

The number of vectors in the basis we found is the same as the number of free variables in our general form solution.

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned} \quad \equiv \quad\left[\begin{array}{c}
s \\
t \\
u
\end{array}\right] \mapsto\left[\begin{array}{c}
2 s+t-3 u \\
s \\
(-2) t+2 u \\
t \\
u
\end{array}\right]
$$

moving on to column space...

How To: Finding a basis for the column space

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

We already know the columns of A span $\operatorname{Col}(A)$.

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

We already know the columns of A span $\operatorname{Col}(A)$.
So we also already know some subset of columns of A form a basis for $\operatorname{Col}(A)$.

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

We already know the columns of A span $\operatorname{Col}(A)$.
So we also already know some subset of columns of A form a basis for $\operatorname{Col}(A)$.

Which columns of A should we choose?

$$
A=4[\quad]
$$

Column Space and Reduced Echelon form

$\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array}\right] \sim\left[\begin{array}{ccccc}1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Column Space and Reduced Echelon form

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The idea. What if we cover up the non-pivot columns?

Column Space and Reduced Echelon form

The idea. What if we cover up the non-pivot columns?
Then we see $\left[\mathbf{a}_{1} \mathbf{a}_{3}\right]$ has 2 pivots.

Column Space and Reduced Echelon form

The idea. What if we cover up the non-pivot columns?
Then we see $\left[\mathbf{a}_{1} \mathbf{a}_{3}\right]$ has 2 pivots.
So the pivot columns are linearly independent.

Column Space and Reduced Echelon form

$\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array}\right] \sim\left[\begin{array}{ccccc}1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Column Space and Reduced Echelon form

Observation. [2 1000$]^{T}$ is a solution to the system $A \mathbf{x}=\mathbf{0}$.

Column Space and Reduced Echelon form

Observation. [2 1000$]^{T}$ is a solution to the system $A \mathbf{x}=\mathbf{0}$.
So $2 \mathbf{a}_{1}+\mathbf{a}_{2}=\mathbf{0}$ and $\mathbf{a}_{2}=(-2) \mathbf{a}_{1}$.

Column Space and Reduced Echelon form

Observation. [2 1000$]^{T}$ is a solution to the system $A \mathbf{x}=\mathbf{0}$.
So $2 \mathbf{a}_{1}+\mathbf{a}_{2}=\mathbf{0}$ and $\mathbf{a}_{2}=(-2) \mathbf{a}_{1}$.
In general, every non-pivot column of A can be written as a linear combination pivots in front of it.

Column Space and Reduced Echelon form

Observation. [2 1000$]^{T}$ is a solution to the system $A \mathbf{x}=\mathbf{0}$.
So $2 \mathbf{a}_{1}+\mathbf{a}_{2}=\mathbf{0}$ and $\mathbf{a}_{2}=(-2) \mathbf{a}_{1}$.
In general, every non-pivot column of A can be written as a linear combination pivots in front of it.

This tells us that \mathbf{a}_{1} and \mathbf{a}_{3} span $\operatorname{Col}(A)$.

Column Space and Reduced Echelon form

$\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array}\right] \sim\left[\begin{array}{ccccc}1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Column Space and Reduced Echelon form

The takeaway. The pivot columns of A form a basis for $\operatorname{Col}(A)$.

Column Space and Reduced Echelon form

The takeaway. The pivot columns of A form a basis for $\operatorname{Col}(A)$.

!! IMPORTANT !!

Choose the columns of A.

$$
\left(\mathbf{e}_{1} \text { and } \mathbf{e}_{2} \text { do not necessarily form a basis for } \operatorname{Col}(A)\right)
$$

How To: Finding a basis for the column space

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

Solution.

1. Find the pivot columns in an echelon form of A.

How To: Finding a basis for the column space

Question. Given a $m \times n$ matrix A, find a basis for $\operatorname{Col}(A)$.

Solution.

1. Find the pivot columns in an echelon form of A.
2. The associated columns in A form a basis for $\operatorname{Col}(A)$.

An Observation

The number of vectors in the basis we found is the same as the number of basic variable or equivalently the number of pivot columns.

