Dimension and Rank Geometric Algorithms Lecture 16

CAS CS 132

Introduction

Recap Problem $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \qquad \mathbf{v}_4 = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$

Consider the subspace H generated by \mathbf{v}_1 and \mathbf{v}_2 . Show that \mathbf{v}_3 and \mathbf{v}_4 form a basis for H.

Hint. Show that \mathbf{v}_1 and \mathbf{v}_2 are in the span of \mathbf{v}_3 and \mathbf{v}_4

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\0 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

Objectives

- the null space of a matrix
- 2. Briefly discuss the coordinate systems.
- 3. Introduce the fundamental notion of <u>dimension</u>, which quantifies how "large" a space is
- 4. Relate the dimension of the column space and the null space of a matrix

1. Learn techniques to find bases for the column space and

Keywords

basis column space null space coordinate system change of basis dimension rank rank theorem invertible matrix theorem (extended)

Recap

Recall: The Idea Behind Subspaces

A plane in \mathbb{R}^3 looks like a (possibly tilted) copy of \mathbb{R}^2

A plane in \mathbb{R}^3 looks like a (possibly tilted) copy of \mathbb{R}^2

Subspaces generalize of this idea.

A plane in \mathbb{R}^3 looks like a (possibly tilted) copy of \mathbb{R}^2

Subspaces generalize of this idea.

For example, there can be a "possibly tilted copy" of \mathbb{R}^3 sitting in \mathbb{R}^5

Recall: Subspace (Algebraic Definition)

- **Definition.** A subspace of \mathbb{R}^n is a set H of vectors in \mathbb{R}^n such that
- H
- is in H

1. for every u and v in H, the vector u + v is in **2.** for every \mathbf{u} in H and scalar c, the vector $c\mathbf{u}$

Recall: Subspace (Algebraic Definition)

- **Definition.** A subspace of \mathbb{R}^n is a set H of vectors in \mathbb{R}^n such that
- H
- is in H H is closed under scaling

1. for every u and v in H, the vector u + v is in H is closed under addition

2. for every \mathbf{u} in H and scalar c, the vector $c\mathbf{u}$

Recall: Subspace (Algebraic Definition)

- **Definition.** A subspace of \mathbb{R}^n is a set H of vectors in \mathbb{R}^n such that
- H
- **2.** for every \mathbf{u} in H and scalar c, the vector $c\mathbf{u}$ is in H H is closed under scaling !! Subspaces must "live" somewhere !!

1. for every u and v in H, the vector u + v is in H is closed under addition

Recall: How to Think About this Definition

It's not possible to "leave" H by addition or scaling.

(recall this is also how we discussed spans)

https://textbooks.math.gatech.edu/ila/spans.html

Recall: Subspace in \mathbb{R}^3 (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^3 :

- **1.** $\{0\}$ just the origin
- 2. lines (through the origin)
- 3. planes (through the origin)
- **4.** All of \mathbb{R}^3

https://commons.wikimedia.org/wiki/File:Linear_subspaces_with_shading.svg

Definition. The column space of a matrix A, written Col(A) or Col A, is the set of all linear combinations of the columns of A.

Definition. The column space of a matrix A, combinations of the columns of A.

columns.

written Col(A) or Col A, is the set of all linear

The column space of a matrix is the span of its

- **Definition.** The column space of a matrix A, combinations of the columns of A_{\bullet}
- columns.
- The column space of a matrix is the <u>range</u> of the linear transformation it implements.

written Col(A) or ColA, is the set of all linear

The column space of a matrix is the span of its

Subspace of What?

$c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \dots c_n \mathbf{a}_n$ is a vector in \mathbb{R}^m

is a subspace of

Col(A)

 \mathbb{R}^m

Null Space

Null Space

Definition. The null space of a matrix A, written Nu(A) or Nu(A), is the set of all solutions to the homogenous equation

 $A\mathbf{x} = \mathbf{0}$

Null Space

Definition. The null space of a matrix A, written Nu(A) or Nu(A), is the set of all solutions to the homogenous equation

The null space of a matrix A is the set of all vectors that are mapped to the zero vector by A.

