Dimension and Rank

Geometric Algorithms
Lecture 16

Introduction

Recap Problem

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \qquad \mathbf{v}_4 = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$$

Consider the subspace H generated by \mathbf{v}_1 and \mathbf{v}_2 . Show that \mathbf{v}_3 and \mathbf{v}_4 form a basis for H.

Answer

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{v}_4 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

Hint. Show that \mathbf{v}_1 and \mathbf{v}_2 are in the span of \mathbf{v}_3 and \mathbf{v}_4

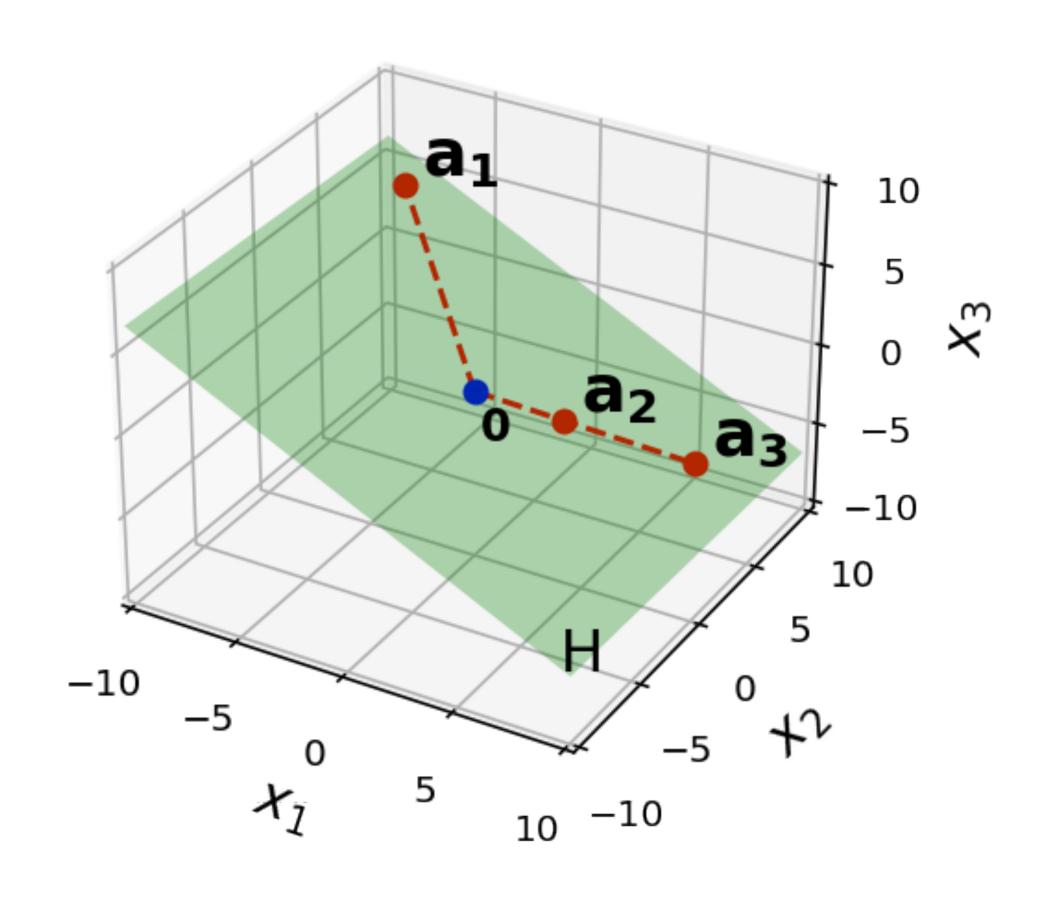
Objectives

- 1. Learn techniques to find bases for the column space and the null space of a matrix
- 2. Briefly discuss the coordinate systems.
- 3. Introduce the fundamental notion of <u>dimension</u>, which quantifies how "large" a space is
- 4. Relate the dimension of the column space and the null space of a matrix

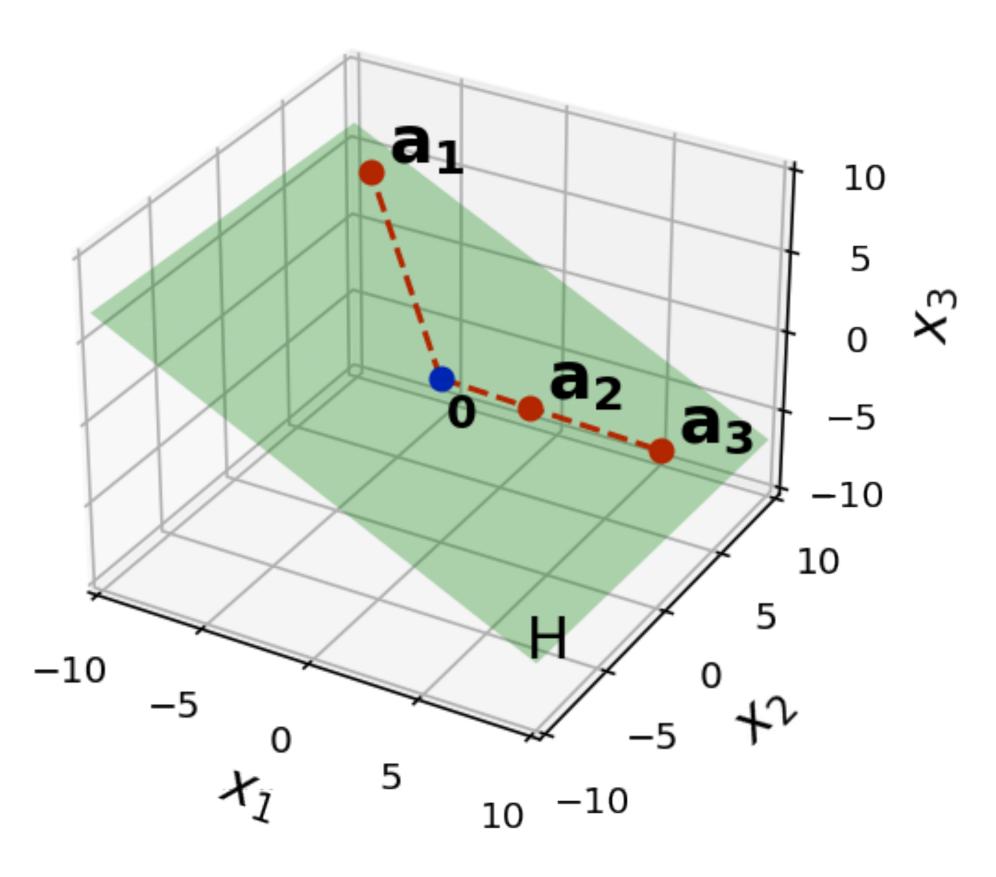
Keywords

```
basis
column space
null space
coordinate system
change of basis
dimension
rank
rank theorem
invertible matrix theorem (extended)
```

Recap

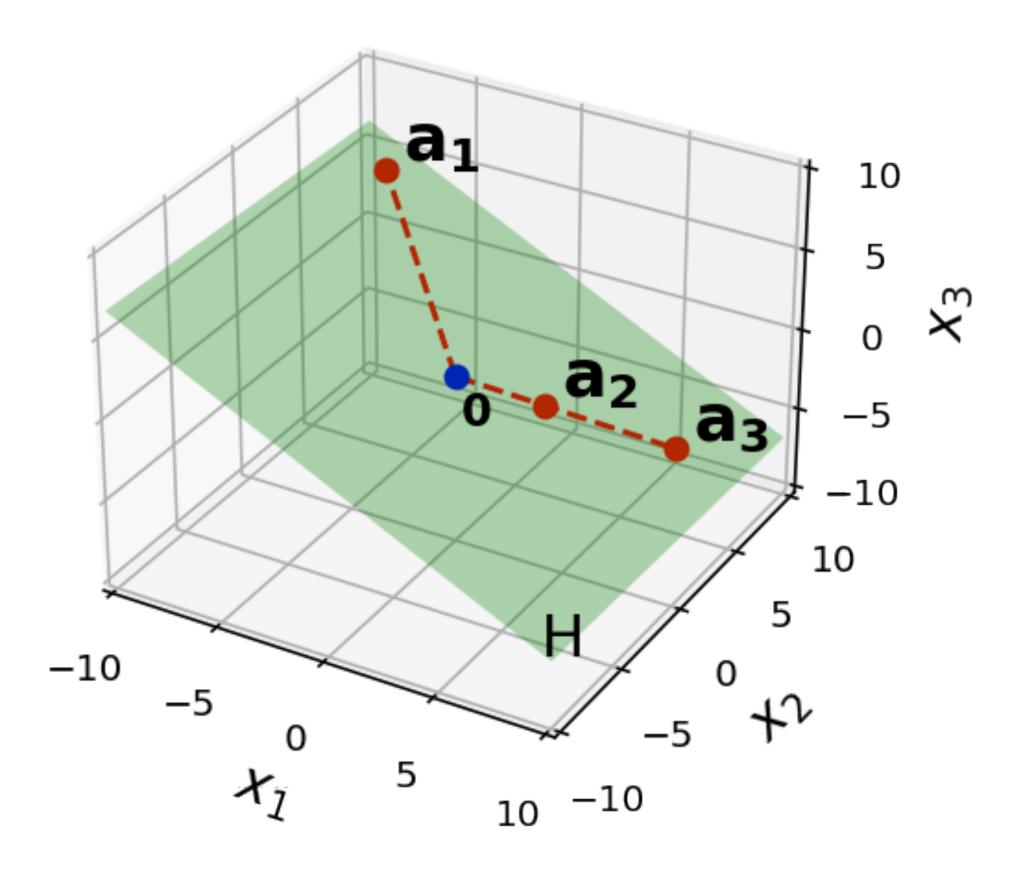


"sub" means "part of" or "below"



"sub" means "part of" or "below"

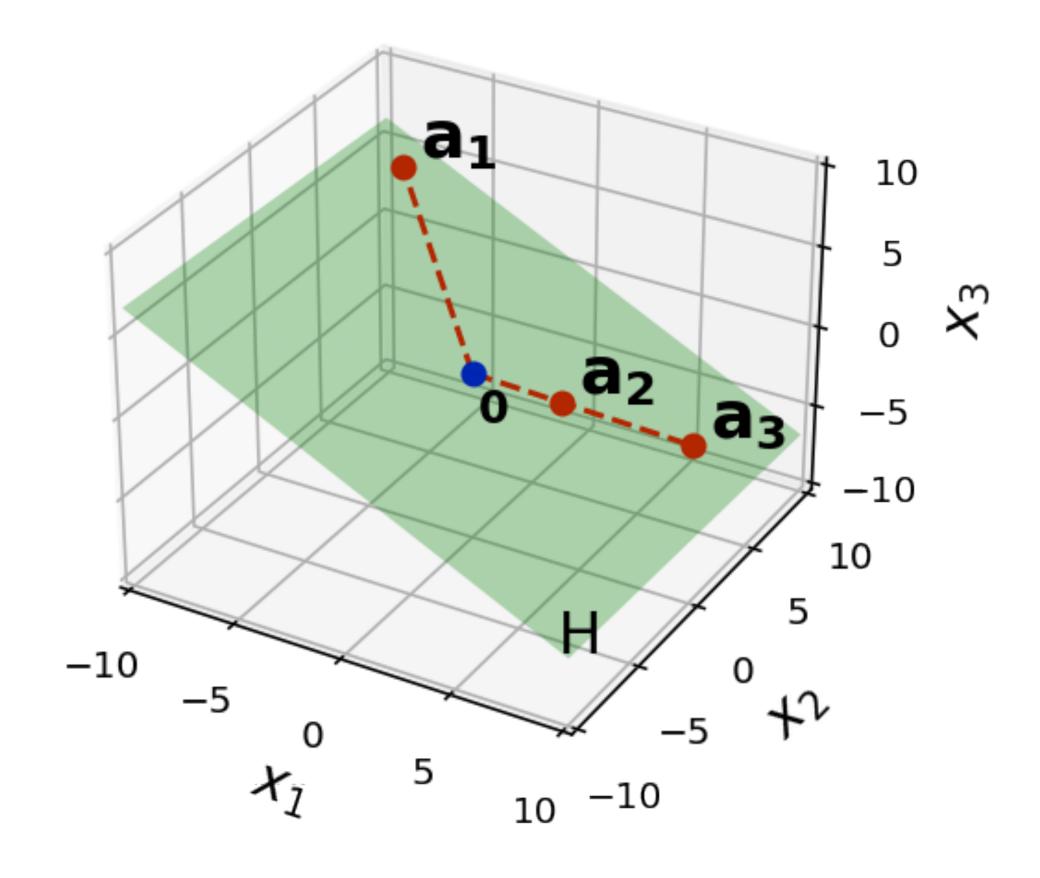
A plane in \mathbb{R}^3 looks like a (possibly tilted) copy of \mathbb{R}^2



"sub" means "part of" or "below"

A plane in \mathbb{R}^3 looks like a (possibly tilted) copy of \mathbb{R}^2

Subspaces *generalize* of this idea.

