Eigenvalues and Eigenvectors Geometric Algorithms Lecture 17

CAS CS 132

Introduction

Recap Problem

Show that the set

is a subspace of \mathbb{R}^4 .

Objectives

- 1. Motivate and introduce the fundamental notion of eigenvalues and eigenvectors.
- Determine how to verify eigenvalues and eigenvectors.
- 3. Look at the subspace generated by eigenvectors.
- 4. Apply the study of eigenvectors to dynamical linear systems.

Eigenvalues Eigenvectors Null Space Eigenspace Linear Dynamical Systems Closed-Form Solutions

Motivation

demo

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- \rightarrow

* square matrices

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- \rightarrow

All matrices do some combination of these things

* square matrices

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- » ... Today's focus

All matrices do some combination of these things

* square matrices

What's special about scaling?

What's special about scaling?

We don't need a whole matrix to scaling

 $\mathbf{X} \mapsto C\mathbf{X}$

What's special about scaling?

We don't need a whole matrix to scaling

does to v.

$\mathbf{X} \mapsto C\mathbf{X}$

So if $A\mathbf{v} = c\mathbf{v}$ then it's "easy to describe" what A

Eigenvectors (Informal)

AV = 200

6

Eigenvectors (Informal) eigenvalue Av = /

Eigenvectors of A are stretched by A without changing their direction.

Eigenvectors (Informal) eigenvalue $Av = \lambda$

Eigenvectors of A are stretched by A without changing their direction.

The amount they are stretched is called the eigenvalue.

Example: Unequal Scaling

It's "easy to describe" how unequal scaling transforms vectors.

It transforms each entry individually and then combines

 -

Eigenbases (Informal)

Eigenbases (Informal) Imagine if $\mathbf{v} = 2\mathbf{b}_1 - \mathbf{b}_2 - 5\mathbf{b}_3$ and $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ are eigenvectors of A. Then

$A\mathbf{v} = 2\lambda_1\mathbf{b}_1 - \lambda_2\mathbf{b}_2 - 5\lambda_3\mathbf{b}_3$

Eigenbases (Informal) Imagine if $\mathbf{v} = 2\mathbf{b}_1 - \mathbf{b}_2 - 5\mathbf{b}_3$ and $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ are eigenvectors of A. Then $A\mathbf{v} = 2\lambda_1 \mathbf{b}_1$ It's "easy to describe" how A transforms v. then combines them. Verify:

$$-\lambda_2\mathbf{b}_2-5\lambda_3\mathbf{b}_3$$

- It transforms each "component" individually and

Eigenbases (Pictorially)

Fundamental Questions

a vector?

When is this effect "easy to describe"?

How do we understand the effect of a matrix on

Which vectors are "just stretched" by a matrix?

Eigenvalues and Eigenvectors

Formal Definition

Formal Definition

A nonzero vector v in \mathbb{R}^n and real number λ are an **eigenvector and eigenvalue** for a $n \times n$ matrix A if⁻²

 $A\mathbf{v} = \lambda \mathbf{v}$

Formal Definition

A nonzero vector v in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

We will say that v is an eigenvector <u>of</u> the eigenvalue λ , and that λ is the eigenvalue <u>corresponding</u> to v.

 $A\mathbf{v} = \lambda \mathbf{v}$

A nonzero vector v in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if $A = \lambda v$ We will say that v is an eigenvector <u>of</u> the eigenvalue λ , and that λ is the eigenvalue <u>corresponding</u> to v.

Note. Eigenvectors <u>must</u> be nonzero, but it is possible for 0 to be an eigenvalue.

is the same a

What if 0 is an eigenvalue?

What if 0 is an eigenvalue?

v, then

If A has the eigenvalue 0 with the eigenvector

honogeneses matrix eq.

What if 0 is an eigenvalue?