 $A\mathbf{x} = \mathbf{0}$

Subspace of What?

v is a vector in \mathbb{R}^n

Nul(A)is a subspace of

 \mathbb{R}^n

Recall: Basis

Recall: Basis

that spans H (in symbols: $H = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$).

all of H.

Definition. A **basis** for a subspace H of \mathbb{R}^n is a linearly independent set $\{v_1, v_2, ..., v_k\}$ of vectors

A basis is a minimal set of vectors which spans

Recall: What's interesting about the standard basis?

Recall: What's interesting about the standard basis?

The *n* standard basis vectors in \mathbb{R}^n :

» are linearly independent » span all of \mathbb{R}^n

Recall: What's interesting about the standard basis?

The *n* standard basis vectors in \mathbb{R}^n :

» are linearly independent » span all of \mathbb{R}^n

Their span is as "large" as possible while the set of vectors generating the span is as "small" as possible.

Recall: Example: Standard basis

The standard basis is a basis of \mathbb{R}^n .

$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$

Every column vector can be written in <u>exactly one</u> way as a linear combination of standard basis vectors

Recall: Example: Column Space of Invertible Matrices

Fact. The columns of an invertible *n*×*n* matrix form a basis of \mathbb{R}^n .

Verify: $T \wedge T + c \parallel c$

Bases of Column Space and Null Space

The Goal of this Section

a given matrix.

Determine how to find <u>bases</u> for the column space and the null space of

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for Nul(A).
Question. Given a $m \times n$ matrix A find a basis for Nul(A).

The idea. Describe the solutions of Ax = 0 as linear combination of vectors

Parametric Solutions

We can think of our general form solution as a <u>(linear) transformation</u>.

$$x_1 = 2x_2 + x_4 - 3x_5$$

$$x_2 \text{ is free}$$

$$x_3 = (-2)x_4 + 2x_5$$

$$x_4 \text{ is free}$$

$$x_5 \text{ is free}$$

"given values for x₂, x₃, and x₄, I can¹ give you a solution"

Parametric Solutions

We can think of our general form solution as a <u>(linear) transformation</u>.

$$x_1 = 2x_2 + x_4 - 3x_5$$

$$x_2 \text{ is free}$$

$$x_3 = (-2)x_4 + 2x_5$$

$$x_4 \text{ is free}$$

$$x_5 \text{ is free}$$

$$\begin{bmatrix} s \\ t \\ u \end{bmatrix} \mapsto \begin{bmatrix} 2s + t - 3u \\ s \\ (-2)t + 2u \\ t \\ u \end{bmatrix}$$

Parametric Solutions

We can think of our general form solution as a (linear) transformation. !! this transformation is only linear !!

$$x_1 = 2x_2 + x_4 - 3x_5$$

$$x_2 \text{ is free}$$

$$x_3 = (-2)x_4 + 2x_5$$

$$x_4 \text{ is free}$$

$$x_5 \text{ is free}$$

!! in the case of homogeneous equations !!

$$\begin{bmatrix} s \\ t \\ u \end{bmatrix} \mapsto \begin{bmatrix} 2s + t - 3u \\ s \\ (-2)t + 2u \\ t \\ u \end{bmatrix}$$

 $\begin{bmatrix} s \\ t \\ u \end{bmatrix} \mapsto \begin{bmatrix} 2s+t-3u \\ s \\ (-2)t+2u \\ t \\ u \end{bmatrix}$ Let's find the matrix implementing this linear $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix}$ implements 001

 $\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Every solution to $A\mathbf{x} = \mathbf{0}$ can be written as an image of this transformation.

 $\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Example Every solution to $A\mathbf{x} = \mathbf{0}$ can be written as an image of this transformation.

So every solution can be written as a linear combination of its <u>columns</u>.

 $\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Example Every solution to $A\mathbf{x} = \mathbf{0}$ can be written as an image of this transformation.

So every solution can be written as a linear combination of its <u>columns</u>.

