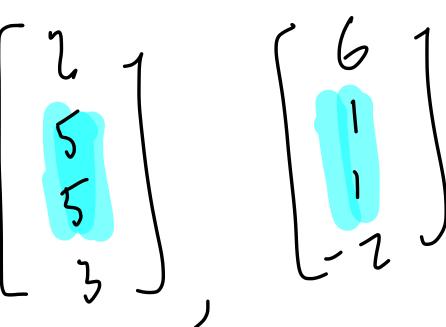
Eigenvalues and Eigenvectors

Geometric Algorithms
Lecture 17

Introduction

Recap Problem



Show that the set

$$x_2 = x_3$$

$$\begin{cases}
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}
\end{cases} x_2 = x_3$$

is a subspace of \mathbb{R}^4 .

Answer $\mathcal{H} \left\{ \begin{array}{c} \chi_1 \\ \chi_2 \\ \chi_3 \end{array} \right\}$

closed under addition

(2) closed moder scaling $c \begin{bmatrix} a \\ a \\ uu \end{bmatrix} = \begin{bmatrix} c u_1 \\ c a \\ c a \end{bmatrix}$

Objectives

- 1. Motivate and introduce the fundamental notion of eigenvalues and eigenvectors.
- 2. Determine how to verify eigenvalues and eigenvectors.
- 3. Look at the subspace generated by eigenvectors.
- 4. Apply the study of eigenvectors to dynamical linear systems.

Keyword

Eigenvalues

Eigenvectors

Null Space

Eigenspace

Linear Dynamical Systems

Closed-Form Solutions

Motivation

demo

How can matrices transform vectors?*

```
In 2D and 3D we've seen:
```

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- **>>** . . .

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- **»** . . .

All matrices do some combination of these things

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- » Today's focus

All matrices do some combination of these things

What's special about scaling?

What's special about scaling?

We don't need a whole matrix to scaling

$$\mathbf{X} \mapsto c\mathbf{X}$$

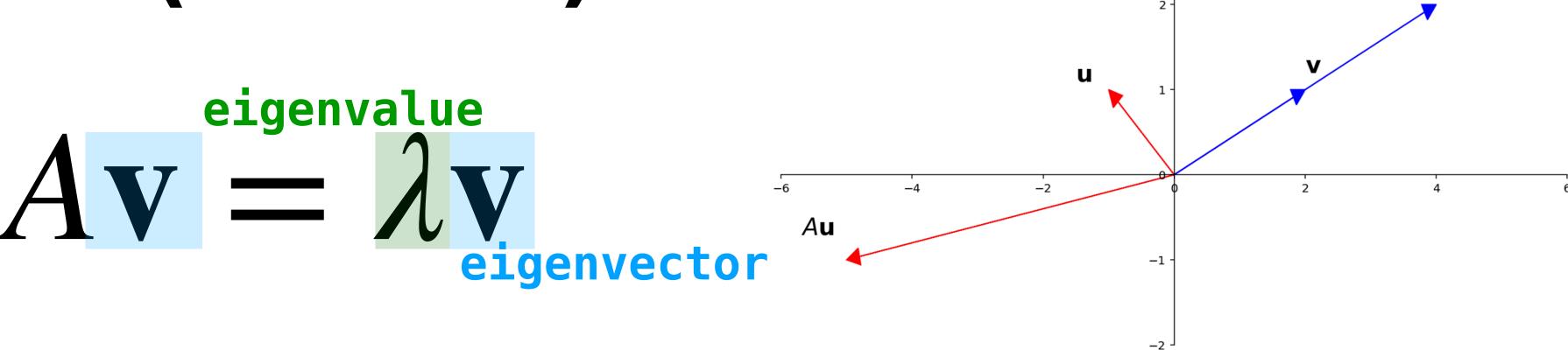
What's special about scaling?

We don't need a whole matrix to scaling

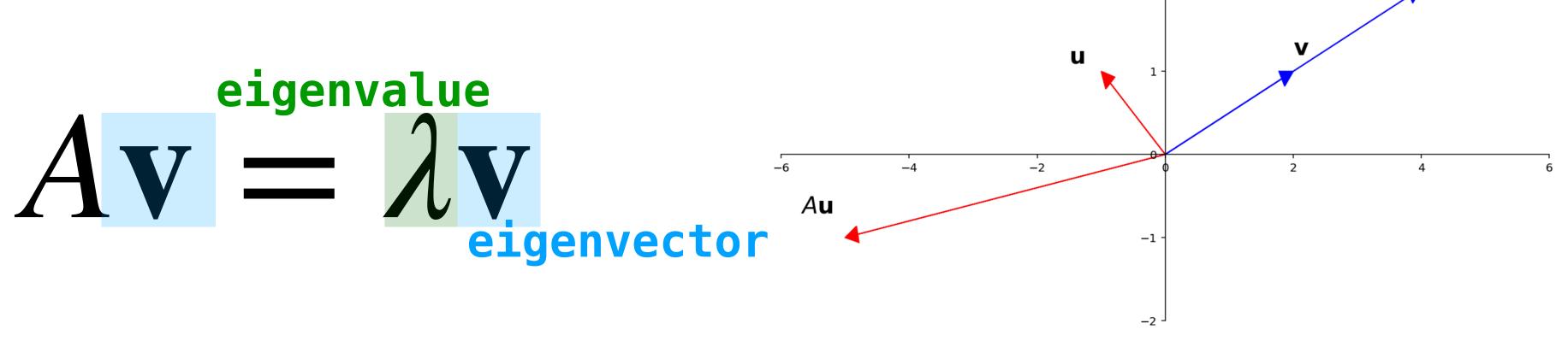
$$\mathbf{X} \mapsto c\mathbf{X}$$

So if $A\mathbf{v} = c\mathbf{v}$ then it's "easy to describe" what A does to \mathbf{v}_{\bullet}