- v, then

- In other words,
 - \gg v \in Nul(A)

If A has the eigenvalue 0 with the eigenvector

$A\mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0}$

» v is a nontrivial solution to Av = 0

Theorem. A $n \times n$ matrix is invertible if and only if it <u>does not</u> have 0 as an eigenvalue.

if it <u>does not</u> have 0 as an eigenvalue. To reiterate. An eigenvalue 0 implies

Theorem. A $n \times n$ matrix is invertible if and only

if it <u>does not</u> have 0 as an eigenvalue.

To reiterate. An eigenvalue 0 implies

» $A\mathbf{x} = \mathbf{0}$ has a nothin solution > the columns of A are linearly dependent » $\operatorname{Col}(A) \neq \mathbb{R}^n$

» . . .

- **Theorem.** A $n \times n$ matrix is invertible if and only

Example: Unequal Scaling

Let's determine it's eigenvalues and eigenvectors:

$\begin{bmatrix} 1.5 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1.5 \\ 0 \end{bmatrix} = 1.5 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\vec{e}, \text{ is an eigenvector of A with eigenvalue}$ [1.50] (0] = (0] = 0.7 (0][0.7] = 0.7 (1][0

Example: Shearing

Let's determine it's eigenvalues and eigenvectors:

 $\begin{bmatrix} 1 & 0 & \sqrt{2} \\ 0 & 0 & \sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

1 0.5 0 1

_		
_		
	_	
2.0		

How do we verify eigenvalues and eigenvectors?

Verifying Eigenvectors

Verifying Eigenvectors

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Verifying Eigenvectors

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Solution. Easy. Work out the matrix-vector multiplication.

This is harder...

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

This is harder...

Before we go over how to do this...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

Verifying Eigenvalues (Warm Up)

Question. Verify that 1 is an eigenvalue of

Solution: $\begin{bmatrix} 0,1 & 0.+ \\ 0,1 & 0.+ \\ 0,1 & 0.2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

- $\begin{bmatrix} 0.1 & 0.7 \\ 0.9 & 0.3 \end{bmatrix} \left\{ \begin{array}{c} \text{Stokkardin} \\ \text{Stokkardin} \\ \text{Normalized} \\ \text{Normaliz$
- Hint. Recall our discussion of Markov Chains.

Steady-States and Eigenvectors

Steady-state vectors of stochastic matrices are eigenvectors corresponding to the eigenvalue 1. How did we find steady-state vectors?:

 $A\vec{x} = \vec{x} \qquad A\vec{x} - \vec{L}\vec{x} = \vec{0}$ $A\vec{x} - \vec{x} = \vec{0} \qquad (A - \vec{L})\vec{x} = \vec{0}$ honogeneer matrix eq.

Steady-States and Eigenvectors

v is a steady-state vector $* \equiv v \in Nul(A - I)$

*It must also be a probability vector

This is harder... Solution:

Question. Show that λ is an eigenvalue of A. $A \vec{\chi} = \lambda \vec{\chi}$ $A \vec{\chi} = \lambda \vec{\chi} = \vec{0}$ $A \vec{\chi} = \lambda \vec{\chi} = \vec{0}$ $(A - \lambda \vec{1}) \vec{\chi} = \vec{0}$

Voursagneous matrix equation

v is an eigenvector for $\lambda \equiv \mathbf{v} \in \text{Nul}(A - \lambda I)$

vorter

This is harder...

 $\begin{bmatrix} 1 & G \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 + G \\ 5 + 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Problem

Verify that 2 is an eigenvalue of $\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$

Yes.

lin. dep. wl. (A-2J) x = 0 has (IMT) nontrivier solutions

How many eigenvectors can a matrix have?

Linear Independence of Eigenvectors **Theorem.** * If $\mathbf{v}_1, \dots, \mathbf{v}_k$ are eigenvectors for distinct eigenvalues, then they are linearly independent.

So an n×n matrix can have at most n eigenvalues. Why?: there at most n lin. ind. in IP

*We won't prove this.