The columns of this matrix <u>span</u> Nul(A).

$$\begin{array}{c} x_{1} & i & i & free \\ x_{2} & i & free \\ & x_{3} & i & free \\ & x_{4} & i & free \\ & x_{5} & i & free \\ & x_{5} & i & free \\ \end{array}$$

$$\begin{array}{c} 2 & 1 \\ 1 & 0 \\ 0 & -2 \\ 0 & 1 \\ 0 & 0 \end{array}$$

$$\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$$

The columns of this matrix <u>span</u> Nul(A).

- The columns of this matrix are linearly independent.
- The columns of this matrix form a basis for Nul(A).

 $\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Alternatively, we can think of writing a general form solution so that it is a linear combination of vectors with free variables as weights:

 $x_1 = 2x_2 + x_4 - 3x_5$ x_2 is free $x_3 = (-2)x_4 + 2x_5$ x_4 is free x_5 is free

Question. Given a $m \times n$ matrix A find a basis for Nul(A)

Question. Given a $m \times n$ matrix A find a basis for Nul(A)

Solution.

1. Find a general form solution for $A\mathbf{x} = \mathbf{0}$.

Question. Given a $m \times n$ matrix A find a basis for Nul(A)

Solution.

- 1. Find a general form solution for $A\mathbf{x} = \mathbf{0}$.
- 2. Write this solution as a linear combination of

vectors where the free variables are the weights.

Question. Given a $m \times n$ matrix A find a basis for Nul(A)

Solution.

- 1. Find a general form solution for $A\mathbf{x} = \mathbf{0}$.
- 2. Write this solution as a linear combination of
- 3. The resulting vectors form a basis for Nul(A).

vectors where the free variables are the weights.

An Observation

general form solution.

$$x_1 = 2x_2 + x_4 - 3x_5$$

$$x_2 \text{ is free}$$

$$x_3 = (-2)x_4 + 2x_5$$

$$x_4 \text{ is free}$$

$$x_5 \text{ is free}$$

The number of vectors in the basis we found is the same as the number of free variables in our

$$\begin{bmatrix} s \\ t \\ u \end{bmatrix} \mapsto \begin{bmatrix} 2s + t - 3u \\ s \\ (-2)t + 2u \\ t \\ u \end{bmatrix}$$

moving on to column space...

Question. Given a $m \times n$ for Col(A).

Question. Given a $m \times n$ matrix A, find a basis

for Col(A).

We already know the columns of A span Col(A).

Question. Given a $m \times n$ matrix A, find a basis

- for Col(A).
- We already know the columns of A span Col(A).
- of A form a basis for Col(A).

Question. Given a $m \times n$ matrix A, find a basis

So we also already know *some* subset of columns

- for Col(A).
- We already know the columns of A span Col(A).
- of A form a basis for Col(A).

Question. Given a $m \times n$ matrix A, find a basis

So we also already know some subset of columns

Which columns of A should we choose? $(A) = R^{4}$ 5

The idea. What if we cover up the non-pivot columns?

Column Space and Reduced Echelon form $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_3 &$

Then we see $[\mathbf{a}_1 \ \mathbf{a}_3]$ has 2 pivots.

The idea. What if we cover up the non-pivot columns?

Column Space and Reduced Echelon form $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_3 &$

Then we see $[\mathbf{a}_1 \ \mathbf{a}_3]$ has 2 pivots. So the pivot columns are <u>linearly independent</u>.

The idea. What if we cover up the non-pivot columns?

Column Space and Reduced Echelon form $\begin{bmatrix} a_2 \\ a_2 \end{bmatrix} \sim \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} 0 \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \end{bmatrix}$ $\mathbf{f}\mathbf{a}_1$

Observation. $[2 \ 1 \ 0 \ 0]^T$ is a solution to the system $A\mathbf{x} = \mathbf{0}$.

Column Space and Reduced Echelon form $\begin{bmatrix} a_2 \\ a_2 \end{bmatrix} \sim \begin{bmatrix} a_1 \\ a_2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} =$ **fa**₁

Observation. $[2 \ 1 \ 0 \ 0]^T$ is a solution to the system $A\mathbf{x} = \mathbf{0}$. So $2a_1 + a_2 = 0$ and $a_2 = (-2)a_1$.