Eigenvectors (Informal)

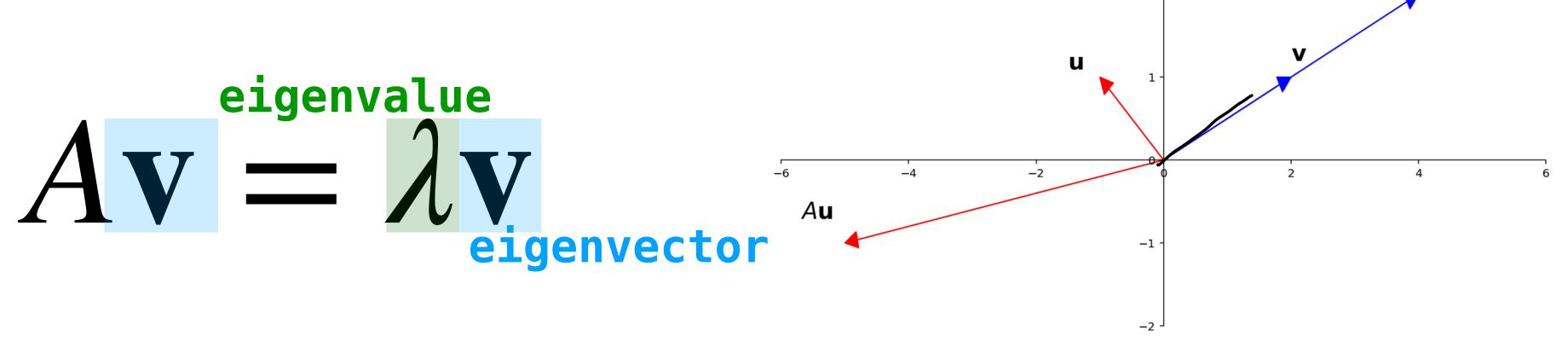


Eigenvectors (Informal)



Eigenvectors of A are stretched by A without changing their direction.

Eigenvectors (Informal)



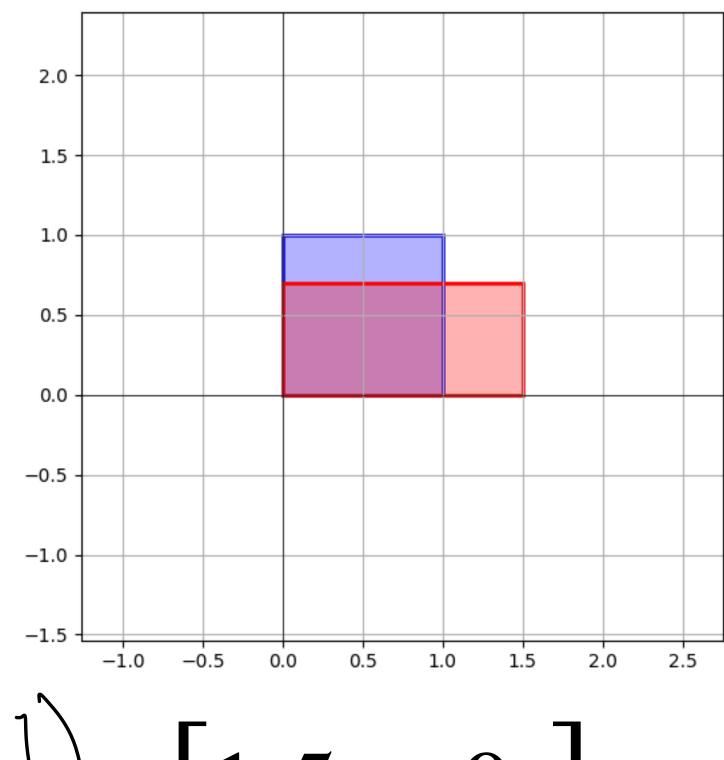
Eigenvectors of A are stretched by A without changing their direction.

The amount they are stretched is called the eigenvalue.

Example: Unequal Scaling

It's "easy to describe" how unequal scaling transforms vectors.

It transforms each entry individually and then combines them. $\begin{bmatrix} 1.5 & 0 \\ 0 & 0.7 \end{bmatrix} \begin{bmatrix} 1.5 & 0 \\ 0 & 1.7 \end{bmatrix} \begin{bmatrix} 1.5 & 0 \\ 0 & 1.7 \end{bmatrix} \begin{bmatrix} 1.5 & 0 \\ 0 & 1.7 \end{bmatrix} \begin{bmatrix} 1.5 & 0 \\ 0 & 0.7 \end{bmatrix} \begin{bmatrix} 1.5 & 0 \\ 0 & 0.7 \end{bmatrix}$ $= 1.5 \times \begin{bmatrix} 1.5 \\ 0 \end{bmatrix} + 0.7 = \begin{bmatrix} 0.7 \\ 1 \end{bmatrix}$



Eigenbases (Informal)

Eigenbases (Informal)

Imagine if $\mathbf{v}=2\mathbf{b}_1-\mathbf{b}_2-5\mathbf{b}_3$ and $\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3$ are eigenvectors of A. Then

$$A\mathbf{v} = 2\lambda_1\mathbf{b}_1 - \lambda_2\mathbf{b}_2 - 5\lambda_3\mathbf{b}_3$$

Eigenbases (Informal)

Imagine if $\mathbf{v}=2\mathbf{b}_1-\mathbf{b}_2-5\mathbf{b}_3$ and $\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3$ are eigenvectors of A. Then

$$A\mathbf{v} = 2\lambda_1\mathbf{b}_1 - \lambda_2\mathbf{b}_2 - 5\lambda_3\mathbf{b}_3$$

It's "easy to describe" how A transforms v.