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 5 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

An Observation

The number of vectors in the basis we found is the same as the number of basic variable or equivalently the number of pivot columns.

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Question

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 19 & 0 & -4 \\
1 & 0 & 9 & 1 & 1 \\
1 & -1 & 14 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 9 & 0 & 0 \\
0 & 1 & -5 & 0 & 2 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Find a bases for the column space and null space of A.

moving on...

Coordinate Systems

At a High Level

A coordinate system is a way of representing positions in terms of a sequence of numbers. Examples.

Question (Conceptual)*

Question (Conceptual)*

Is $(2.3,0.01,5)$ a polar coordinate or a cartesian coordinate?

Question (Conceptual)*

Is (2.3, 0.01,5) a polar coordinate or a cartesian coordinate?

This question is non-sensical.

Question (Conceptual)*

Is (2.3, 0.01,5) a polar coordinate or a cartesian coordinate?

This question is non-sensical.
It's just a sequence of numbers. We need to be told if it should be interpreted in the polar coordinate system or the Cartesian coordinate system.

Bases define Coordinate Systems

Given a basis \mathscr{B} of a subspace H, there is exactly one way to write every vector in H as a linear combination of vectors in \mathscr{B}.
Verify: $B=\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right\}$ \qquad
$\left(a_{1}-c_{1}\right) \vec{b}_{1}+\left(a_{2}-c_{2}\right) \vec{b}_{2} \quad a_{1} \vec{b}_{1}+a_{2} \vec{b}_{3}+a_{3} \vec{b}$
$+\left(a_{\left(3-c_{3}\right)}\right)_{3}$

Bases define Coordinate Systems

Given a basis \mathscr{B} of a subspace H, there is exactly one way to write every vector in H as a linear combination of vectors in \mathscr{B}.

Every basis provides a way to write down coordinates of a vector.

And every time we write down a vector, we are assuming a coordinate system.

what do we mean by this?

A Thought Experiment

A Thought Experiment

Imagine doing this whole class from the beginning, but never saying what vectors are.

A Thought Experiment

Imagine doing this whole class from the beginning, but never saying what vectors are.
(This is actually how we would do linear algebra if this were a math class)

A Thought Experiment

Imagine doing this whole class from the beginning, but never saying what vectors are. (This is actually how we would do linear algebra if this were a math class)

Then one day, you get tired of talking about "abstract" vectors, you want to work with numbers.

A Thought Experiment

A Thought Experiment

Because we've learned everything up to now, we know that there is a basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for the space \mathbb{R}^{n}.

A Thought Experiment

Because we've learned everything up to now, we know that there is a basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for the space \mathbb{R}^{n}.

So given v, if we know how to write it in terms of the basis, we can write...

A Thought Experiment

Because we've learned everything up to now, we know that there is a basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for the space \mathbb{R}^{n}.

So given v, if we know how to write it in terms of the basis, we can write...

$$
\mathbf{v}=2 \mathbf{b}_{1}+3 \mathbf{b}_{2}+\ldots+(-0.1) \mathbf{b}_{n}
$$

A Thought Experiment

Because we've learned everything up to now, we know that there is a basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for the space \mathbb{R}^{n}.

So given v, if we know how to write it in terms of the basis, we can write...

$$
\mathbf{v}=2 \mathbf{b}_{1}+3 \mathbf{b}_{2}+\ldots+(-0.1) \mathbf{b}_{n}
$$

$$
\mathbf{v}=\left[\begin{array}{c}
2 \\
3 \\
\vdots \\
-0.1
\end{array}\right]
$$

and then choose those weights as a representation of v as a sequence of numbers

But wait...

But wait...

This depends on the choice of basis.

But wait...

This depends on the choice of basis.
If we started with $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ then we would get some other representation.

But wait...

This depends on the choice of basis.
If we started with $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ then we would get some other representation.

$$
\mathbf{v}=(-10) \mathbf{c}_{1}+(4.3) \mathbf{c}_{2}+\ldots+0 \mathbf{c}_{n}=\left[\begin{array}{c}
-10 \\
4.3 \\
\vdots \\
0
\end{array}\right]
$$

But wait...