Column Space and Reduced Echelon form $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ \mathbf{a}_1 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix}$ **Observation.** $[2 \ 1 \ 0 \ 0]^T$ is a solution to the system $A\mathbf{x} = \mathbf{0}$.

So $2a_1 + a_2 = 0$ and $a_2 = (-2)a_1$.

In general, every non-pivot column of A can be written as a linear combination pivots in front of it.

Observation. $[2 \ 1 \ 0 \ 0 \ 0]^T$ is a solution to the system $A\mathbf{x} = \mathbf{0}$.

So $2a_1 + a_2 = 0$ and $a_2 = (-2)a_1$.

In general, every non-pivot column of A can be written as a linear combination pivots in front of it.

This tells us that \mathbf{a}_1 and \mathbf{a}_3 <u>span</u> Col(A).

The takeaway. The pivot columns of A form a basis for Col(A).
Column Space and Reduced Echelon form $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

The takeaway. The pivot columns of A form a basis for Col(A).

!! IMPORTANT !! Choose the columns of A. (\mathbf{e}_1 and \mathbf{e}_2 do not necessarily form a basis for Col(A))

Question. Given a $m \times n$ matrix A, find a basis for Col(A).

Question. Given a $m \times n$ matrix A, find a basis for Col(A)

Solution.

1. Find the pivot columns in an echelon form of A_{\bullet}

Question. Given a $m \times n$ matrix A, find a basis for Col(A)

Solution.

- 1. Find the pivot columns in an echelon form of A_{\bullet}

2. The associated columns in A form a basis for Col(A).

An Observation

The number of vectors in the basis we found is the same as the number of basic variable or equivalently the number of pivot columns.

$\mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4 \ \mathbf{a}_5 \] \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

An Observation

The number of vectors in the basis we found is the same as the number of basic variable or equivalently the number of <u>pivot columns</u>.

$\mathbf{a}_{2} \ \mathbf{a}_{3} \ \mathbf{a}_{4} \ \mathbf{a}_{5} \ \mathbf{a}_{5}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Question

$A = \begin{bmatrix} 1 & -2 & 19 & 0 & -4 \\ 1 & 0 & 9 & 1 & 1 \\ 1 & -1 & 14 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 9 & 0 & 0 \\ 0 & 1 & -5 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$ Find a bases for the column space and null

Find a bases for the constant space of A.

$$A = \begin{bmatrix} 1 & -2 & 19 & 0 & -4 \\ 1 & 0 & 9 & 1 & 1 \\ 1 & -1 & 14 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 9 \\ 0 & 1 & -5 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= -9 \times_{3}$$

$$= 5 \times_{3} - 2 \times_{5} \times_{3} \begin{bmatrix} -9 \\ 5 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \times_{5}$$

$$= -X_{5}$$

$$\times_{4} = -X_{5}$$

$$\times_{4} = -X_{5}$$

moving on...

Coordinate Systems

At a High Level

A coordinate system is a way of representing positions in terms of a <u>sequence of numbers</u>.

Is (2.3, 0.01, 5) a polar coordinate or a cartesian coordinate?

Is (2.3, 0.01, 5) a polar coordinate or a cartesian coordinate?

This question is non-sensical.

coordinate?

This question is non-sensical.

It's just a sequence of numbers. We need to be told if it should be interpreted in the polar coordinate system or the Cartesian coordinate system.

Is (2.3, 0.01, 5) a polar coordinate or a cartesian

Bases define Coordinate Systems

Given a basis \mathscr{B} of a subspace H, there is linear combination of vectors in \mathcal{B} . Verify: $B = \{ \vec{b}, \vec{b}_2, \vec{b}_3 \}$ $+(a_{3}-c_{3})$

exactly one way to write every vector in H as a

Bases define Coordinate Systems

Given a basis \mathscr{B} of a subspace H, there is linear combination of vectors in \mathscr{B} .

Every basis provides a way to write down coordinates of a vector.

assuming a coordinate system.

- exactly one way to write every vector in H as a
- And every time we write down a vector, we are

what do we mean by this?

Imagine doing this whole class from the

beginning, but never saying what vectors are.

Imagine doing this whole class from the beginning, but never saying what vectors are.