Eigenspace

 λ of $A \in \mathbb{R}^{n \times n}$ form a subspace of \mathbb{R}^n . Verify: Nul (A-NI) is subspace.

lyes Vill

 $\Box \text{ cloud wder add.} \qquad A(\vec{u}+\vec{v}) = A\vec{u} + A\vec{v} = \lambda\vec{u} + \lambda\vec{u} = \lambda(\vec{u}+\vec{v})$ $A\vec{u} = \lambda\vec{u}, A\vec{v} = \lambda\vec{v} \qquad A(\vec{u}+\vec{v}) = A\vec{u} + A\vec{v} = \lambda\vec{u} + \lambda\vec{u} = \lambda(\vec{u}+\vec{v})$

Eigenspace

Definition. The set of eigenvectors for a corresponding to λ . + \overline{O} were

It is the same as $Nul(A - \lambda I)$.

eigenvalue λ of A is called the **eigenspace** of A

How To: Basis of an Eigenspace

Question. Find a basis for the eigenspace of A corresponding to λ . **Solution.** Find a basis for $Nul(A - \lambda I)$.

We know how to do this.

How do we find eigenvalues?

How do we find eigenvalues? We'll cover this next time...

Eigenvalues of Triangular Matrices

Theorem. The eigenvalues of a triangular matrix are its entries along the diagonal.

Problem

Determine the eigenvalues of the following matrix

Then find eigenvectors for those eigenvalues.

 $\begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$

Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

is described by a $n \times n$ matrix A. It's evolution **function** is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

- Definition. A (discrete time) linear dynamical system
- The possible states of the system are vectors in \mathbb{R}^n .

is described by a *n*×*n* matrix *A*. It's evolution **function** is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

state vector of the system after *i* time steps:

- Definition. A (discrete time) linear dynamical system
- The possible states of the system are vectors in \mathbb{R}^n .
- Given an **initial state vector** \mathbf{v}_0 , we can determine the

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

The system evolves over time. A tells us how our system evolves over time. Given an initial state vector v_0 , we can determine the state vector of the system after *i* time steps:

Recall: State Vectors $\mathbf{v}_1 = A\mathbf{v}_0$ The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps. difference function.

- $\mathbf{v}_2 = A\mathbf{v}_1 = A(A\mathbf{v}_0)$ $\mathbf{v}_3 = A\mathbf{v}_2 = A(AA\mathbf{v}_0)$ $\mathbf{v}_4 = A\mathbf{v}_3 = A(AAA\mathbf{v}_0)$
- $\mathbf{v}_5 = A\mathbf{v}_4 = A(AAAA\mathbf{v}_0)$
- This is also called a recurrence relation or a linear
Recall: State Vectors $\mathbf{v}_1 = A\mathbf{v}_0$ The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps. difference function.

This is also called a recurrence relation or a linear

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k .

us much about the nature of v_k .

It's defined in terms of A itself, which doesn't tell us much about how the system behaves.

- The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is okay but it doesn't tell

us much about the nature of v_k .

It's defined in terms of A itself, which doesn't tell us much about how the system behaves.

It's also difficult computationally because matrix multiplication is expensive.

- The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is okay but it doesn't tell

(Closed-Form) Solutions

(Closed-Form) Solutions

is not defined in terms of A or previously defined terms.

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is

- is not defined in terms of A or previously defined terms.
- not recursive.

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is

In other word, it does not depend on A and is

It's easy to give a solution if the initial state is an eigenvector:

 $\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$

It's easy to give a solution if the initial state is an eigenvector:

- No dependence on A or \mathbf{v}_{k-1} $\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$

It's easy to give a solution if the initial state is an eigenvector:

<u>The Key Point.</u> This is still true of sums of eigenvectors.