This depends on the choice of basis.
If we started with $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ then we would get some other representation.

$$
\mathbf{v}=(-10) \mathbf{c}_{1}+(4.3) \mathbf{c}_{2}+\ldots+0 \mathbf{c}_{n}=\left[\begin{array}{c}
-10 \\
4.3 \\
\vdots \\
0
\end{array}\right]
$$

Every basis defined a different coordinate system

Standard Basis

The standard basis defines the Cartesian coordinate system for \mathbb{R}^{n}.

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots
\end{array}\right]=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+\ldots+v_{n} \mathbf{e}_{n}
$$

Column vectors are just weights for a linear combination of the standard basis

but we can also use different coordinate systems

How to think about this

Changing the coordinate system
"warps space".
The question is: how to we represent a vector \mathbf{v} in the warped space if we wanted it to "be in the same place"?

Coordinate Vectors

Coordinate Vectors

Let \mathbf{v} be a vector in a subspace H of \mathbb{R}^{n} and let $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}\right\}$ be a basis of H where

$$
\mathbf{v}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\ldots+a_{k} \mathbf{b}_{k}
$$

Coordinate Vectors

Let \mathbf{v} be a vector in a subspace H of \mathbb{R}^{n} and let $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}\right\}$ be a basis of H where

$$
\mathbf{v}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\ldots+a_{k} \mathbf{b}_{k}
$$

Definition. The coordinate vector of \mathbf{v} relative to \mathscr{B} is

Coordinate Vectors

Let \mathbf{v} be a vector in a subspace H of \mathbb{R}^{n} and let $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}\right\}$ be a basis of H where

$$
\mathbf{v}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\ldots+a_{k} \mathbf{b}_{k}
$$

Definition. The coordinate vector of \mathbf{v} relative to \mathscr{B} is

$$
[\mathbf{v}]_{\mathscr{B}}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right]
$$

Coordinate Vectors and the Standard Basis

When we write down a vector \mathbf{v} in \mathbb{R}^{n}, we're really writing down a coordinate vector relative to the standard basis \mathscr{E}.

$$
[\mathbf{v}]_{\mathscr{E}}=\mathbf{v}
$$

How do we find coordinate vectors?

For an arbitrary basis \mathscr{B}, to determine $[\mathbf{v}]_{\mathscr{B}}$, we need to find weights a_{1}, \ldots, a_{k} such that

$$
a_{1} \mathbf{b}_{1}+\ldots+a_{k} \mathbf{b}_{k}=\mathbf{v}
$$

This is just solving a vector equation.

Example: 2D Case

Write the coordinate vector for $\left[\begin{array}{l}1 \\ 6=\end{array}\right]$ relative to the basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ for \mathbb{R}^{2}

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 1 & 1 \\
0 & 2 & 6
\end{array}\right] \sim \times \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{ll|c}
1 & 0 & -2 \\
0 & 1 & 3
\end{array}\right]\left[\left[\begin{array}{l}
1 \\
6
\end{array}\right]\right]_{B}\left[\begin{array}{c}
-2 \\
3
\end{array}\right]}
\end{aligned}
$$

Example: 2D Case (Geometrically)

FIGURE 1 Standard graph paper.

FIGURE 2 B-graph paper.

How To: Coordinate Vectors

Question. Find the coordinate vector for \mathbf{v} in the subspace H relative to the basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}$.

Solution. Solve the vector equation

$$
x_{1} \mathbf{b}_{1}+\ldots+x_{k} \mathbf{b}_{k}=\mathbf{v}
$$

A solution $\left(a_{1}, \ldots, a_{k}\right)$ means

$$
[\mathbf{v}]_{\mathscr{B}}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k}
\end{array}\right]
$$

Example: 3D Case

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{c}
3 \\
12 \\
7
\end{array}\right]
$$

Find the coordinate vector for u relative to the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ of a subspace H (of \mathbb{R}^{3}):

An Aside: Coordinates and one-to-one correspondences

An Aside: Coordinates and one-to-one correspondences

In the previous example $\mathbf{x} \mapsto[\mathbf{x}]_{\mathscr{B}}$ is a one-to-one correspondence from H to \mathbb{R}^{2}. This is also sometimes called an isomorphism.