It transforms each "component" individually and then combines them.

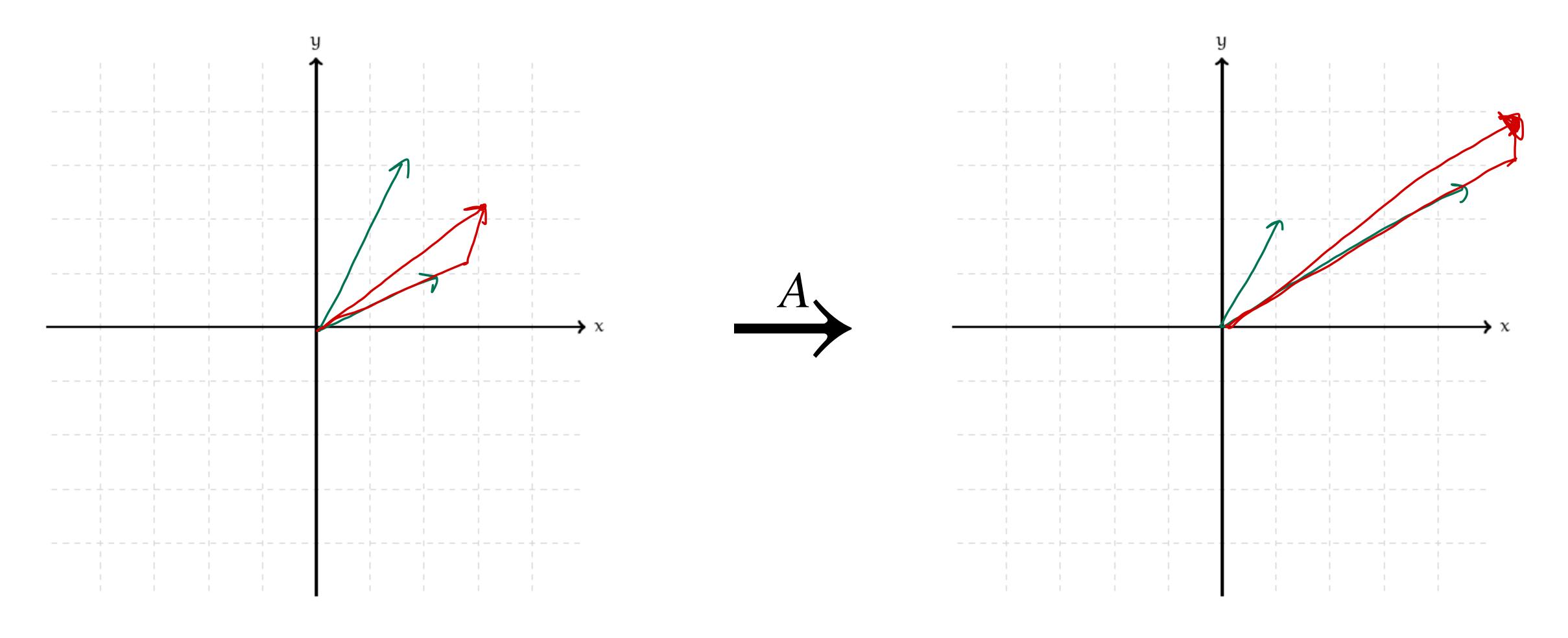
then combines them.

Verify:
$$A(2b, -b_1 - 5b_3) = 2Ab, -Ab_1 - 5Ab_3$$

$$= 2Ab, -Ab_1 - 5Ab_3$$

$$= 2Ab, -Ab_1 - Ab_2 - 5Ab_3$$

Eigenbases (Pictorially)