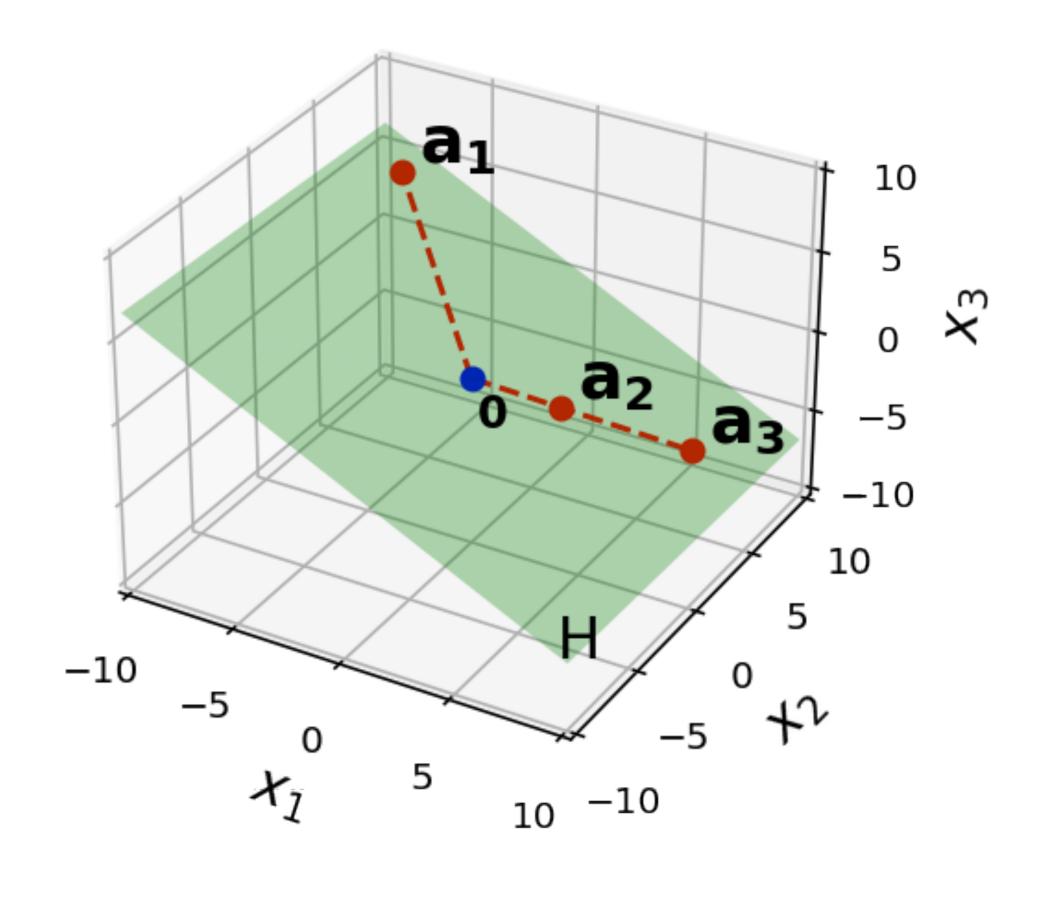


"sub" means "part of" or "below"

A plane in \mathbb{R}^3 looks like a (possibly tilted) copy of \mathbb{R}^2

Subspaces *generalize* of this idea.

For example, there can be a "possibly tilted copy" of \mathbb{R}^3 sitting in \mathbb{R}^5



Recall: Subspace (Algebraic Definition)

Definition. A **subspace** of \mathbb{R}^n is a set H of vectors in \mathbb{R}^n such that

- 1. for every \mathbf{u} and \mathbf{v} in H, the vector $\mathbf{u} + \mathbf{v}$ is in H
- **2.** for every ${\bf u}$ in H and scalar c, the vector $c{\bf u}$ is in H

Recall: Subspace (Algebraic Definition)

Definition. A **subspace** of \mathbb{R}^n is a set H of vectors in \mathbb{R}^n such that

- 1. for every u and v in H, the vector u+v is in H is closed under addition
- 2. for every \mathbf{u} in H and scalar c, the vector $c\mathbf{u}$ is in H is closed under scaling

Recall: Subspace (Algebraic Definition)

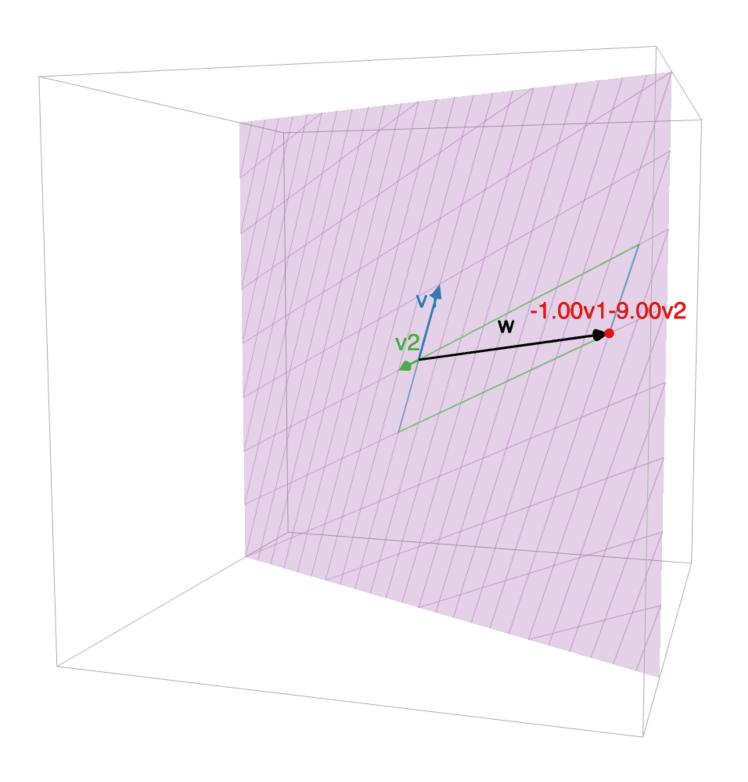
Definition. A **subspace** of \mathbb{R}^n is a set H of vectors in \mathbb{R}^n such that

- 1. for every u and v in H, the vector u+v is in H is closed under addition
- 2. for every \mathbf{u} in H and scalar c, the vector $c\mathbf{u}$ is in H is closed under scaling
 - !! Subspaces must "live" somewhere !!

Recall: How to Think About this Definition

It's not possible to "leave" *H* by addition or scaling.

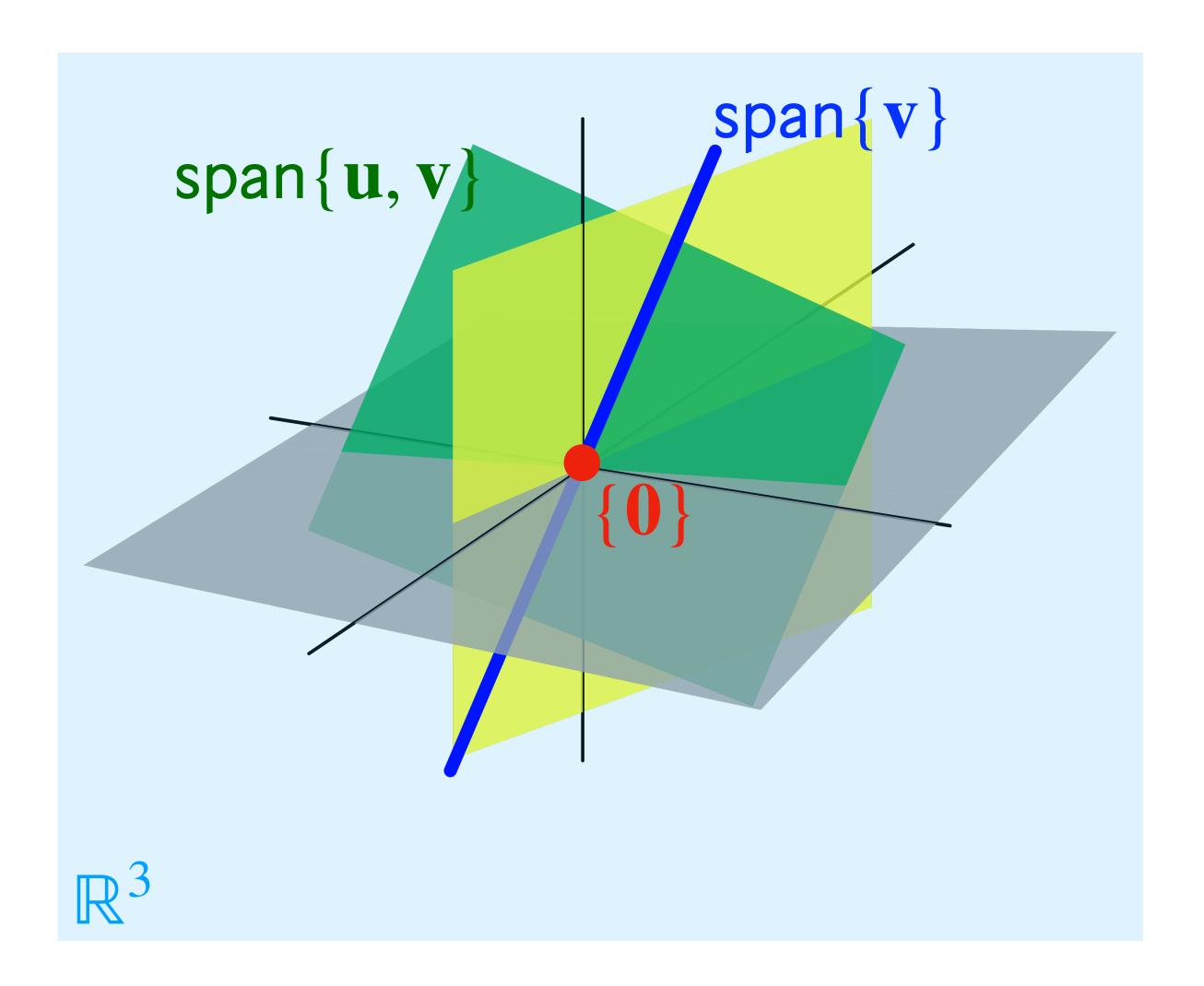
(recall this is also how we discussed spans)



Recall: Subspace in \mathbb{R}^3 (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^3 :

- 1. $\{0\}$ just the origin
- 2. lines (through the origin)
- 3. planes (through the origin)
- 4. All of \mathbb{R}^3



Definition. The **column space** of a matrix A, written Col(A) or Col(A), is the set of all linear combinations of the columns of A.

Definition. The **column space** of a matrix A, written Col(A) or Col(A), is the set of all linear combinations of the columns of A.

The column space of a matrix is the span of its columns.

Definition. The **column space** of a matrix A, written Col(A) or Col(A), is the set of all linear combinations of the columns of A.

The column space of a matrix is the span of its columns.

The column space of a matrix is the <u>range</u> of the linear transformation it implements.

Subspace of What?

$$m \mid \begin{bmatrix} | & | & \dots & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_{n-1} & \mathbf{a}_n \\ | & | & \dots & | & | \end{bmatrix}$$

$$c_1\mathbf{a}_1 + c_2\mathbf{a}_2 + \dots c_n\mathbf{a}_n$$
 is a vector in \mathbb{R}^m

Col(A)

is a subspace of

 \mathbb{R}^m

Null Space

Null Space

Definition. The **null space** of a matrix A, written Nul(A) or Nul(A), is the set of all solutions to the homogenous equation

$$A\mathbf{x} = \mathbf{0}$$

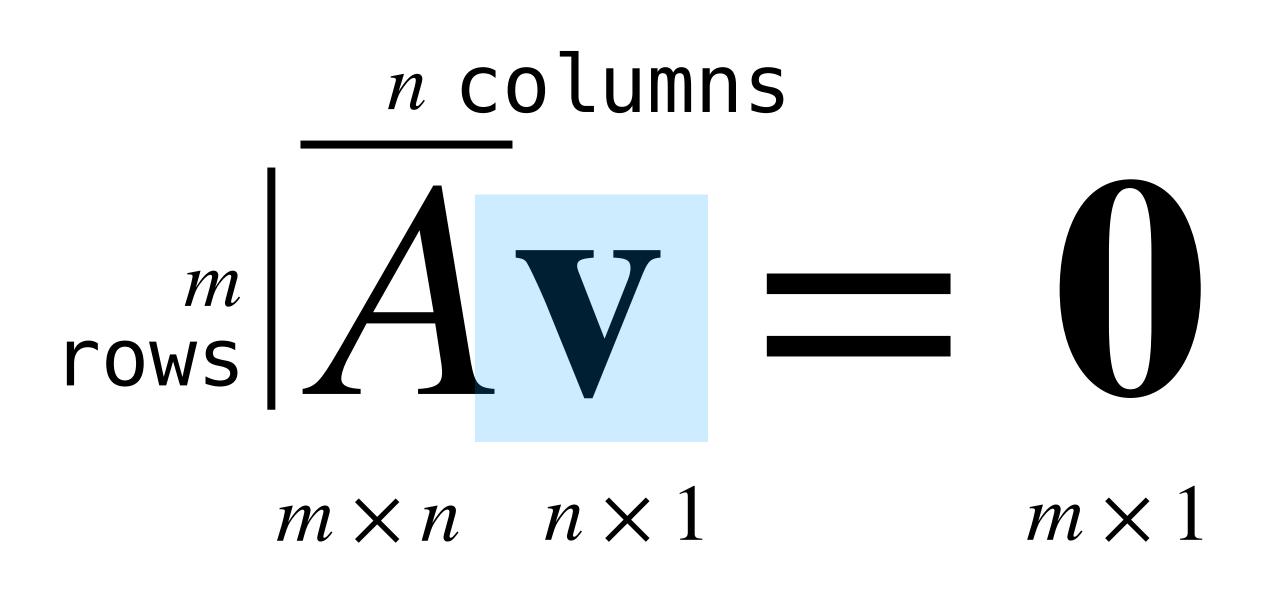
Null Space

Definition. The **null space** of a matrix A, written Nul(A) or Nul(A), is the set of all solutions to the homogenous equation

$$A\mathbf{x} = \mathbf{0}$$

The null space of a matrix A is the set of all vectors that are mapped to the zero vector by A.