(This is actually how we would do linear algebra if this were a math class)

Imagine doing this whole class from the

(This is actually how we would do linear algebra if this were a math class)

Then one day, you get tired of talking about "abstract" vectors, you want to work with numbers.

beginning, but never saying what vectors are.

Because we've learned everything up to now, we know that there is a basis \mathbf{b}_1 , \mathbf{b}_2 ,..., \mathbf{b}_n for the space \mathbb{R}^n .

Because we've learned everything up to now, we know that there is a basis \mathbf{b}_1 , \mathbf{b}_2 ,..., \mathbf{b}_n for the space \mathbb{R}^n .

So given v, if we know how to write it in terms of the basis, we can write...

Because we've learned everything up to now, we know that there is a basis \mathbf{b}_1 , \mathbf{b}_2 ,..., \mathbf{b}_n for the space \mathbb{R}^n .

So given v, if we know how to write it in terms of the basis, we can write...

 $\mathbf{v} = 2\mathbf{b}_1 + 3\mathbf{b}_2 + \ldots + (-0.1)\mathbf{b}_n$

Because we've learned everything up to now, we know that there is a basis \mathbf{b}_1 , \mathbf{b}_2 ,..., \mathbf{b}_n for the space \mathbb{R}^n .

So given v, if we know how to write it in terms of the basis, we can write...

 $\mathbf{v} = 2\mathbf{b}_1 + 3\mathbf{b}_2 + \dots + (-0.1)\mathbf{b}_n$

and then choose those weights as a representation of $\boldsymbol{\nu}$ as a sequence of numbers

This depends on the choice of basis.

This depends on the choice of basis. If we started with c_1, c_2, \ldots, c_n then we would get some other representation.

This depends on the choice of basis. If we started with c_1, c_2, \ldots, c_n then we would get some presentation. $\mathbf{v} = (-10)\mathbf{c}_1 + (4.3)\mathbf{c}_2 + \dots + 0\mathbf{c}_n = \begin{bmatrix} -10\\ 4.3\\ \vdots\\ 0 \end{bmatrix}$ other representation.

This depends on the choice of basis. If we started with c_1, c_2, \ldots, c_n then we would get some

epresentation. $\mathbf{v} = (-10)\mathbf{c}_1 + (4.3)\mathbf{c}_2 + \dots + 0\mathbf{c}_n = \begin{bmatrix} -10 \\ 4.3 \\ \vdots \\ 0 \end{bmatrix}$ other representation. Every basis defined a different coordinate system

Standard Basis

The standard basis defines the Cartesian coordinate system for \mathbb{R}^n .

Column vectors are just weights for a linear combination of the standard basis

$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$

but we can also use different coordinate systems

How to think about this

Changing the coordinate system "warps space".

The question is: how
to we represent a
vector v in the warped
space if we wanted it
to "be in the same
place"?

Let v be a vector in a subspace H of \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ be a basis of H where

 $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \ldots + a_k \mathbf{b}_k$

Let v be a vector in a subspace H of \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ be a basis of H where

is

 $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \ldots + a_k \mathbf{b}_k$

Definition. The coordinate vector of v relative to *B*

Let v be a vector in a subspace H of \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ be a basis of H where

is

 $[\mathbf{V}]_{\mathscr{B}} =$

$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \ldots + a_k \mathbf{b}_k$

Definition. The coordinate vector of v relative to \mathscr{P}

$$a_1$$

 a_2
 \vdots
 a_k

Coordinate Vectors and the Standard Basis

When we write down a vector v in \mathbb{R}^n , we're really writing down a coordinate vector relative to the standard basis \mathscr{C} .

$$\mathscr{E} = \mathbf{V}$$

How do we find coordinate vectors?

For an arbitrary basis \mathscr{B} , to determine $[v]_{\mathscr{B}}$, we need to find weights a_1, \ldots, a_k such that $a_1 b_1 + .$ This is just <u>solving a vector equation</u>.

$$\dots + a_k \mathbf{b}_k = \mathbf{v}$$

Example: 2D Case

the basis $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$ for \mathbb{R}^2

defines a "different grid for our graph paper"

paper.