- $\mathbf{v}_{k} = A^{k} \mathbf{v}_{0} = \lambda^{k} \mathbf{v}_{0}$ No dependence on *A* or \mathbf{v}_{k-1}

Solutions in terms of eigenvectors

Let's simplify $A^k \mathbf{v}$, given we have eigenvectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4$ for A which span all of \mathbb{R}^4 : $\vec{v}_0 = \alpha, \vec{b}, + \alpha, \vec{b}_2$

 $A^{k} \tilde{v}_{o} = a, A^{k} \tilde{b}_{i} + a_{2} A^{k} \tilde{b}_{2}$ $= \left[a, \lambda_{i}^{k} \tilde{b}_{i} + a_{2} \lambda_{2}^{k} \tilde{b}_{2}\right] \quad \text{for}$

Eigenvectors and Growth in the Limit

if \mathbf{v}_0 can be written in terms of eigenvectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ of A with eigenvalues

term, the system grows exponentially in λ_1). Verify:

- **Theorem.** For a linear dynamical system A with initial state \mathbf{v}_0 ,
 - $\lambda_1 \geq \lambda_2 \dots \geq \lambda_k$
- then $\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$ for some constant c_1 (in other words, in the long

Eigenbases

Definition. An eigenbasis of \mathbb{R}^n for a $n \times n$ eigenvectors of A.

We can represent vectors as unique linear combinations of eigenvectors.

Not all matrices have eigenbases.

matrix A is a basis of \mathbb{R}^n made up entirely of

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with

eigenvalue of A and b_1 is its eigenvalue.

- initial state v_0 , if A has an eigenbasis $b_1, ..., b_k$, then
 - $\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$
- for some constant c_1 , where where λ_1 is the largest

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with

eigenvalue of A and b_1 is its eigenvalue.

initial state v_0 , if A has an eigenbasis b_1, \ldots, b_k , then

$$\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$$

- for some constant c_1 , where where λ_1 is the **largest**
 - The largest eigenvalue describes the long-term exponential behavior of the system.

Example: CS Major Growth

see the notes for more details

This is clearly exponential. If we want to "extract" the exponent, we need to look at the <u>largest eigenvalue</u>.

$v_{0,1}$	=	#	of	year	1	students	enrolled	in	2
<i>v</i> _{0,2}		#	of	year	2	students	enrolled	in	2
<i>v</i> _{0,3}		#	of	year	3	students	enrolled	in	2
$v_{0,4}$		#	of	year	4	students	enrolled	in	2

$$\mathbf{v}_k = A^k \mathbf{v}_0$$

(A is determined by least squares)

024 024 024 024

Extended Example: Golden Ratio

A Special Linear Dynamical System $\mathbf{v}_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{v}_k \qquad \mathbf{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

What does this matrix represent?:

Consider the system given by the above matrix.

Fibonacci Numbers

 $F_0 = 0$ **define** fib(n): $F_1 = 1$ $F_k = F_{k-1} + F_{k-2}$ return curr

recurrence relation.

They seem to crop-up in nature.

curr, next $\leftarrow 0$, 1 repeat n times: curr, next ← next, curr + next

The Fibonacci numbers are defined in terms of a

https://commons.wikimedia.org/wiki/File:FibonacciChamomile.PNG

demo

Finding the Eigenvalues (Looking forward a bit) $\begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix}$ Recall: $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if $\det A = 0$

Golden Ratio $\varphi = \frac{1 + \sqrt{5}}{2}$

The "long term behavior" is the Fibonacci sequence is defined by the golden ratio.

This is the largest eigenvalue of $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

$\varphi = \frac{1 + \sqrt{5}}{2} \qquad \frac{F_{k+1}}{F_k} \to \varphi \text{ as } k \to \infty$

Challenge Problem

Find the eigenvalues for these eigenvectors. Find a closed-form solution for the Fibonacci sequence.

Summary

- Eigenvectors of A are "just stretched" by A_{\bullet}
- can write v in terms of eigenvectors of A_{\bullet}
- like the long term behavior of the dynamical system described by A.

We can easily describe what A does to v if we

Eigenvalues of A give us information about A,