Subspace of What?



 \mathbf{v} is a vector in \mathbb{R}^n

Nul(A)

is a subspace of

 \mathbb{R}^n

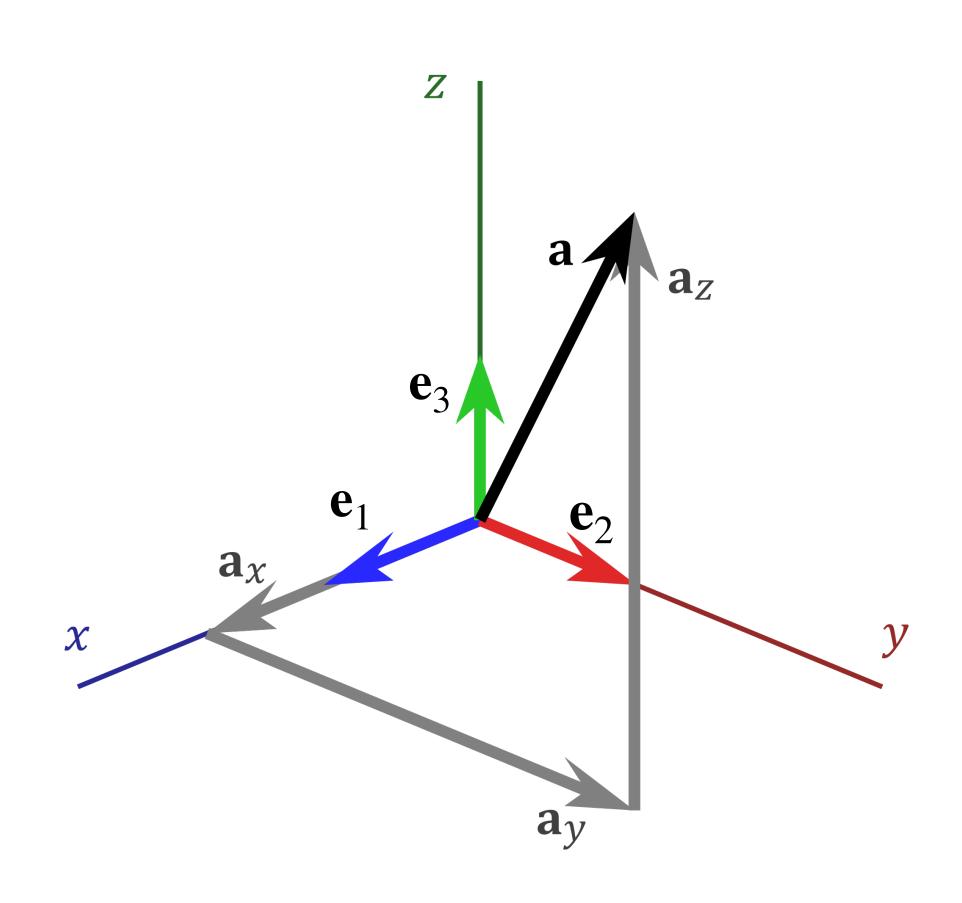
Recall: Basis

Recall: Basis

Definition. A **basis** for a subspace H of \mathbb{R}^n is a linearly independent set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ of vectors that spans H (in symbols: $H = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$).

A basis is a minimal set of vectors which spans all of H.

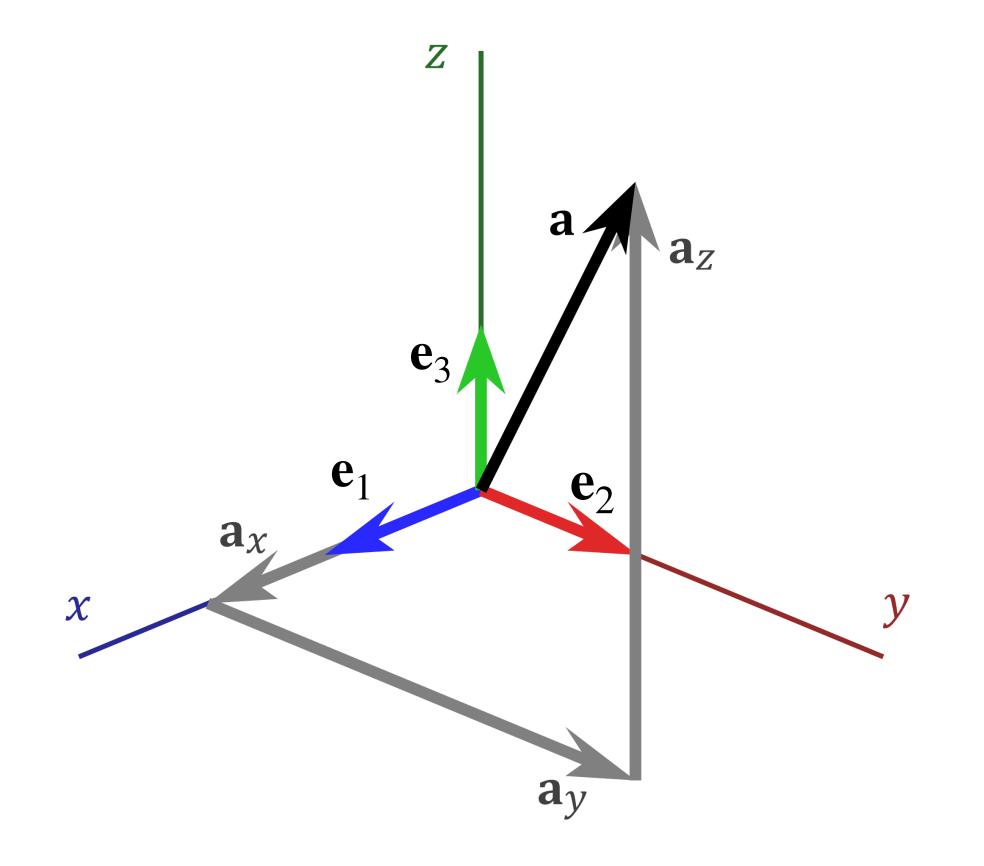
Recall: What's interesting about the standard basis?



Recall: What's interesting about the standard basis?

The n standard basis vectors in \mathbb{R}^n :

- » are linearly independent
- \gg span all of \mathbb{R}^n

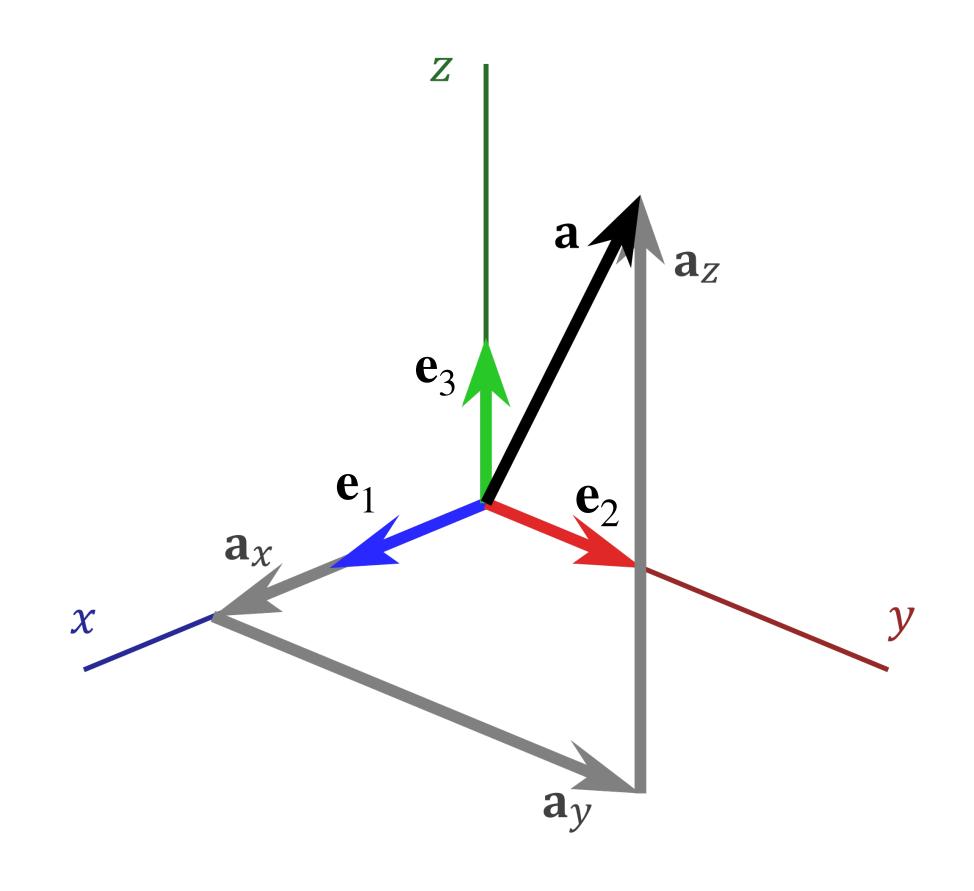


Recall: What's interesting about the standard basis?

The n standard basis vectors in \mathbb{R}^n :

- » are linearly independent
- \gg span all of \mathbb{R}^n

Their span is as "large" as possible while the set of vectors generating the span is as "small" as possible.



Recall: Example: Standard basis

The standard basis is a basis of \mathbb{R}^n .

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

Every column vector can be written in <u>exactly one</u> way as a linear combination of standard basis vectors

Recall: Example: Column Space of Invertible Matrices

Fact. The columns of an invertible $n \times n$ matrix form a basis of \mathbb{R}^n .

Verify:

Bases of Column Space and Null Space

The Goal of this Section

Determine how to find <u>bases</u> for the **column space** and the **null space** of a given matrix.

How to: Finding a basis for the null space

Question. Given a $m \times n$ matrix A find a basis for Nul(A).

Question. Given a $m \times n$ matrix A find a basis for Nul(A).

The idea. Describe the solutions of $A\mathbf{x} = \mathbf{0}$ as linear combination of vectors

Example $A \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Suppose A has the above reduced echelon form. Let's write down a general form solution for A:

Parametric Solutions

We can think of our general form solution as a (linear) transformation.

$$x_1 = 2x_2 + x_4 - 3x_5$$
 x_2 is free
 $x_3 = (-2)x_4 + 2x_5$
 x_4 is free
 x_5 is free

"given values for x_2 , x_3 , and x_4 , I can give you a solution"

Parametric Solutions

We can think of our general form solution as a (linear) transformation.

$$x_{1} = 2x_{2} + x_{4} - 3x_{5}$$

$$x_{2} \text{ is free}$$

$$x_{3} = (-2)x_{4} + 2x_{5}$$

$$x_{4} \text{ is free}$$

$$x_{5} \text{ is free}$$

$$x_{6} = 2x_{2} + x_{4} - 3x_{5}$$

$$x_{7} = 2x_{7} + x_{7} - 3x_{7}$$

$$x_{8} = (-2)x_{4} + 2x_{5}$$

$$x_{9} = (-2)t + 2u$$

$$t$$

$$u$$

Parametric Solutions

We can think of our general form solution as a (linear) transformation. !! this transformation is only linear !! in the case of homogeneous equations!!

$$x_1 = 2x_2 + x_4 - 3x_5$$

$$x_2 \text{ is free}$$

$$x_3 = (-2)x_4 + 2x_5$$

$$x_4 \text{ is free}$$

$$x_5 \text{ is free}$$

$$x_5 \text{ is free}$$

$$x_6 = \begin{bmatrix} s \\ t \\ u \end{bmatrix} \mapsto \begin{bmatrix} 2s + t - 3u \\ s \\ (-2)t + 2u \\ t \\ u \end{bmatrix}$$

$$\begin{bmatrix} s \\ t \\ u \end{bmatrix} \mapsto \begin{bmatrix} 2s + t - 3u \\ s \\ (-2)t + 2u \\ t \\ u \end{bmatrix}$$

Let's find the matrix implementing this linear transformation:

$\lceil 2 \rceil$	1	-3
1	0	0
0	- 2	2
0	1	0
0	0	1

```
\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

Every solution to $A\mathbf{x} = \mathbf{0}$ can be written as an image of this transformation.