An Aside: Coordinates and one-to-one correspondences

In the previous example $\mathbf{x} \mapsto[\mathbf{x}]_{\mathscr{B}}$ is a one-to-one correspondence from H to \mathbb{R}^{2}. This is also sometimes called an isomorphism.

Isomorphic things "look and behave the same up to simple transformations."

An Aside: Coordinates and one-to-one correspondences

In the previous example $\mathbf{x} \mapsto[\mathbf{x}]_{\mathscr{B}}$ is a one-to-one correspondence from H to \mathbb{R}^{2}. This is also sometimes called an isomorphism.

Isomorphic things "look and behave the same up to simple transformations."

So $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is isomorphic to \mathbb{R}^{2}.

An Aside: Coordinates and one-to-one correspondences

In the previous example $\mathbf{x} \mapsto[\mathbf{x}]_{\mathscr{B}}$ is a one-to-one correspondence from H to \mathbb{R}^{2}. This is also sometimes called an isomorphism.

Isomorphic things "look and behave the same up to simple transformations."

So $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is isomorphic to \mathbb{R}^{2}.
This is a formal way of saying that $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a "copy of \mathbb{R}^{2}.

B is a basis
Question

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

$$
\left[\left[\begin{array}{l}
1 \\
6
\end{array}\right]\right]_{\beta}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

coordivale rec. for \vec{b} relative too \vec{u}

$$
\vec{u}=2\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right]+(-2)\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
8 \\
12 \\
2
\end{array}\right]
$$

Answer

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \quad[\mathbf{u}]_{\mathscr{B}}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

Dimension and Rank

The Idea of Dimension

The Idea of Dimension

Theorem. Every basis of a subspace H has exactly the same number of vectors.

The Idea of Dimension

Theorem. Every basis of a subspace H has exactly the same number of vectors.

Any fewer, we wouldn't cover everything.

The Idea of Dimension

Theorem. Every basis of a subspace H has exactly the same number of vectors.

Any fewer, we wouldn't cover everything. Any more, we would have dependencies.

The Idea of Dimension

Theorem. Every basis of a subspace H has exactly the same number of vectors.

Any fewer, we wouldn't cover everything. Any more, we would have dependencies.

This number is a measure of how "large" H is.

Dimension

Dimension

Definition. The dimension of a subspace H of \mathbb{R}^{n}, written $\operatorname{dim}(H)$ or $\operatorname{dim} H$, is the number of vectors in any basis of H.

Dimension

Definition. The dimension of a subspace H of \mathbb{R}^{n}, written $\operatorname{dim}(H)$ or $\operatorname{dim} H$, is the number of vectors in any basis of H.

We say H is k-dimensional if it has dimension k.

Dimension

Definition. The dimension of a subspace H of \mathbb{R}^{n}, written $\operatorname{dim}(H)$ or $\operatorname{dim} H$, is the number of vectors in any basis of H.

We say H is k-dimensional if it has dimension k. This should confirm our intuitions:

Dimension

Definition. The dimension of a subspace H of \mathbb{R}^{n}, written $\operatorname{dim}(H)$ or $\operatorname{dim} H$, is the number of vectors in any basis of H.

We say H is k-dimensional if it has dimension k. This should confirm our intuitions:
» a plane (through the origin) is a 2D subspace

Dimension

Definition. The dimension of a subspace H of \mathbb{R}^{n}, written $\operatorname{dim}(H)$ or $\operatorname{dim} H$, is the number of vectors in any basis of H.

We say H is k-dimensional if it has dimension k. This should confirm our intuitions:
» a plane (through the origin) is a 2D subspace
» a line (through the origin) is a 1D subspace

Recall: Subspace in \mathbb{R}^{3} (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^{3} :

1. $\{0\}$ just the origin
2. lines (through the origin)
3. planes (through the origin)
4. All of \mathbb{R}^{3}

Recall: Subspace in \mathbb{R}^{3} (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^{3} :

1. 0-dimensional subspace
2. 1-dimensional subspaces
3. 2-dimensional subspaces
4. 3-dimensional subspace

How does this connect to null space and column space?

Recall: An Observation

The number of vectors in the basis we found is the same as the number of free variables in a general form solution.