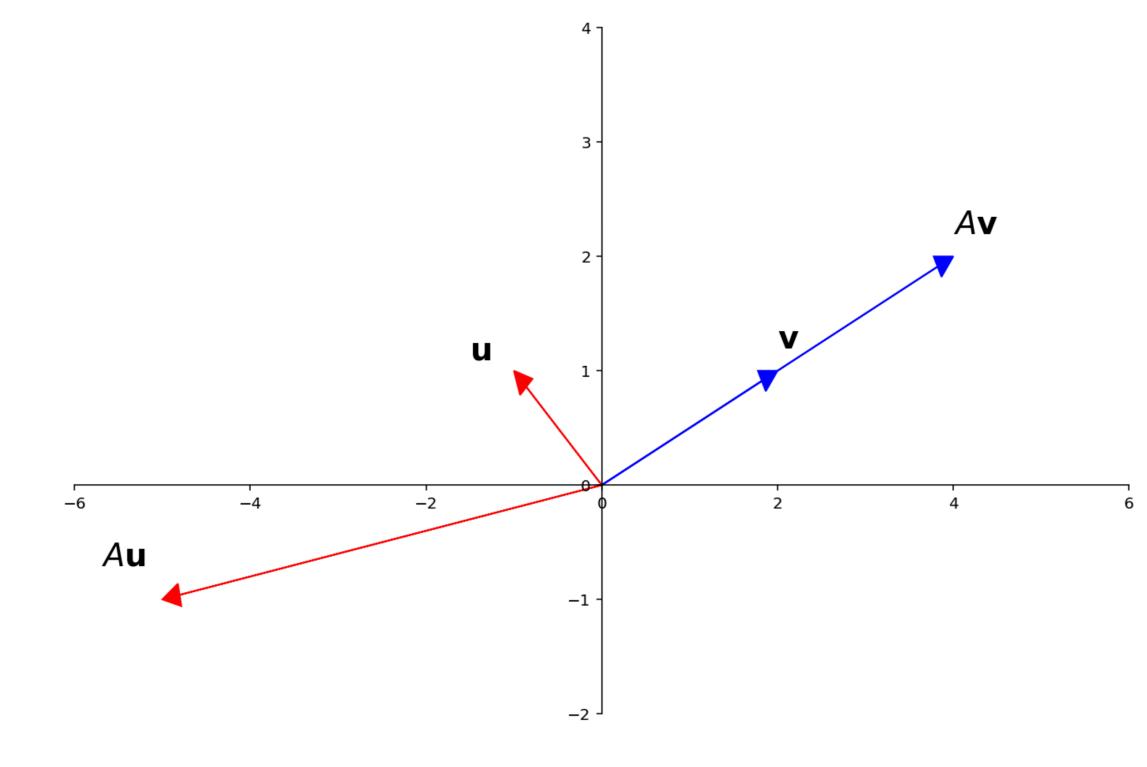
Fundamental Questions

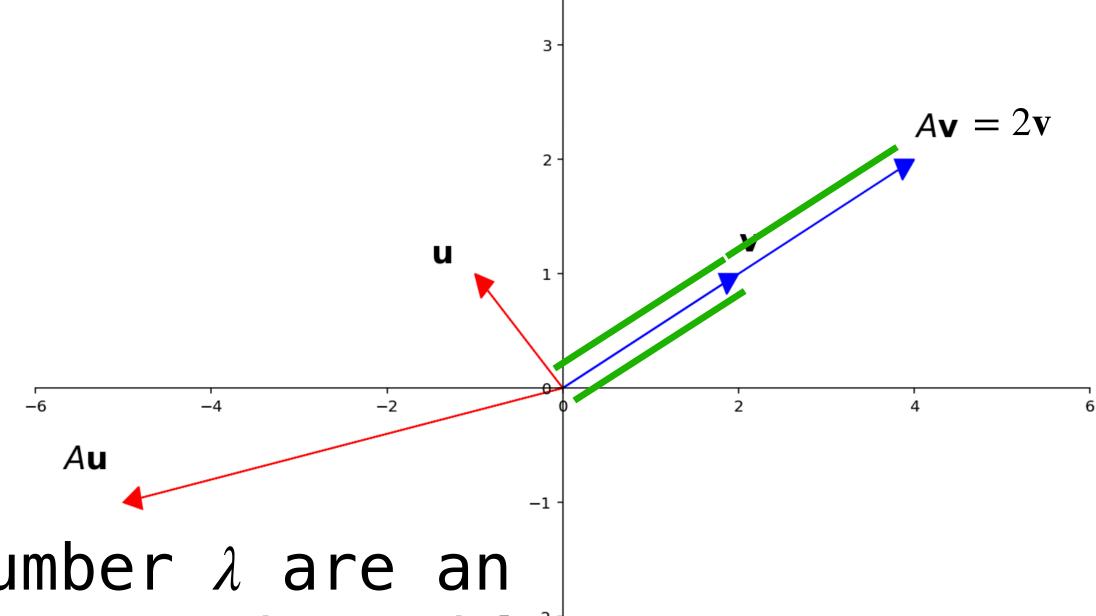
How do we understand the effect of a matrix on a vector?

When is this effect "easy to describe"?

Which vectors are "just stretched" by a matrix?