```
\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

Every solution to $A\mathbf{x} = \mathbf{0}$ can be written as an image of this transformation.

So every solution can be written as a linear combination of its <u>columns</u>.

```
\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

Every solution to $A\mathbf{x} = \mathbf{0}$ can be written as an image of this transformation.

So every solution can be written as a linear combination of its <u>columns</u>.

The columns of this matrix span Nul(A).

```
\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

The columns of this matrix are linearly independent.

Verify:

```
\begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

The columns of this matrix $\underline{\operatorname{span}}$ $\operatorname{Nul}(A)$.

The columns of this matrix are linearly independent.

The columns of this matrix form a basis for Nul(A).

Alternatively, we can think of writing a general form solution so that it is a linear combination of vectors with free variables as weights:

$$x_1 = 2x_2 + x_4 - 3x_5$$

 x_2 is free
 $x_3 = (-2)x_4 + 2x_5$
 x_4 is free
 x_5 is free

Question. Given a $m \times n$ matrix A find a basis for Nul(A).

Question. Given a $m \times n$ matrix A find a basis for Nul(A).

Solution.

1. Find a general form solution for $A\mathbf{x} = \mathbf{0}$.

Question. Given a $m \times n$ matrix A find a basis for Nul(A).

Solution.

- 1. Find a general form solution for $A\mathbf{x} = \mathbf{0}$.
- 2. Write this solution as a linear combination of vectors where the free variables are the weights.

Question. Given a $m \times n$ matrix A find a basis for Nul(A).

Solution.

- 1. Find a general form solution for $A\mathbf{x} = \mathbf{0}$.
- 2. Write this solution as a linear combination of vectors where the free variables are the weights.
- 3. The resulting vectors form a basis for Nul(A).

An Observation

The *number* of vectors in the basis we found is the same as the number of <u>free variables</u> in our general form solution.

$$x_{1} = 2x_{2} + x_{4} - 3x_{5}$$

$$x_{2} \text{ is free}$$

$$x_{3} = (-2)x_{4} + 2x_{5}$$

$$x_{4} \text{ is free}$$

$$x_{5} \text{ is free}$$

$$x_{6} = (-2)x_{4} + 2x_{5}$$

$$x_{6} = (-2)t + 2u$$

$$t$$

$$u$$

moving on to column space...

Question. Given a $m \times n$ matrix A, find a basis for Col(A).

Question. Given a $m \times n$ matrix A, find a basis for Col(A).

We already know the columns of A span Col(A).

Question. Given a $m \times n$ matrix A, find a basis for Col(A).

We already know the columns of A span Col(A).

So we also already know *some* subset of columns of A form a basis for Col(A).

Question. Given a $m \times n$ matrix A, find a basis for Col(A).

We already know the columns of A span $\operatorname{Col}(A)$.

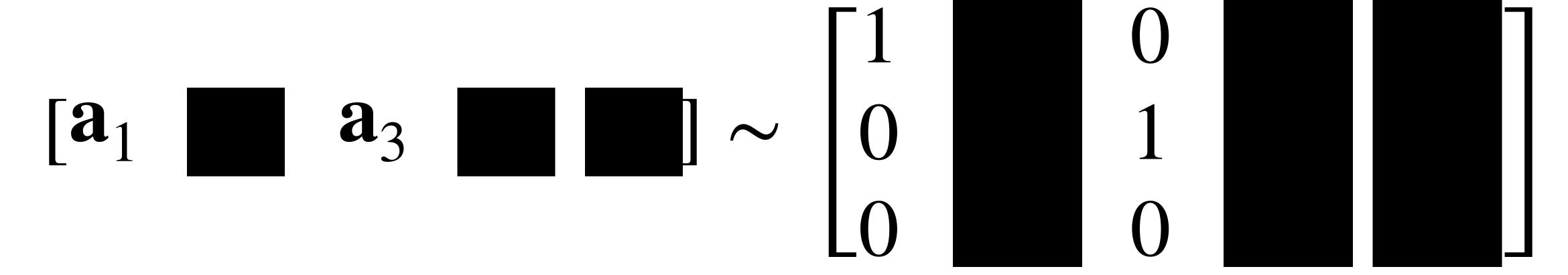
So we also already know *some* subset of columns of A form a basis for Col(A).

Which columns of A should we choose?

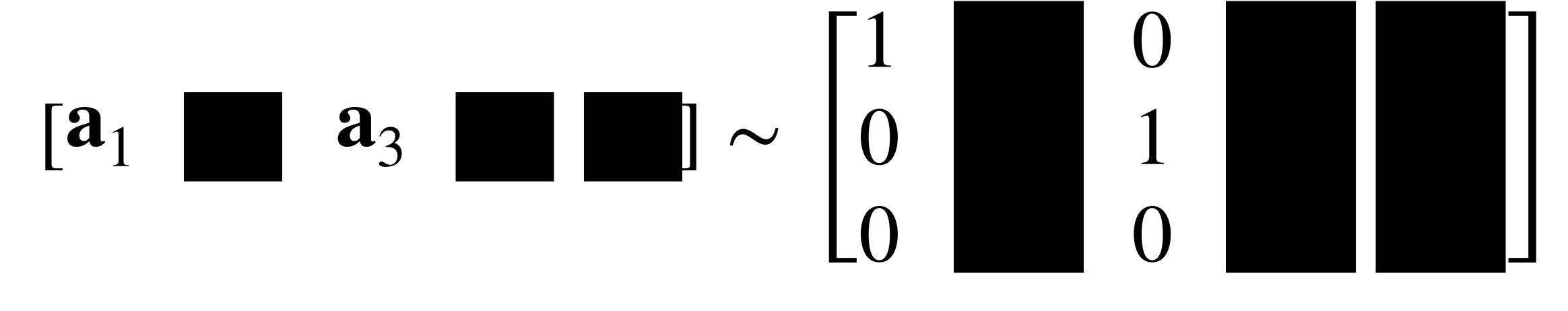
$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The idea. What if we cover up the non-pivot columns?



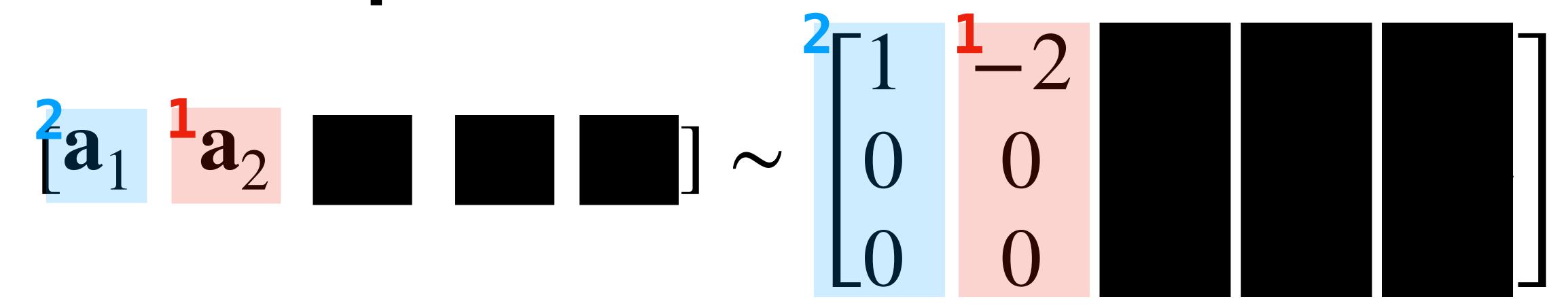
The idea. What if we cover up the non-pivot columns? Then we see $[\mathbf{a}_1 \ \mathbf{a}_3]$ has 2 pivots.



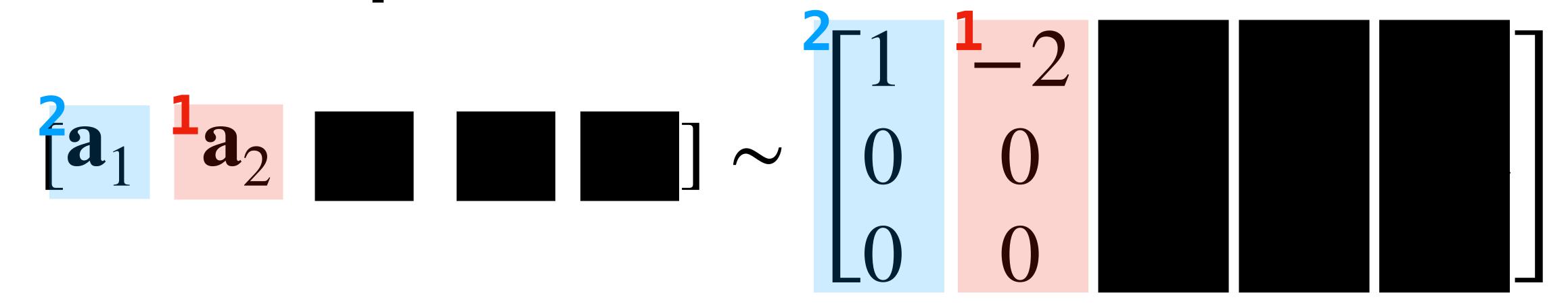
The idea. What if we cover up the non-pivot columns? Then we see $[a_1 \ a_3]$ has 2 pivots.

So the pivot columns are <u>linearly independent</u>.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$



Observation. $[2\ 1\ 0\ 0\ 0]^T$ is a solution to the system $A\mathbf{x} = \mathbf{0}$.



Observation. $[2\ 1\ 0\ 0\ 0]^T$ is a solution to the system $A\mathbf{x} = \mathbf{0}$.

So
$$2a_1 + a_2 = 0$$
 and $a_2 = (-2)a_1$.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Observation. $[2\ 1\ 0\ 0\ 0]^T$ is a solution to the system $A\mathbf{x} = \mathbf{0}$.

So
$$2a_1 + a_2 = 0$$
 and $a_2 = (-2)a_1$.

In general, every non-pivot column of \boldsymbol{A} can be written as a linear combination pivots in front of it.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Observation. $[2\ 1\ 0\ 0\ 0]^T$ is a solution to the system $A\mathbf{x} = \mathbf{0}$.

So $2a_1 + a_2 = 0$ and $a_2 = (-2)a_1$.

In general, every non-pivot column of \boldsymbol{A} can be written as a linear combination pivots in front of it.

This tells us that a_1 and a_3 span Col(A).

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The takeaway. The pivot columns of A form a basis for $\operatorname{Col}(A)$.

Column Space and Reduced Echelon form