FIGURE 1 Standard graph

Example: 2D Case (Geometrically)

How To: Coordinate Vectors

Question. Find the coordinate vector for v in the subspace H relative to the basis $\mathbf{b}_1, \dots, \mathbf{b}_k$. Solution. Solve the vector equation $x_1 \mathbf{b}_1 + .$

A solution (a_1, \ldots, a_k) means

$$\dots + x_k \mathbf{b}_k = \mathbf{v}$$

$$a_1$$
 a_k

Example: 3D Case $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$ $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ $\mathbf{u} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$ Find the coordinate vector for u relative to the basis $\{v_1, v_2\}$ of a subspace H (of \mathbb{R}^3):

In the previous example $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$ is a <u>one-to-one correspondence</u> from H to \mathbb{R}^2 . This is also sometimes called an **isomorphism**.

In the previous example $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$ is a <u>one-to-one correspondence</u> from H to \mathbb{R}^2 . This is also sometimes called an **isomorphism**.

Isomorphic things "look and behave the same up to simple transformations."

In the previous example $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$ is a <u>one-to-one correspondence</u> from H to \mathbb{R}^2 . This is also sometimes called an **isomorphism**.

Isomorphic things "look and behave the same up to simple transformations."

So span{ v_1, v_2 } is *isomorphic* to \mathbb{R}^2 .

In the previous example $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$ is a <u>one-to-one correspondence</u> from H to \mathbb{R}^2 . This is also sometimes called an **isomorphism**.

Isomorphic things "look and behave the same up to simple transformations."

So span{ v_1, v_2 } is *isomorphic* to \mathbb{R}^2 .

This is a formal way of saying that span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a "copy of \mathbb{R}^2 ."

Dimension and Rank

Theorem. Every basis of a subspace *H* has exactly the same number of vectors.

Theorem. Every basis of a subspace H has <u>exactly the same number of vectors</u>.

Any fewer, we wouldn't cover everything.

Theorem. Every basis of a subspace H has <u>exactly the same number of vectors</u>.

Any fewer, we wouldn't cover everything.

Any more, we would have dependencies.

- **Theorem.** Every basis of a subspace H has <u>exactly the same number of vectors</u>.
- Any fewer, we wouldn't cover everything.
- Any more, we would have dependencies.

This number is a measure of how "large" H is.

in <u>any</u> basis of H.

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the number of vectors

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the number of vectors in <u>any</u> basis of H.

We say H is k-dimensional if it has dimension k.

in <u>any</u> basis of H.

This should confirm our intuitions:

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the number of vectors

We say H is k-dimensional if it has dimension k.

- in <u>any</u> basis of H.
- This should confirm our intuitions:

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the number of vectors

We say H is k-dimensional if it has dimension k.

» a plane (through the origin) is a 2D subspace

- in <u>any</u> basis of H.
- This should confirm our intuitions:

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the number of vectors

We say H is k-dimensional if it has dimension k.

» a plane (through the origin) is a 2D subspace

» a line (through the origin) is a 1D subspace

Recall: Subspace in \mathbb{R}^3 (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^3 :

- **1.** $\{0\}$ just the origin
- 2. lines (through the origin)
- 3. planes (through the origin)
- **4.** All of \mathbb{R}^3

https://commons.wikimedia.org/wiki/File:Linear_subspaces_with_shading.svg

Recall: Subspace in \mathbb{R}^3 (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^3 :

- 1. 0-dimensional subspace
- 2. 1-dimensional subspaces
- 3. 2-dimensional subspaces
- 4. 3-dimensional subspace

https://commons.wikimedia.org/wiki/File:Linear_subspaces_with_shading.svg

How does this connect to null space and column space?