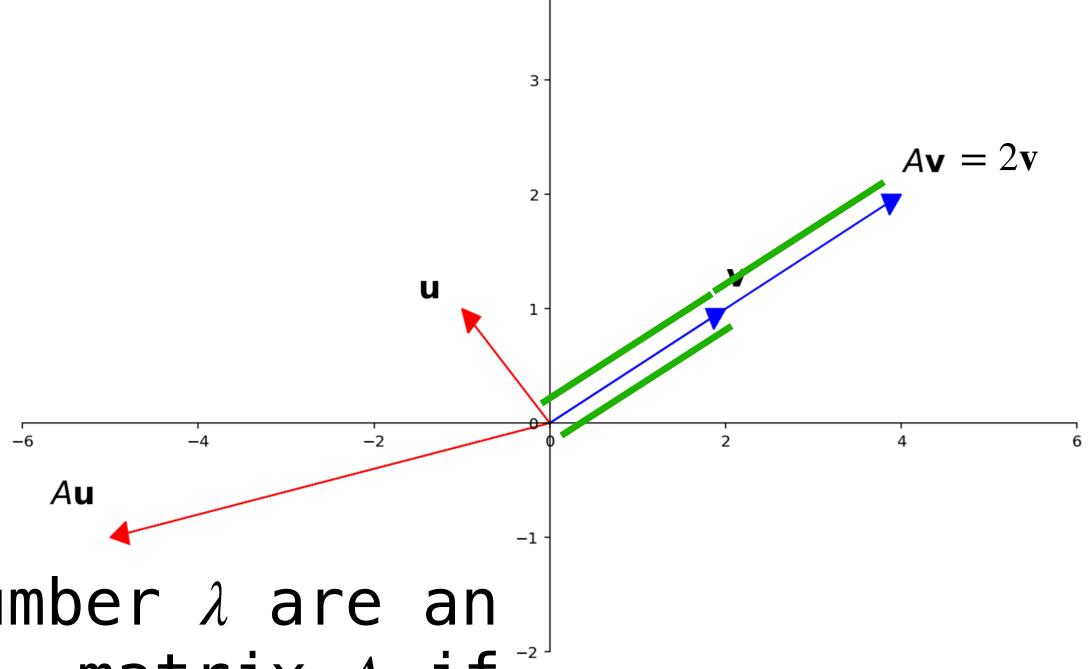
Eigenvalues and Eigenvectors





A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

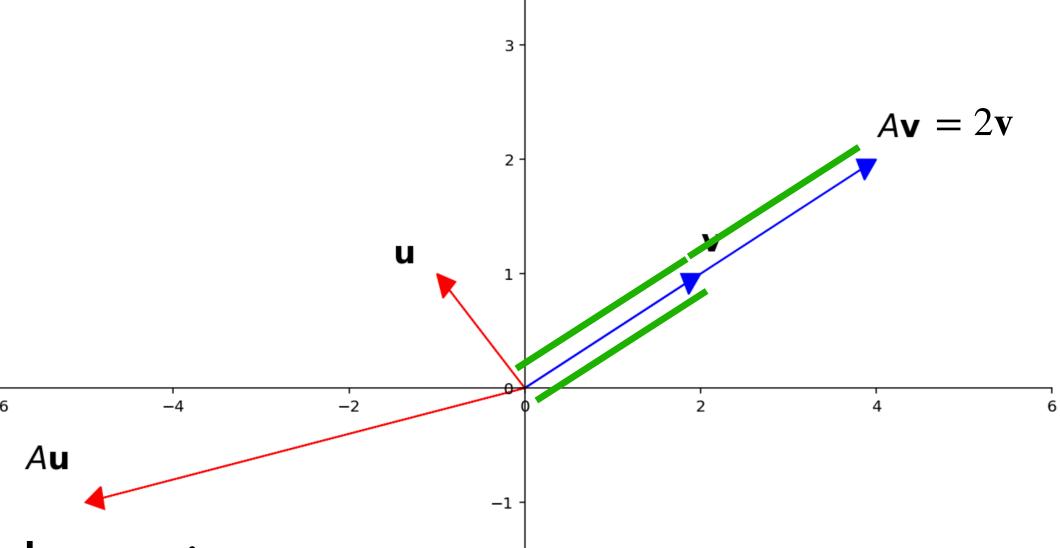
$$A\mathbf{v} = \lambda \mathbf{v}$$



A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

We will say that ${\bf v}$ is an eigenvector <u>of</u> the eigenvalue λ , and that λ is the eigenvalue <u>corresponding</u> to ${\bf v}$.



A *nonzero* vector \mathbf{v} in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if $A\mathbf{v} = \lambda \mathbf{v}$

$$A\mathbf{v} = \lambda \mathbf{v}$$

We will say that ${\bf v}$ is an eigenvector <u>of</u> the eigenvalue λ , and that λ is the eigenvalue <u>corresponding</u> to \mathbf{v}_{\bullet}

Note. Eigenvectors <u>must</u> be nonzero, but it is possible for 0 to be an eigenvalue.

What if 0 is an eigenvalue?

What if 0 is an eigenvalue?

If \boldsymbol{A} has the eigenvalue 0 with the eigenvector \boldsymbol{v} , then

$$A\mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0}$$

What if 0 is an eigenvalue?

If \boldsymbol{A} has the eigenvalue 0 with the eigenvector \boldsymbol{v} , then

$$A\mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0}$$

In other words,

- $v \in Nul(A)$
- » v is a nontrivial solution to Av = 0

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

To reiterate. An eigenvalue 0 implies

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

To reiterate. An eigenvalue 0 implies

- $\Rightarrow Ax = 0$ has a nontrivial solution
- \gg the columns of A are linearly dependent
- $\gg \operatorname{Col}(A) \neq \mathbb{R}^n$
- **>>**

Example: Unequal Scaling

Let's determine it's eigenvalues and eigenvectors:

$$\begin{bmatrix} 1.6 & 0 & 1 & 1 & 1 \\ 0 & 0.7 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.6 & 0 & 1 & 1 \\ 0 & 0.7 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1.5 & 1 & 1 \\ 0 & 1.5 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1.6 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1.6 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1.5 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1.5 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1.5 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

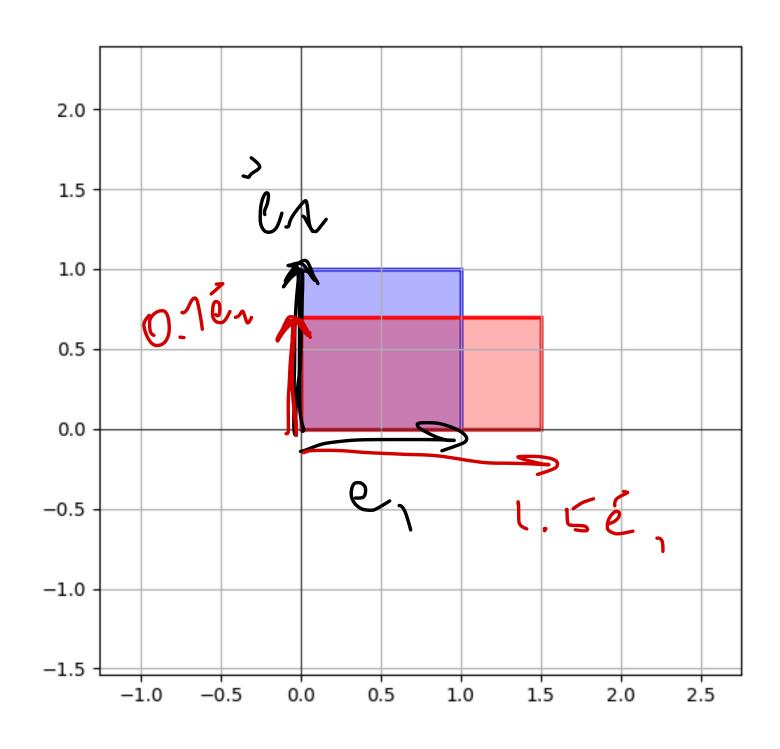
$$\begin{bmatrix} 1.5 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1.5 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1.5 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1.5 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1.5 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$