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The takeaway. The pivot columns of A form a basis for Col(A).

!! IMPORTANT !! Choose the columns of A.

(\mathbf{e}_1 and \mathbf{e}_2 do not necessarily form a basis for $\mathsf{Col}(A)$)

Question. Given a $m \times n$ matrix A, find a basis for Col(A).

Question. Given a $m \times n$ matrix A, find a basis for Col(A).

Solution.

1. Find the pivot columns in an echelon form of A_{ullet}

Question. Given a $m \times n$ matrix A, find a basis for Col(A).

Solution.

- 1. Find the pivot columns in an echelon form of A_{ullet}
- 2. The associated columns in A form a basis for Col(A).

An Observation

The *number* of vectors in the basis we found is the same as the number of <u>basic variable</u> or equivalently the number of <u>pivot columns</u>.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

An Observation

The *number* of vectors in the basis we found is the same as the number of <u>basic variable</u> or equivalently the number of <u>pivot columns</u>.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Question

$$A = \begin{bmatrix} 1 & -2 & 19 & 0 & -4 \\ 1 & 0 & 9 & 1 & 1 \\ 1 & -1 & 14 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 9 & 0 & 0 \\ 0 & 1 & -5 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Find a bases for the column space and null space of A_{\bullet}

Answer

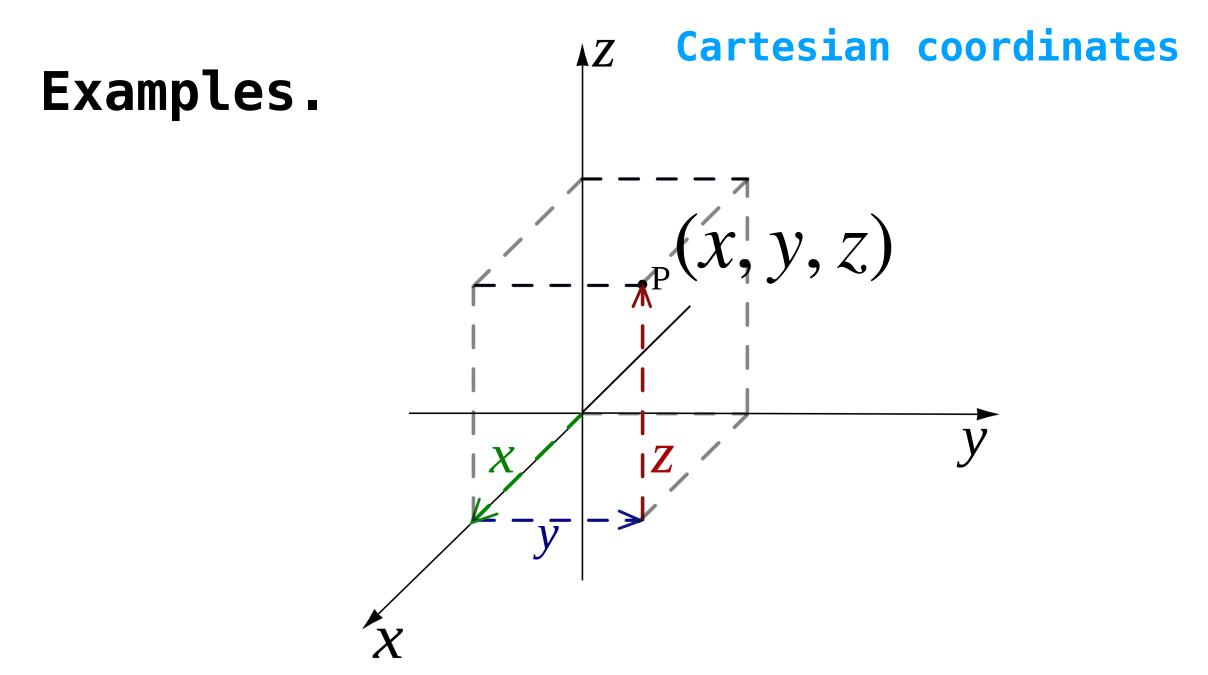
$$A = \begin{bmatrix} 1 & -2 & 19 & 0 & -4 \\ 1 & 0 & 9 & 1 & 1 \\ 1 & -1 & 14 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 9 & 0 & 0 \\ 0 & 1 & -5 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

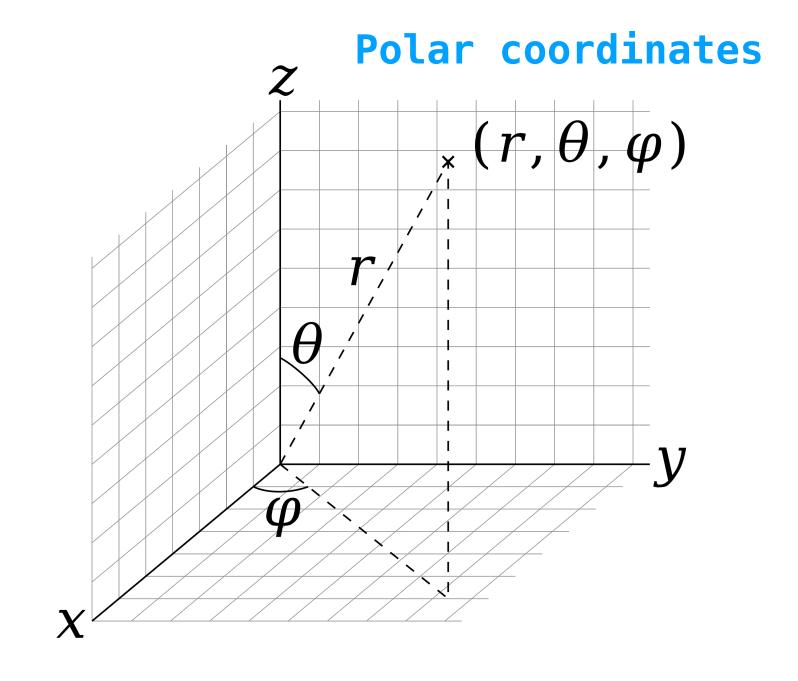
moving on...

Coordinate Systems

At a High Level

A coordinate system is a way of representing positions in terms of a sequence of numbers.





Is (2.3, 0.01, 5) a polar coordinate or a cartesian coordinate?

Is (2.3, 0.01, 5) a polar coordinate or a cartesian coordinate?

This question is non-sensical.

Is (2.3, 0.01, 5) a polar coordinate or a cartesian coordinate?

This question is non-sensical.

It's <u>just a sequence of numbers</u>. We need to be *told* if it should be interpreted in the **polar** coordinate system or the **Cartesian** coordinate system.

Bases define Coordinate Systems

Given a basis \mathscr{B} of a subspace H, there is **exactly one way** to write every vector in H as a linear combination of vectors in \mathscr{B} .

Verify:

Bases define Coordinate Systems

Given a basis \mathscr{B} of a subspace H, there is **exactly one way** to write every vector in H as a linear combination of vectors in \mathscr{B} .

Every basis provides a way to write down coordinates of a vector.

And every time we write down a vector, we are assuming a coordinate system.

what do we mean by this?

Imagine doing this whole class from the beginning, but never saying what vectors are.

Imagine doing this whole class from the beginning, but never saying what vectors are.

(This is actually how we would do linear algebra if this were a math class)

Imagine doing this whole class from the beginning, but never saying what vectors are.

(This is actually how we would do linear algebra if this were a math class)

Then one day, you get tired of talking about "abstract" vectors, you want to work with numbers.

Because we've learned everything up to now, we know that there is a basis \mathbf{b}_1 , \mathbf{b}_2 ,..., \mathbf{b}_n for the space \mathbb{R}^n .

Because we've learned everything up to now, we know that there is a basis \mathbf{b}_1 , \mathbf{b}_2 ,..., \mathbf{b}_n for the space \mathbb{R}^n .

So given v, if we know how to write it in terms of the basis, we can write...

Because we've learned everything up to now, we know that there is a basis \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_n for the space \mathbb{R}^n .

So given \mathbf{v} , if we know how to write it in terms of the basis, we can write...

$$\mathbf{v} = 2\mathbf{b}_1 + 3\mathbf{b}_2 + ... + (-0.1)\mathbf{b}_n$$

Because we've learned everything up to now, we know that there is a basis \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_n for the space \mathbb{R}^n .

So given \mathbf{v} , if we know how to write it in terms of the basis, we can write...

$$\mathbf{v} = 2\mathbf{b}_1 + 3\mathbf{b}_2 + \dots + (-0.1)\mathbf{b}_n \qquad \mathbf{v} = \begin{bmatrix} 2\\3\\\vdots\\-0.1 \end{bmatrix}$$

and then choose those weights as a representation of ν as a sequence of numbers

This depends on the choice of basis.

This depends on the choice of basis.