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned} \quad \equiv \quad\left[\begin{array}{c}
s \\
t \\
u
\end{array}\right] \mapsto\left[\begin{array}{c}
2 s+t-3 u \\
s \\
(-2) t+2 u \\
t \\
u
\end{array}\right]
$$

Dimension of the Null Space

The dimension of $\operatorname{Nul}(A)$ is the number of free variables in a general form solution to $A \mathbf{x}=\mathbf{0}$.

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{2} \text { is free } \\
& x_{3}=(-2) x_{4}+2 x_{5} \\
& x_{4} \text { is free } \\
& x_{5} \text { is free }
\end{aligned}
$$

$$
\equiv \quad\left[\begin{array}{c}
s \\
t \\
u
\end{array}\right] \mapsto\left[\begin{array}{c}
2 s+t-3 u \\
s \\
(-2) t+2 u \\
t \\
u
\end{array}\right]
$$

Recall: An Observation

The number of vectors in the basis we found is the same as the number of basic variable or equivalently the number of pivot columns.

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Recall: An Observation

The number of vectors in the basis we found is the same as the number of basic variable or equivalently the number of pivot columns.

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Dimension of the Column Space

The dimension of $\operatorname{Col}(A)$ is the number of basic variable in our solution, or equivalently the number of pivot columns of A.

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Dimension of the Column Space

The dimension of $\operatorname{Col}(A)$ is the number of basic variable in our solution, or equivalently the number of pivot columns of A.

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Rank

Definition. The rank of a matrix A, written $\operatorname{rank}(A)$ or rank A, is the dimension of $\operatorname{Col}(\mathrm{A})$.

This is just terminology.

Rank-Nullity Theorem

Theorem. For an $m \times n$ matrix A,

$$
\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=n
$$

Verify:

This is incredibly important.

Rank-Nullity Theorem

Theorem. For an $m \times n$ matrix A, $\operatorname{dim}(\operatorname{Col}(A))+\operatorname{dim}(\operatorname{Nul}(A))=n$

Verify:

This is incredibly important.

The Intuition

The Intuition

For a $m \times n$ matrix A, its columns space $\operatorname{Col}(A)$ could have n dimensions.

The Intuition

For a $m \times n$ matrix A, its columns space $\operatorname{Col}(A)$ could have n dimensions.

In this case: $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=n+0=n$

The Intuition

For a $m \times n$ matrix A, its columns space $\operatorname{Col}(A)$ could have n dimensions.

In this case: $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=n+0=n$
But the null space can "consume" some of those dimensions.

The Intuition

For a $m \times n$ matrix A, its columns space $\operatorname{Col}(A)$ could have n dimensions.

In this case: $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=n+0=n$
But the null space can "consume" some of those dimensions.
Example. If a "line's worth of stuff" is pulled into the null space (and mapped to 0) then

$$
\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=(n-1)+1=n
$$

The Intuition

For a $m \times n$ matrix A, its columns space $\operatorname{Col}(A)$ could have n dimensions.

In this case: $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=n+0=n$
But the null space can "consume" some of those dimensions.
Example. If a "line's worth of stuff" is pulled into the null space (and mapped to 0) then

$$
\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=(n-1)+1=n
$$

The null space "takes away" some of the dimensions of the column space.

The Intuition (Pictorially)

Question (Conceptual)

Let A be a 5×7 matrix such that $\operatorname{dim}(\operatorname{Nul}(A))=3$. What is the dimension of $\operatorname{Col}(A)$?

Answer: 4

Extending the IMT

Theorem. For an $n \times n$ invertible matrix A, the following are logically equivalent (they must all by true or all by false.
$» \operatorname{Col}(A)=\mathbb{R}^{n}$
» $\operatorname{dim}(\operatorname{Col}(A))=n$
» $\operatorname{rank}(A)=n$
$>\operatorname{Nul}(A)=\{\mathbf{0}\}$
» $\operatorname{dim}(\operatorname{Nul}(A))=0$

Summary

We can find bases for the column space and null space by looking at the reduced echelon form of a matrix.

Column vectors are written in terms of a coordinate system, which we can change.

Dimension is a measure of how large a space is.