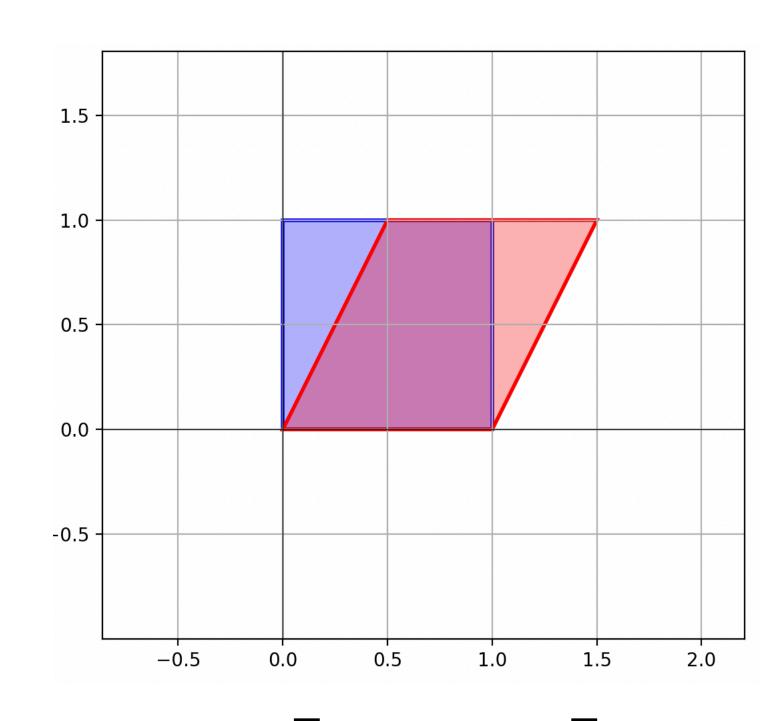
Example: Shearing

Let's determine it's eigenvalues and eigenvectors:

we know
$$\lambda \neq 0$$
 then $\gamma = 0$,
$$\begin{pmatrix} \times & 1 & = 1 \\ 0 & 1 & = 1 \end{pmatrix}$$

$$\begin{pmatrix} \times & 1 & = 1 \\ 0 & 1 & = 1 \end{pmatrix}$$

[1] is an eightector of A with eighter



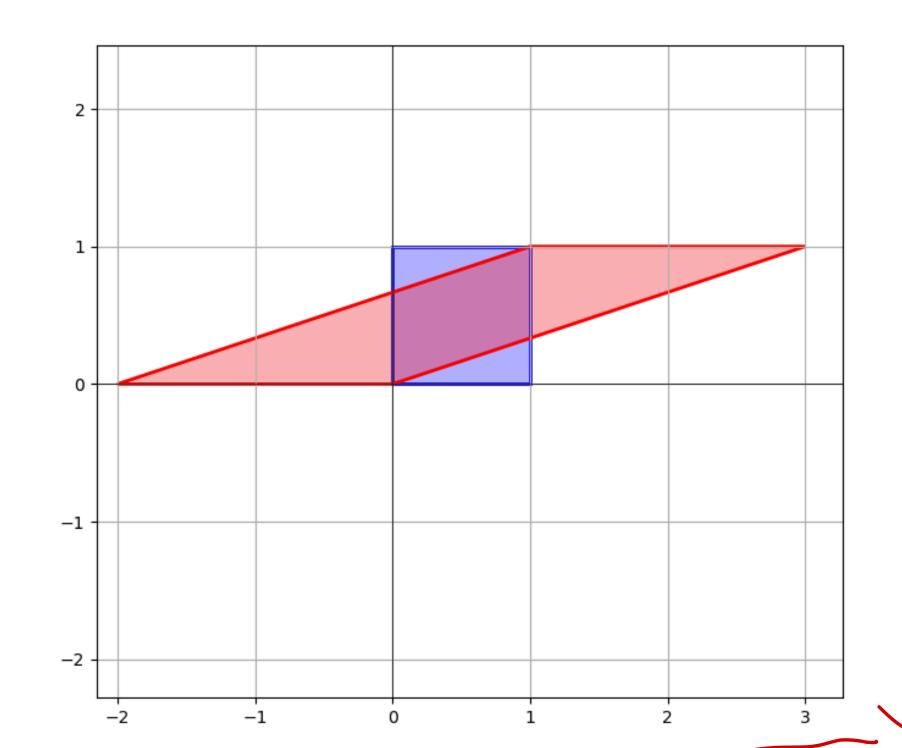
Example (Algebraic)

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 & 1 \end{bmatrix}$$



eigenventor for A eigenventor for A wir eigenvente 2.

How do we verify eigenvalues and eigenvectors?

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Solution. Easy. Work out the matrix-vector multiplication.

/erifying Eigenvectors
$$\begin{bmatrix} 6 \\ -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 6 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 - 30 \\ 30 - 10 \end{bmatrix} = \begin{bmatrix} -24 \\ -5 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 1 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 3 & -12 \\ -5 \end{bmatrix} = \begin{bmatrix} 3 & -12 \\ 15 & -4 \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix}$$

This is harder...