If we started with \mathbf{c}_1 , \mathbf{c}_2 ,..., \mathbf{c}_n then we would get some other representation.

This depends on the choice of basis.

If we started with c_1 , c_2 , ..., c_n then we would get some other representation.

representation.

$$\mathbf{v} = (-10)\mathbf{c}_1 + (4.3)\mathbf{c}_2 + \dots + 0\mathbf{c}_n = \begin{bmatrix} -10 \\ 4.3 \\ \vdots \\ 0 \end{bmatrix}$$

This depends on the choice of basis.

If we started with \mathbf{c}_1 , \mathbf{c}_2 ,..., \mathbf{c}_n then we would get some other representation.

representation.
$$\mathbf{v} = (-10)\mathbf{c}_1 + (4.3)\mathbf{c}_2 + \dots + 0\mathbf{c}_n = \begin{bmatrix} -10 \\ 4.3 \\ \vdots \\ 0 \end{bmatrix}$$

Every basis defined a different coordinate system

Standard Basis

The standard basis defines the Cartesian coordinate system for \mathbb{R}^n .

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$
Vectors are just weights for a

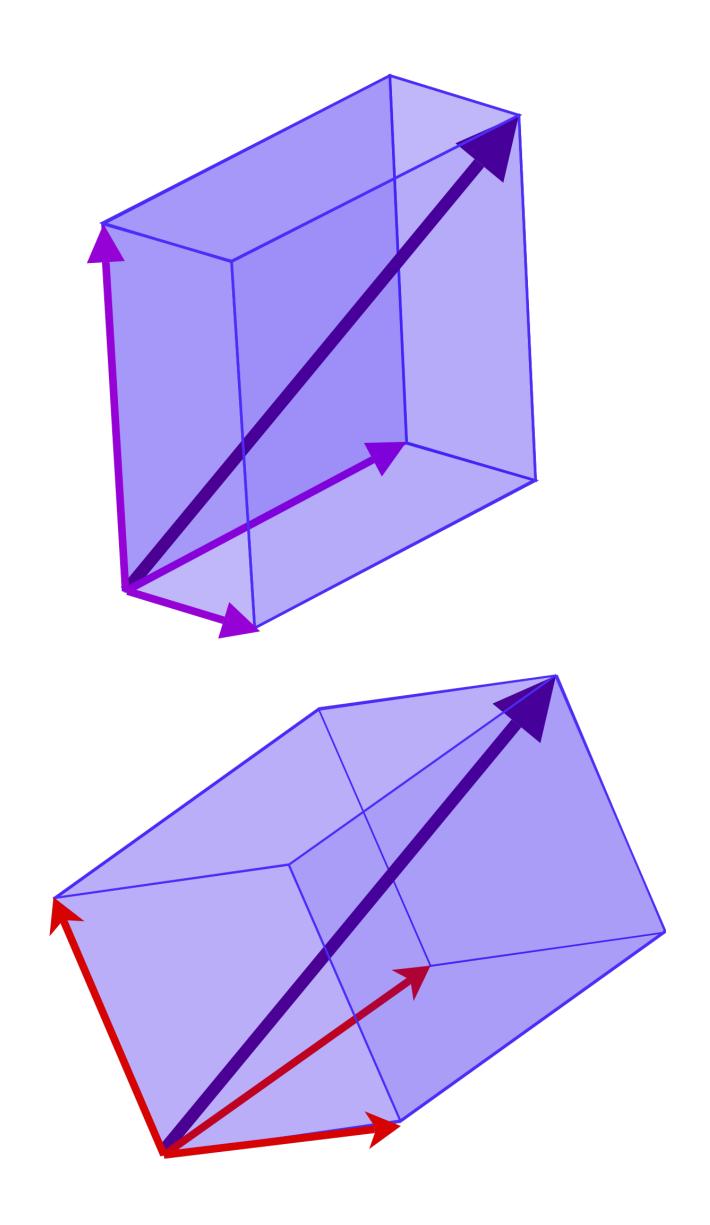
Column vectors are just weights for a linear combination of the standard basis

but we can also use different coordinate systems

How to think about this

Changing the coordinate system "warps space".

The question is: how to we represent a vector v in the warped space if we wanted it to "be in the same place"?



Let \mathbf{v} be a vector in a subspace H of \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_k\}$ be a basis of H where

$$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_k \mathbf{b}_k$$

Let \mathbf{v} be a vector in a subspace H of \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_k\}$ be a basis of H where

$$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_k \mathbf{b}_k$$

Definition. The coordinate vector of \mathbf{v} relative to \mathscr{B} is

Let \mathbf{v} be a vector in a subspace H of \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_k\}$ be a basis of H where

$$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_k \mathbf{b}_k$$

Definition. The coordinate vector of v relative to \mathscr{B} is

$$[\mathbf{v}]_{\mathscr{B}} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix}$$

Coordinate Vectors and the Standard Basis

When we write down a vector \mathbf{v} in \mathbb{R}^n , we're really writing down a coordinate vector relative to the standard basis \mathscr{E} .

$$[\mathbf{v}]_{\mathscr{E}} = \mathbf{v}$$

How do we find coordinate vectors?

For an arbitrary basis \mathcal{B} , to determine $[\mathbf{v}]_{\mathcal{B}}$, we need to find weights $a_1, ..., a_k$ such that

$$a_1\mathbf{b}_1 + \ldots + a_k\mathbf{b}_k = \mathbf{v}$$

This is just solving a vector equation.

Example: 2D Case

Write the coordinate vector for $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$ relative to the basis $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ for \mathbb{R}^2

Example: 2D Case (Geometrically)

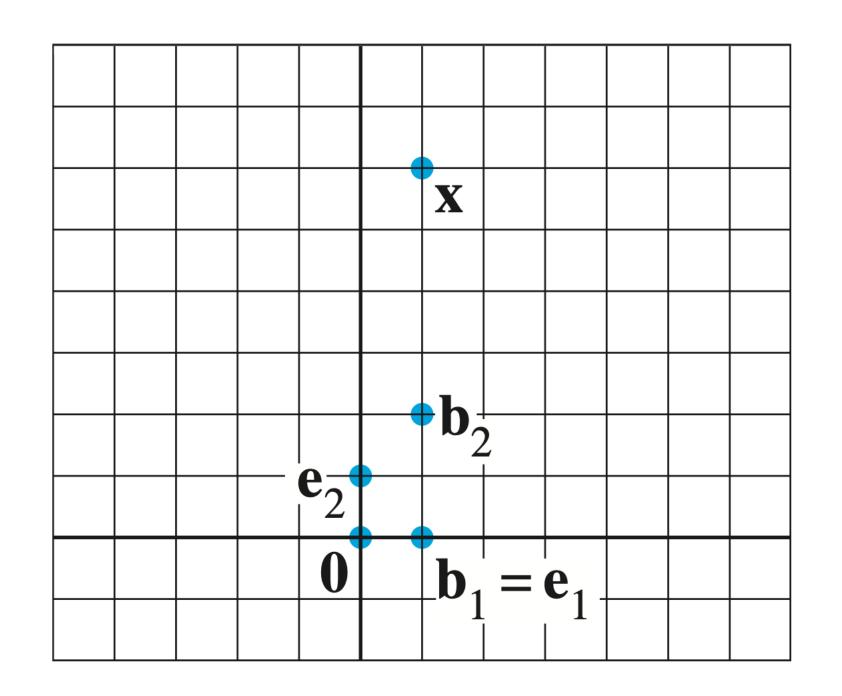


FIGURE 1 Standard graph paper.

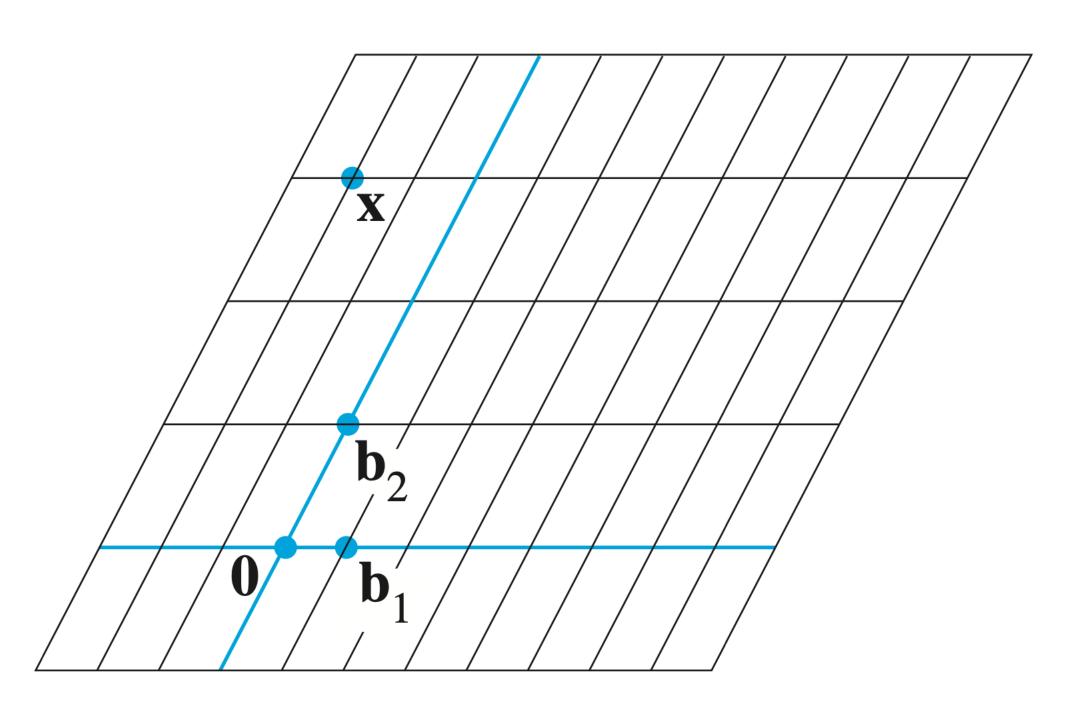


FIGURE 2 \mathcal{B} -graph paper.

B defines a "different grid for our graph paper"

How To: Coordinate Vectors

Question. Find the coordinate vector for \mathbf{v} in the subspace H relative to the basis $\mathbf{b}_1, ..., \mathbf{b}_k$.

Solution. Solve the vector equation

$$x_1\mathbf{b}_1 + \ldots + x_k\mathbf{b}_k = \mathbf{v}$$

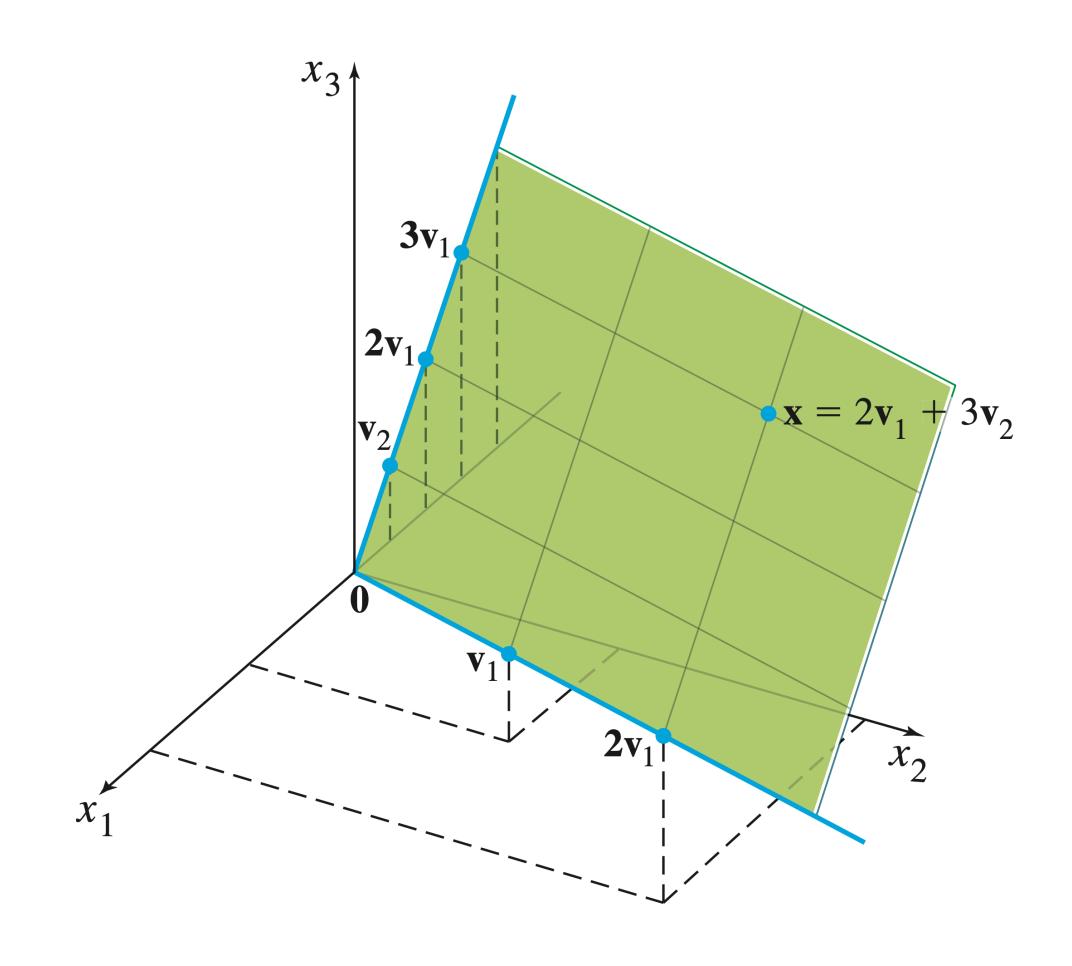
A solution $(a_1, ..., a_k)$ means

$$[\mathbf{v}]_{\mathscr{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix}$$

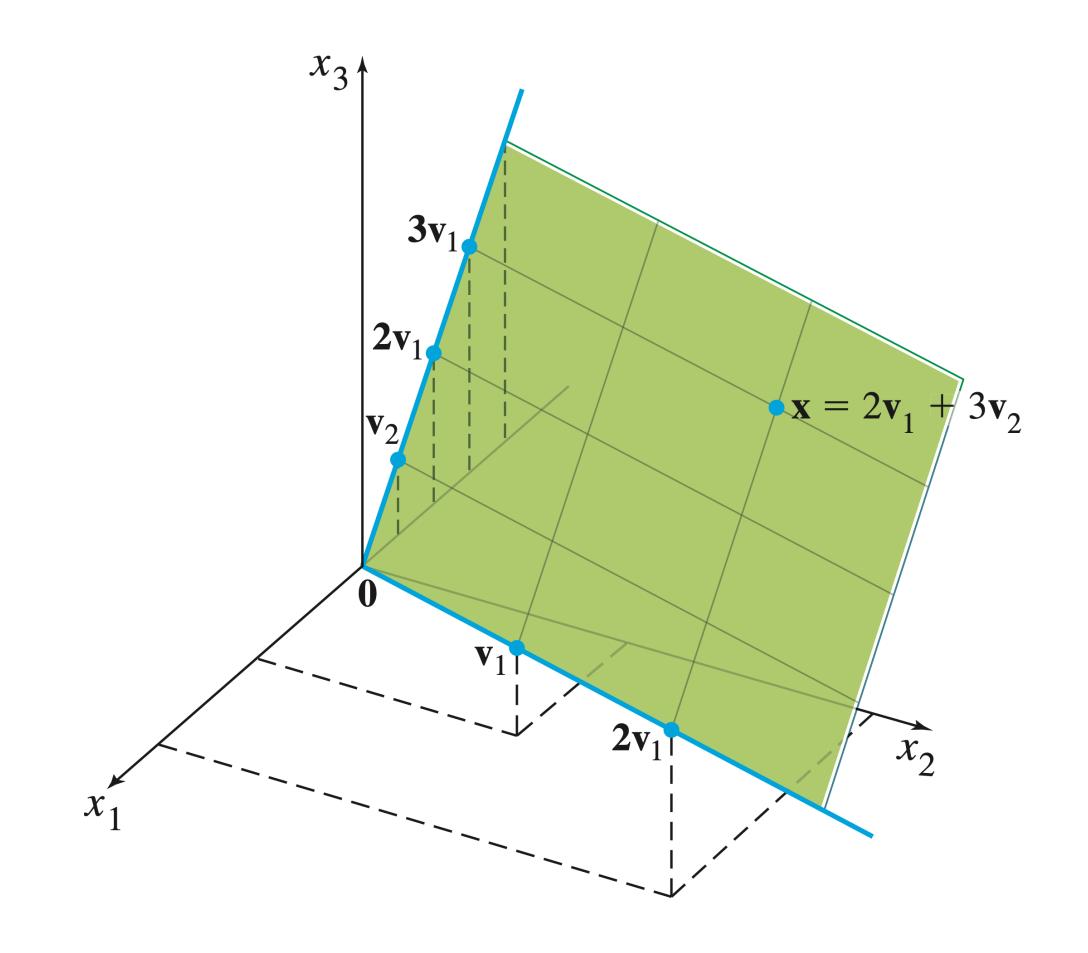
Example: 3D Case

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{u} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$$

Find the coordinate vector for \mathbf{u} relative to the basis $\{\mathbf{v}_1,\mathbf{v}_2\}$ of a subspace H (of \mathbb{R}^3):

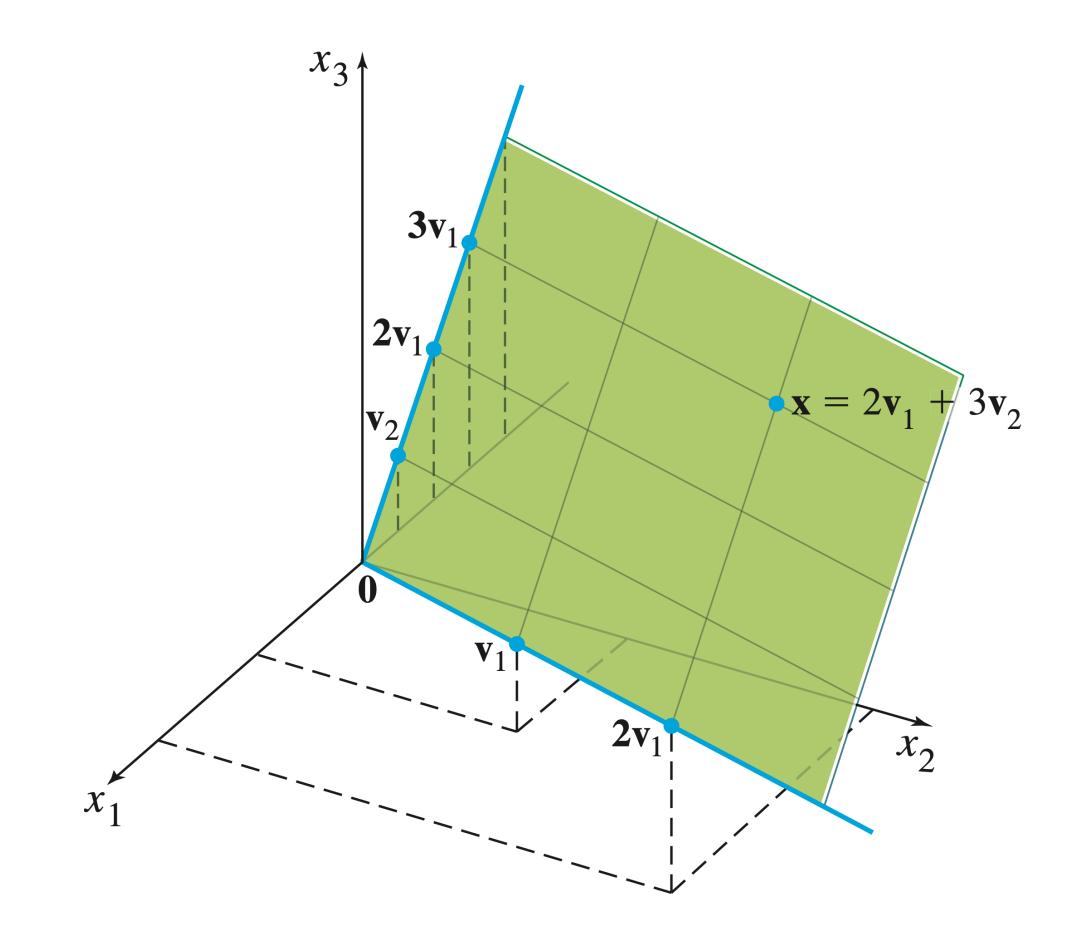


In the previous example $x \mapsto [x]_{\mathscr{B}}$ is a <u>one-to-one correspondence</u> from H to \mathbb{R}^2 . This is also sometimes called an **isomorphism**.



In the previous example $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$ is a <u>one-to-one correspondence</u> from H to \mathbb{R}^2 . This is also sometimes called an **isomorphism**.

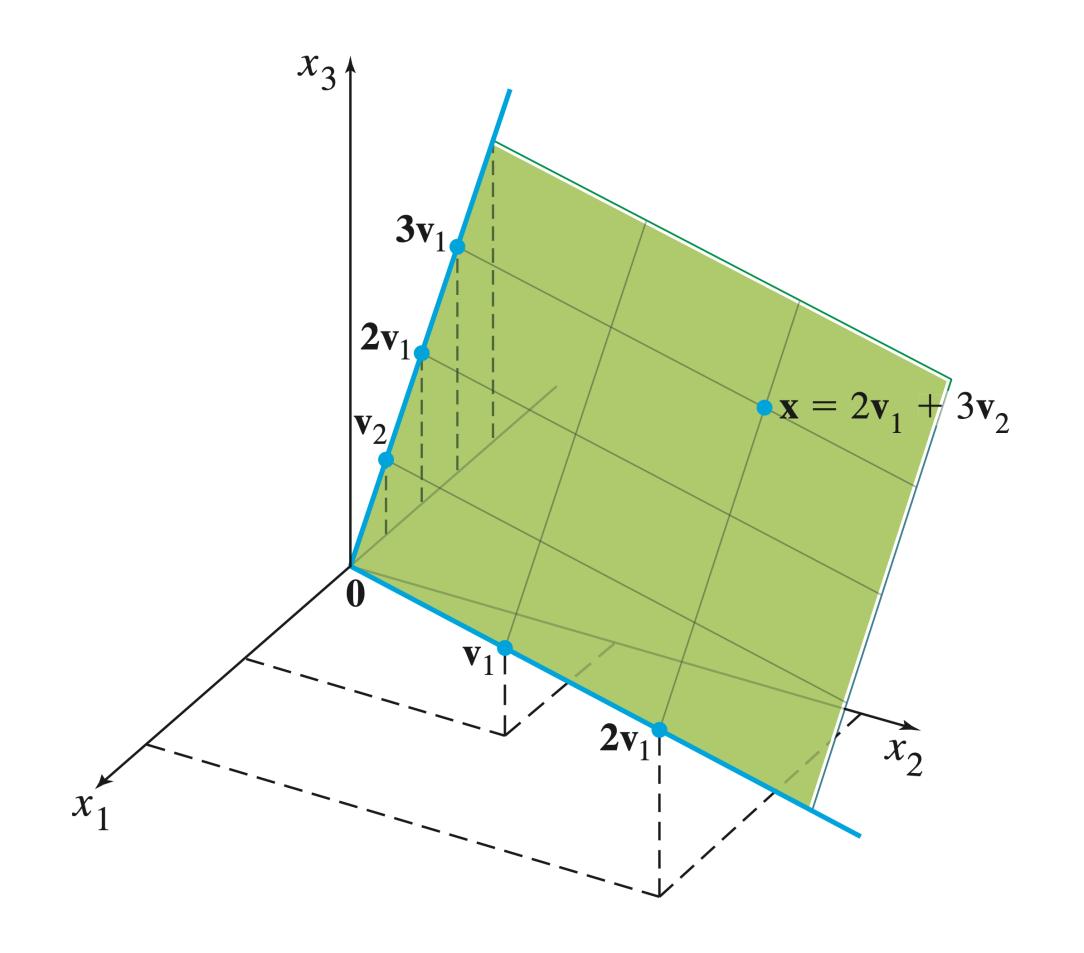
Isomorphic things "look and behave the same up to simple transformations."



In the previous example $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$ is a <u>one-to-one correspondence</u> from H to \mathbb{R}^2 . This is also sometimes called an **isomorphism**.

Isomorphic things "look and behave the same up to simple transformations."