Recall: An Observation

general form solution.

$$x_1 = 2x_2 + x_4 - 3x_5$$

$$x_2 \text{ is free}$$

$$x_3 = (-2)x_4 + 2x_5$$

$$x_4 \text{ is free}$$

$$x_5 \text{ is free}$$

The number of vectors in the basis we found is the same as the number of free variables in a

$$\begin{bmatrix} s \\ t \\ u \end{bmatrix} \mapsto \begin{bmatrix} 2s + t - 3u \\ s \\ (-2)t + 2u \\ t \\ u \end{bmatrix}$$

Dimension of the Null Space

The **dimension of** Nu(A) is the number of <u>free</u> variables in a general form solution to Ax = 0.

$$x_1 = 2x_2 + x_4 - 3x_5$$

 x_2 is free
 $x_3 = (-2)x_4 + 2x_5$
 x_4 is free
 x_5 is free

$$\begin{bmatrix} s \\ t \\ u \end{bmatrix} \mapsto \begin{bmatrix} 2s + t - 3u \\ s \\ (-2)t + 2u \\ t \\ u \end{bmatrix}$$

Recall: An Observation

The number of vectors in the basis we found is the same as the number of basic variable or equivalently the number of pivot columns.

$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

Recall: An Observation

The number of vectors in the basis we found is the same as the number of basic variable or equivalently the number of <u>pivot columns</u>.

$\mathbf{a}_{2} \ \mathbf{a}_{3} \ \mathbf{a}_{4} \ \mathbf{a}_{5} \ \mathbf{a}_{5}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
Dimension of the Column Space

The dimension of Col(A) is the number of <u>basic</u> variable in our solution, or equivalently the number of <u>pivot columns</u> of A.

$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

Dimension of the Column Space

The dimension of Col(A) is the number of <u>basic</u> variable in our solution, or equivalently the number of <u>pivot columns</u> of A.

Rank

Definition. The rank of a matrix A, written rank(A) or rank A, is the dimension of Col(A).

This is just terminology.

Rank-Nullity Theorem

Theorem. For an $m \times n$ matrix A, rank(A) + dim(Nul(A)) = n

Verify:

This is incredibly important.

Rank-Nullity Theorem

Theorem. For an $m \times n$ matrix A, $dim(Col(A)) + \frac{nullity}{dim(Nul(A))} = n$

Verify:

frelper pris foll

This is incredibly important.

For a $m \times n$ matrix A, its columns space Col(A) could have n dimensions.

For a $m \times n$ matrix A, its co dimensions.

In this case: rank(A) + dim(Nul(A)) = n + 0 = n

For a $m \times n$ matrix A, its columns space Col(A) could have n

For a $m \times n$ matrix A, its columns space Col(A) could have n dimensions.

In this case: rank(A) + dim(Nul(A)) = n + 0 = n

But the null space can "consume" some of those dimensions.

For a $m \times n$ matrix A, its columns space Col(A) could have n dimensions.

In this case: rank(A) + dim(Nul(A)) = n + 0 = n

But the null space can "consume" some of those dimensions.

Example. If a "line's worth of stuff" is pulled into the null space (and mapped to 0) then

rank(A) + dim(Nul(A)) = (n - 1) + 1 = n

dimensions.

In this case: rank(A) + dim(Nul(A)) = n + 0 = n

null space (and mapped to 0) then

The null space "takes away" some of the dimensions of the column space.

- For a $m \times n$ matrix A, its columns space Col(A) could have n
- But the null space can "consume" some of those dimensions.
- **Example.** If a "line's worth of stuff" is pulled into the
 - rank(A) + dim(Nul(A)) = (n 1) + 1 = n

The Intuition (Pictorially)

https://commons.wikimedia.org/wiki/File:Rank-nullity.svg

Question (Conceptual)

Let A be a 5×7 matrix such that dim(Nul(A)) = 3. What is the dimension of Col(A)?

Answer: 4

Extending the IMT

Theorem. For an $n \times n$ invertible matrix A, the following are logically equivalent (they must all by true or all by false.

- $\operatorname{sol}(A) = \mathbb{R}^n$
- $\gg \dim(\operatorname{Col}(A)) = n$
- $\operatorname{*} \operatorname{rank}(A) = n$
- $\gg \operatorname{Nul}(A) = \{\mathbf{0}\}$
- $\gg \dim(\operatorname{Nul}(A)) = 0$

Summary

We can find bases for the column space and null space by looking at the reduced echelon form of a matrix.

Column vectors are written in terms of a coordinate system, which we can change.

Dimension is a measure of how large a space is.