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

Before we go over how to do this...

Verifying Eigenvalues (Warm Up)

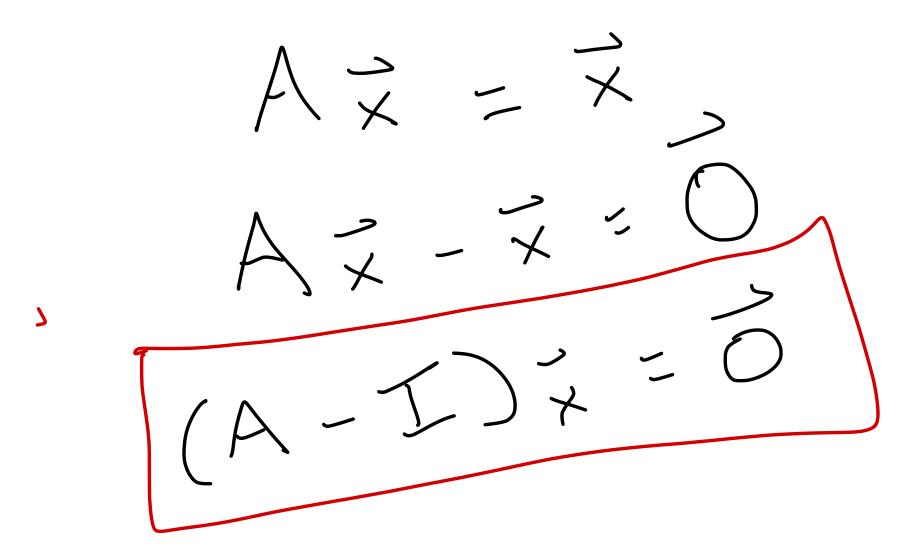
Question. Verify that 1 is an eigenvalue of

Hint. Recall our discussion of Markov Chains.

Steady-States and Eigenvectors

Steady-state vectors of stochastic matrices are eigenvectors corresponding to the eigenvalue 1.

How did we find steady-state vectors?:



Steady-States and Eigenvectors

 ${f v}$ is a steady-state vector ${f v} \equiv {f v} \in {\sf Nul}(A-I)$

This is harder...

Question. Show that λ is an eigenvalue of A.

Solution:

$$\begin{array}{c} A \stackrel{?}{\cancel{\times}} = \lambda \stackrel{?}{\cancel{\times}} \\ A \stackrel{?}{\cancel{\times}} - \lambda \stackrel{?}{\cancel{\times}} = \stackrel{?}{\cancel{\bigcirc}} \\ (A - \lambda \stackrel{?}{\cancel{\triangle}}) \stackrel{?}{\cancel{\times}} = \stackrel{?}{\cancel{\bigcirc}} \end{array}$$

(Norter)

 ${\bf v}$ is an eigenvector for $\lambda \equiv {\bf v} \in {\sf Nul}(A - \lambda I)$

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

Solution: $A - 7I = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 6 \\ 0 & 7 \end{bmatrix}$

Problem

Verify that 2 is an eigenvalue of $\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$

Answer

nswer

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
4 & -1 & 6 \\
2 & -1 & 6
\end{bmatrix}$$
Solution.

How many eigenvectors can a matrix have?

Linear Independence of Eigenvectors

Theorem.* If $\mathbf{v}_1,...,\mathbf{v}_k$ are eigenvectors for distinct eigenvalues, then they are linearly independent.

So an $n \times n$ matrix can have at most n eigenvalues.

Why?: we can have at most n L.I.

Eigenspace

Fact. The set of eigenvectors for a eigenvalue / 📈 λ of $A \in \mathbb{R}^{n \times n}$ form a subspace of \mathbb{R}^n .

Verify: Nul(A-XI) is a subspace

- O. $\vec{u}, \vec{v}, \vec{u} + \vec{v}, A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$ $= \lambda \vec{u} + \lambda \vec{v}$ $= \lambda (\vec{u} + \vec{v})$ (1) exercise.

Eigenspace

Definition. The set of eigenvectors for a eigenvalue λ of A is called the **eigenspace** of A corresponding to λ .

It is the same as $Nul(A - \lambda I)$.

How To: Basis of an Eigenspace

Question. Find a basis for the eigenspace of A corresponding to λ .

Solution. Find a basis for $Nul(A - \lambda I)$.

We know how to do this.

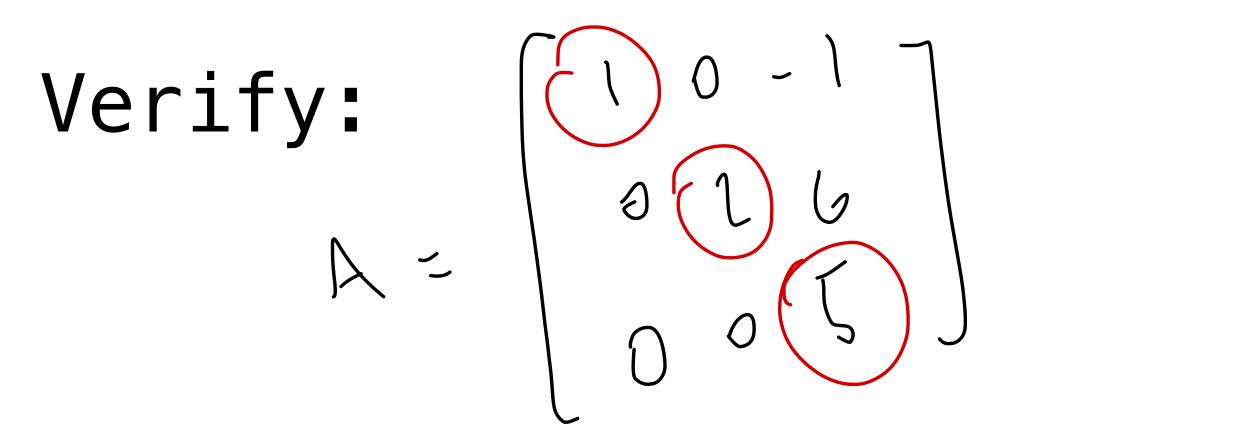
How do we find eigenvalues?