So $span\{\mathbf{v}_1,\mathbf{v}_2\}$ is *isomorphic* to \mathbb{R}^2 .

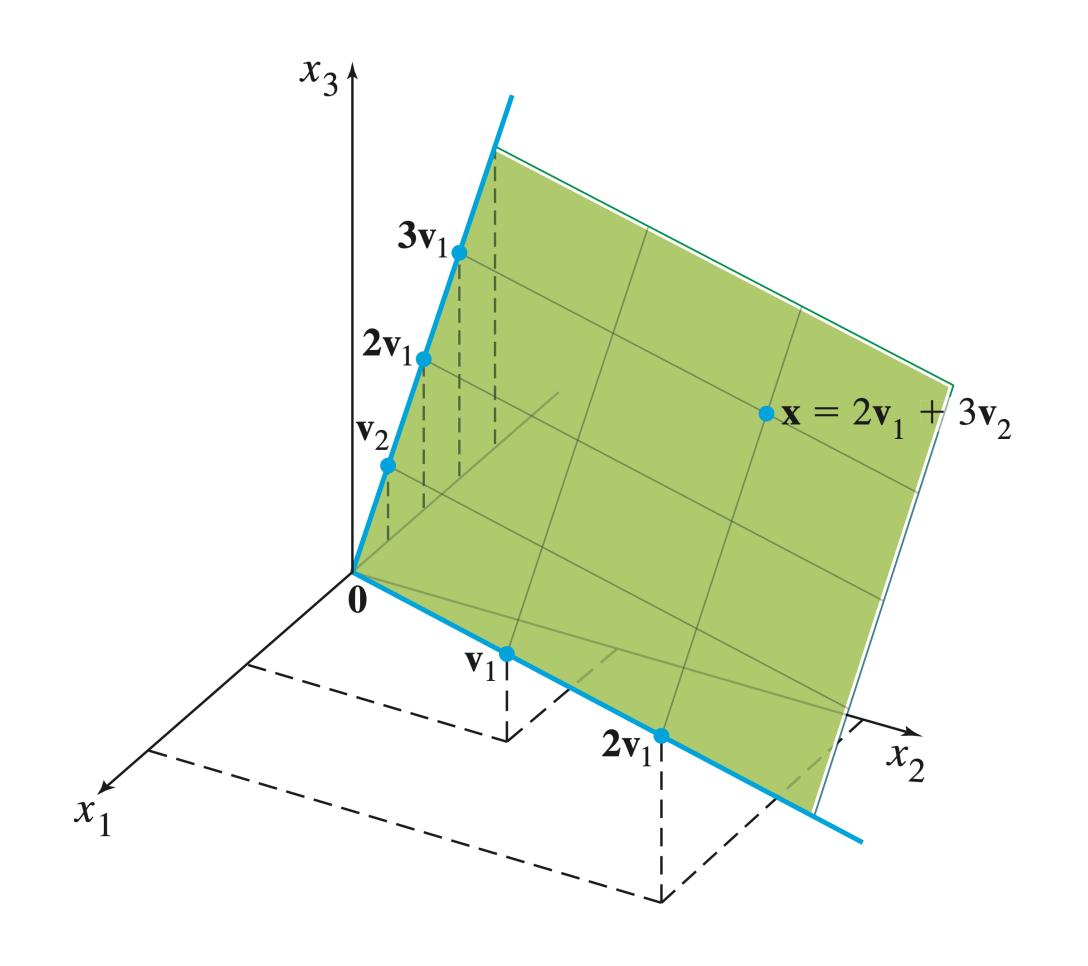


In the previous example $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$ is a <u>one-to-one correspondence</u> from H to \mathbb{R}^2 . This is also sometimes called an **isomorphism**.

Isomorphic things "look and behave the same up to simple transformations."

So $span\{\mathbf{v}_1,\mathbf{v}_2\}$ is isomorphic to \mathbb{R}^2 .

This is a formal way of saying that $span\{v_1, v_2\}$ is a "copy of \mathbb{R}^2 ."



Question

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Suppose
$$[\mathbf{u}]_{\mathscr{B}} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$
, where $\mathscr{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Find \mathbf{u} .

Answer

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad [\mathbf{u}]_{\mathscr{B}} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Dimension and Rank

Theorem. Every basis of a subspace *H* has exactly the same number of vectors.

Theorem. Every basis of a subspace *H* has exactly the same number of vectors.

Any fewer, we wouldn't cover everything.

Theorem. Every basis of a subspace *H* has exactly the same number of vectors.

Any fewer, we wouldn't cover everything.

Any more, we would have dependencies.

Theorem. Every basis of a subspace *H* has exactly the same number of vectors.

Any fewer, we wouldn't cover everything.

Any more, we would have dependencies.

This number is a measure of how "large" H is.

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the *number* of vectors in <u>any</u> basis of H.

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the *number* of vectors in <u>any</u> basis of H.

We say H is k-dimensional if it has dimension k.

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the *number* of vectors in <u>any</u> basis of H.

We say H is k-dimensional if it has dimension k.

This should confirm our intuitions:

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the *number* of vectors in <u>any</u> basis of H.

We say H is k-dimensional if it has dimension k.

This should confirm our intuitions:

» a plane (through the origin) is a 2D subspace

Definition. The **dimension** of a subspace H of \mathbb{R}^n , written $\dim(H)$ or $\dim H$, is the *number* of vectors in <u>any</u> basis of H.

We say H is k-dimensional if it has dimension k.

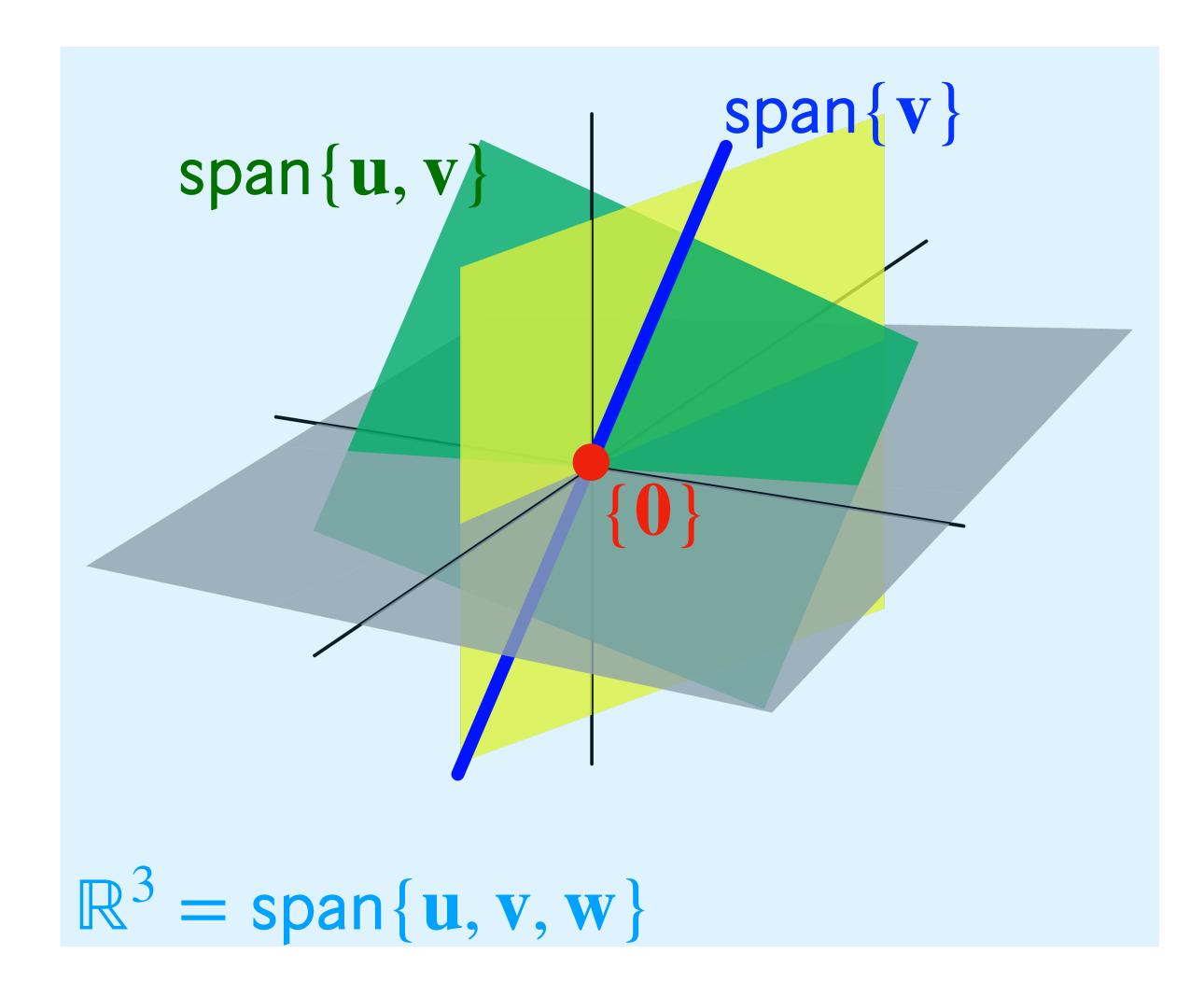
This should confirm our intuitions:

- » a plane (through the origin) is a 2D subspace
- » a line (through the origin) is a 1D subspace

Recall: Subspace in \mathbb{R}^3 (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^3 :

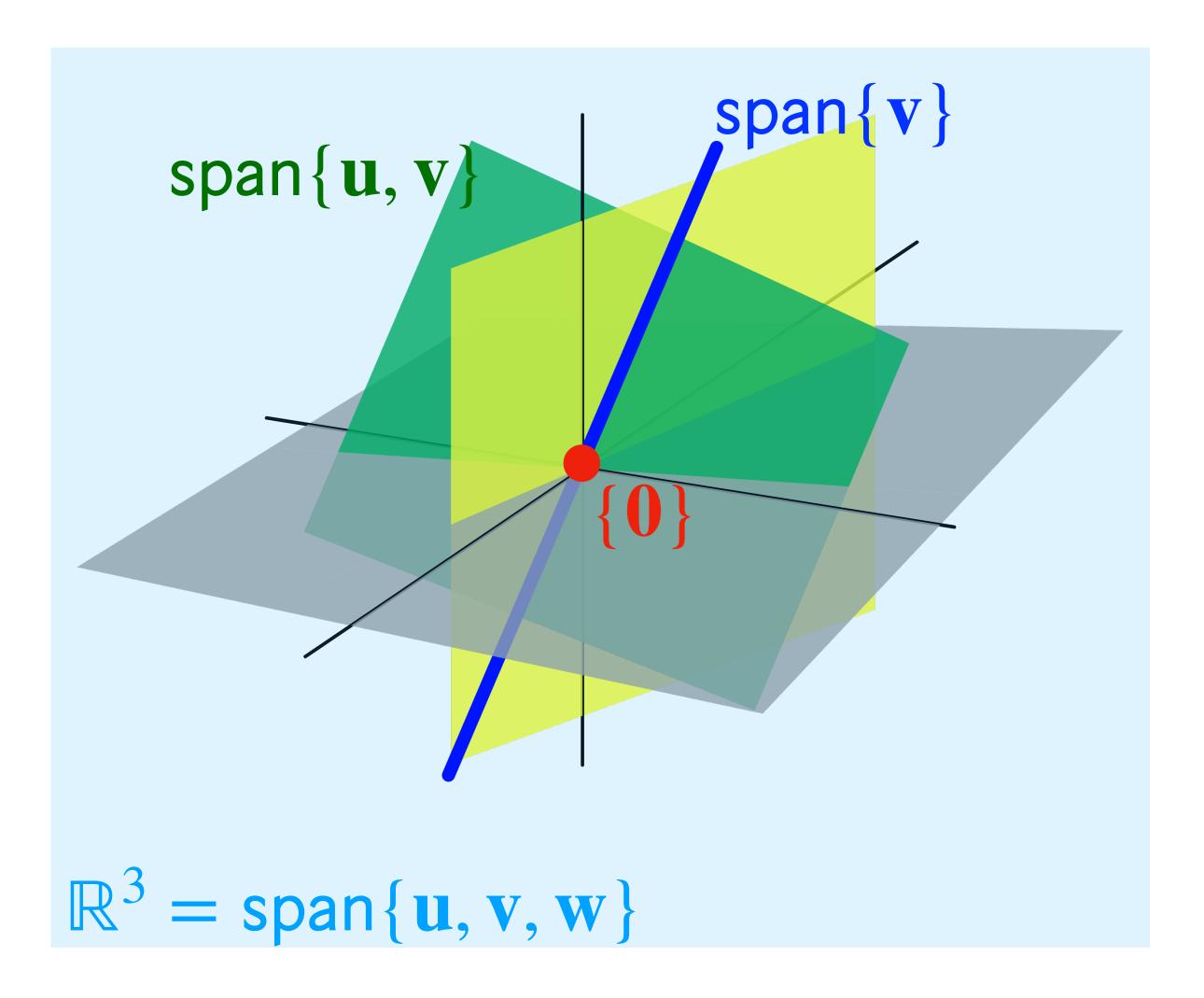
- 1. $\{0\}$ just the origin
- 2. lines (through the origin)
- 3. planes (through the origin)
- 4. All of \mathbb{R}^3



Recall: Subspace in \mathbb{R}^3 (Geometrically)

There are only 4 kinds of subspaces of \mathbb{R}^3 :

- 1. 0-dimensional subspace
- 2. 1-dimensional subspaces
- 3. 2-dimensional subspaces
- 4. 3-dimensional subspace



How does this connect to null space and column space?

Recall: An Observation

The *number* of vectors in the basis we found is the same as the number of <u>free variables</u> in a general form solution.

$$x_{1} = 2x_{2} + x_{4} - 3x_{5}$$

$$x_{2} \text{ is free}$$

$$x_{3} = (-2)x_{4} + 2x_{5}$$

$$x_{4} \text{ is free}$$

$$x_{5} \text{ is free}$$

$$x_{6} = (-2)x_{4} + 2x_{5}$$

$$x_{6} = (-2)x_{4} + 2x_{5}$$

$$x_{7} = (-2)x_{4} + 2x_{5}$$

$$x_{8} = (-2)x_{4} + 2x_{5}$$

$$x_{8} = (-2)x_{4} + 2x_{5}$$

$$x_{9} = (-2)x_{4} + 2x_{5}$$

$$x_{1} = (-2)x_{2} + x_{4} - 3x_{5}$$

$$x_{2} = (-2)x_{4} + 2x_{5}$$

$$x_{3} = (-2)x_{4} + 2x_{5}$$

$$x_{4} = (-2)x_{4} + 2x_{5}$$

$$x_{5} = (-2)x_{4} + 2x_{5}$$

$$x_{7} = (-2)x_{4} + 2x_{5}$$

$$x_{8} = (-2)x_{4} + 2x_{5}$$

$$x_{8} = (-2)x_{4} + 2x_{5}$$

$$x_{9} = (-2)x_{4} + 2x_{5}$$

$$x_{1} = (-2)x_{4} + 2x_{5}$$

$$x_{2} = (-2)x_{4} + 2x_{5}$$

$$x_{3} = (-2)x_{4} + 2x_{5}$$

$$x_{4} = (-2)x_{5} + (-2)x_{5}$$

$$x_{5} = (-2)x_{5} + (-2)x_{5}$$

$$x_{7} = (-2)x_{5} + (-2)x_{5}$$

$$x_{8} = (-2)x_{5} + (-2)x_{5}$$

$$x_{9} = (-2)x_{5} + (-2)x_{5}$$

$$x_{1} = (-2)x_{5} + (-2)x_{5}$$

$$x_{2} = (-2)x_{5} + (-2)x_{5}$$

$$x_{3} = (-2)x_{5} + (-2)x_{5}$$

$$x_{4} = (-2)x_{5} + (-2)x_{5}$$

$$x_{5} = (-2)x_{5} + (-2)x_{5}$$

$$x_{7} = (-2)x_{5} + (-2)x_{5}$$

$$x_{8} = (-2)x_{5} + (-2)x_{5}$$

$$x_{8} = (-2)x_{5} + (-2)x_{5}$$

$$x_{9} = (-2)x_{5} + (-2)x_{5}$$

$$x_{1} = (-2)x_{5} + (-2)x_{5}$$

$$x_{2} = (-2)x_{5} + (-2)x_{5}$$

$$x_{3} = (-2)x_{5} + (-2)x_{5}$$

$$x_{4} = (-2)x_{5} + (-2)x_{5}$$

$$x_{5} = (-2)x_{5} + (-2)x_{5}$$

$$x_{7} = (-2)x_{5} + (-2)x_{5}$$

$$x_{8} = (-2)x_{5} + (-2)x_{5}$$

$$x_{8} = (-2)x_{5} + (-2)x_{5}$$

$$x_{9} = (-2)x_{5} + (-2)x_{5}$$

$$x_{1} = (-2)x_{5} + (-2)x_{5}$$

$$x_{2} = (-2)x_{5} + (-2)x_{5}$$

$$x_{3} = (-2)x_{5} + (-2)x_{5}$$

$$x_{4} = (-2)x_{5} + (-2)x_{5}$$

$$x_{5} = (-2)x_{5} + (-2)x_{5}$$

$$x_{7} = (-2)x_{5} + (-2)x_{5}$$

$$x_{8} = (-2)x_{5} + (-2)x_{5}$$

$$x_{8} = (-2)x_{5} + (-2)x_{5}$$

$$x_{9} = (-2)x_{5} + (-2)x_{5}$$

$$x_{9} = (-2)x_{5} + (-2)x_{5}$$

$$x_{1} = (-2)x_{5} + (-2)x_{5}$$

$$x_{2} = (-2)x_{5} + (-2)x_{5}$$

$$x_{3} = (-2)x_{5} + (-2)x_{5}$$

$$x_{4} = (-2)x_{5} + (-2)x_{5}$$

$$x_{5} = (-2)x_{5} + (-2)x_{5}$$

Dimension of the Null Space

The **dimension of** Nul(A) is the number of <u>free</u> <u>variables</u> in a general form solution to $A\mathbf{x} = \mathbf{0}$.

$$x_1 = 2x_2 + x_4 - 3x_5$$

$$x_2 \text{ is free}$$

$$x_3 = (-2)x_4 + 2x_5$$

$$x_4 \text{ is free}$$

$$x_5 \text{ is free}$$

$$x_5 \text{ is free}$$

$$x_6 = \begin{bmatrix} s \\ t \\ u \end{bmatrix} \mapsto \begin{bmatrix} 2s + t - 3u \\ s \\ (-2)t + 2u \\ t \\ u \end{bmatrix}$$

Recall: An Observation

The *number* of vectors in the basis we found is the same as the number of <u>basic variable</u> or equivalently the number of <u>pivot columns</u>.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Recall: An Observation

The *number* of vectors in the basis we found is the same as the number of <u>basic variable</u> or equivalently the number of <u>pivot columns</u>.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Dimension of the Column Space

The **dimension of** Col(A) is the number of <u>basic</u> <u>variable</u> in our solution, or equivalently the number of <u>pivot columns</u> of A.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Dimension of the Column Space

The **dimension of** Col(A) is the number of <u>basic</u> <u>variable</u> in our solution, or equivalently the number of <u>pivot columns</u> of A.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Rank

Definition. The **rank** of a matrix A, written rank(A) or rank(A), is the dimension of Col(A).

This is just terminology.

Rank-Nullity Theorem

Theorem. For an $m \times n$ matrix A,

$$rank(A) + dim(Nul(A)) = n$$

Verify:

This is incredibly important.

Rank-Nullity Theorem

Theorem. For an $m \times n$ matrix A, $\dim(\operatorname{Col}(A)) + \dim(\operatorname{Nul}(A)) = n$

Verify:

This is incredibly important.

For a $m \times n$ matrix A, its columns space $\operatorname{Col}(A)$ could have n dimensions.

For a $m \times n$ matrix A, its columns space Col(A) could have n dimensions.

In this case: rank(A) + dim(Nul(A)) = n + 0 = n

For a $m \times n$ matrix A, its columns space Col(A) could have n dimensions.

In this case: rank(A) + dim(Nul(A)) = n + 0 = n

But the null space can "consume" some of those dimensions.

For a $m \times n$ matrix A, its columns space Col(A) could have n dimensions.

In this case: rank(A) + dim(Nul(A)) = n + 0 = n

But the null space can "consume" some of those dimensions.

Example. If a "line's worth of stuff" is pulled into the null space (and mapped to $\mathbf{0}$) then

$$rank(A) + dim(Nul(A)) = (n - 1) + 1 = n$$

For a $m \times n$ matrix A, its columns space Col(A) could have n dimensions.

In this case: rank(A) + dim(Nul(A)) = n + 0 = n

But the null space can "consume" some of those dimensions.

Example. If a "line's worth of stuff" is pulled into the null space (and mapped to $\mathbf{0}$) then

$$rank(A) + dim(Nul(A)) = (n - 1) + 1 = n$$

The null space "takes away" some of the dimensions of the column space.

\mathbb{R}^m The Intuition (Pictorially) Col(A) $\dim(\mathbb{R}^n) = n$ Nul(A)rank(A) = n - dim(Nul(A)) $\operatorname{dim}(\operatorname{Nul}(A))$

Question (Conceptual)

Let A be a 5×7 matrix such that dim(Nul(A)) = 3. What is the dimension of Col(A)?

Answer: 4

Extending the IMT

Theorem. For an $n \times n$ invertible matrix A, the following are logically equivalent (they must all by true or all by false.

- $\gg \operatorname{Col}(A) = \mathbb{R}^n$
- \Rightarrow dim(Col(A)) = n
- \Rightarrow rank(A) = n
- $\gg Nul(A) = \{0\}$
- \Rightarrow dim(Nul(A)) = 0

Summary

We can find bases for the column space and null space by looking at the reduced echelon form of a matrix.

Column vectors are written in terms of a coordinate system, which we can change.

Dimension is a measure of how large a space is.