How do we find eigenvalues?

We'll cover this next time...

Eigenvalues of Triangular Matrices

Theorem. The eigenvalues of a triangular matrix are its entries along the diagonal.



Problem

Determine the eigenvalues of the following matrix

$$\begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$

Then find eigenvectors for those eigenvalues.

Answer

Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $x \mapsto Ax$.

Definition. A **(discrete time) linear dynamical system** is described by a $n \times n$ matrix A. It's **evolution function** is the matrix transformation $x \mapsto Ax$.

The possible states of the system are vectors in \mathbb{R}^n .

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $x \mapsto Ax$.

The possible states of the system are vectors in \mathbb{R}^n .

Given an **initial state vector** \mathbf{v}_0 , we can determine the **state vector** of the system after i time steps:

$$\mathbf{v}_i = A\mathbf{v}_{i-1}$$

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

A tells us how our system evolves over time.

Given an **initial state vector** \mathbf{v}_0 , we can determine the **state vector** of the system after i time steps:

$$\mathbf{v}_i = A\mathbf{v}_{i-1}$$

Recall: State Vectors

$$\mathbf{v}_{1} = A\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = A\mathbf{v}_{1} = A(A\mathbf{v}_{0})$$

$$\mathbf{v}_{3} = A\mathbf{v}_{2} = A(AA\mathbf{v}_{0})$$

$$\mathbf{v}_{4} = A\mathbf{v}_{3} = A(AAA\mathbf{v}_{0})$$

$$\mathbf{v}_{5} = A\mathbf{v}_{4} = A(AAAA\mathbf{v}_{0})$$

$$\vdots$$

The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps.

This is also called a recurrence relation or a linear difference function.

Recall: State Vectors

$$\mathbf{v}_{1} = A\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = A\mathbf{v}_{1} = A(A\mathbf{v}_{0})$$

$$\mathbf{v}_{1} = A^{k}\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = A^{k}\mathbf{v}_{0}$$

$$\mathbf{v}_{3} = A^{k}\mathbf{v}_{0}$$

$$\mathbf{v}_{5} = A\mathbf{v}_{4} = A(AAAA\mathbf{v}_{0})$$

$$\vdots$$

The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps.

This is also called a recurrence relation or a linear difference function.

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k .

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k .

It's defined in terms of *A* itself, which doesn't tell us much about how the system behaves.

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k .

It's defined in terms of *A* itself, which doesn't tell us much about how the system behaves.

It's also difficult computationally because matrix multiplication is expensive.

(Closed-Form) Solutions

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is is not defined in terms of A or previously defined terms.

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is is not defined in terms of A or previously defined terms.

In other word, it does not depend on A and is not recursive.

It's easy to give a solution if the initial state is an eigenvector:

$$\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$$

It's easy to give a solution if the initial state is an eigenvector:

$$\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$$
 No dependence on A or \mathbf{v}_{k-1}

It's easy to give a solution if the initial state is an eigenvector:

$$\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$$
 No dependence on A or \mathbf{v}_{k-1}

The Key Point. This is still true of sums of eigenvectors.

Solutions in terms of eigenvectors

Let's simplify $A^k \mathbf{v}_0$, given we have eigenvectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4$ for A which span all of \mathbb{R}^4 : $\hat{\mathbf{v}}_0 = c_1 \hat{\mathbf{b}}_1 \times c_1 \hat{\mathbf{b}}_2 \times c_3 \hat{\mathbf{b}}_3 \times c_4 \hat{\mathbf{b}}_4$

$$\frac{1}{V_{n}} = \frac{1}{C_{n}} \left(\frac{1}{b_{n}} + \frac{1}{C_{n}} \frac{1}{b_{n}} + \frac{1}{C_{n}} \frac{1}{b_{n}} \right)$$

$$A^{k} = c_{1} \lambda_{1}^{k} b_{1} + c_{2} \lambda_{2}^{k} b_{3} + c_{3} \lambda_{3}^{k} b_{3} + c_{4} \lambda_{4} b_{5}$$

Eigenvectors and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_0 , if \mathbf{v}_0 can be written in terms of eigenvectors $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_k$ of A with eigenvalues

$$\lambda_1 \geq \lambda_2 \dots \geq \lambda_k$$

then $\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$ for some constant c_1 (in other words, in the long term, the system grows <u>exponentially in λ_1 </u>).

Verify:

Eigenbases

Definition. An **eigenbasis** of \mathbb{R}^n for a $n \times n$ matrix A is a basis of \mathbb{R}^n made up entirely of eigenvectors of A.

We can represent vectors as **unique** linear combinations of eigenvectors.

Not all matrices have eigenbases.

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_0 , if A has an eigenbasis $\mathbf{b}_1, \dots, \mathbf{b}_k$, then

$$\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$$

for some constant c_1 , where where λ_1 is the largest eigenvalue of A and b_1 is its eigenvalue.

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_0 , if A has an eigenbasis $\mathbf{b}_1, ..., \mathbf{b}_k$, then

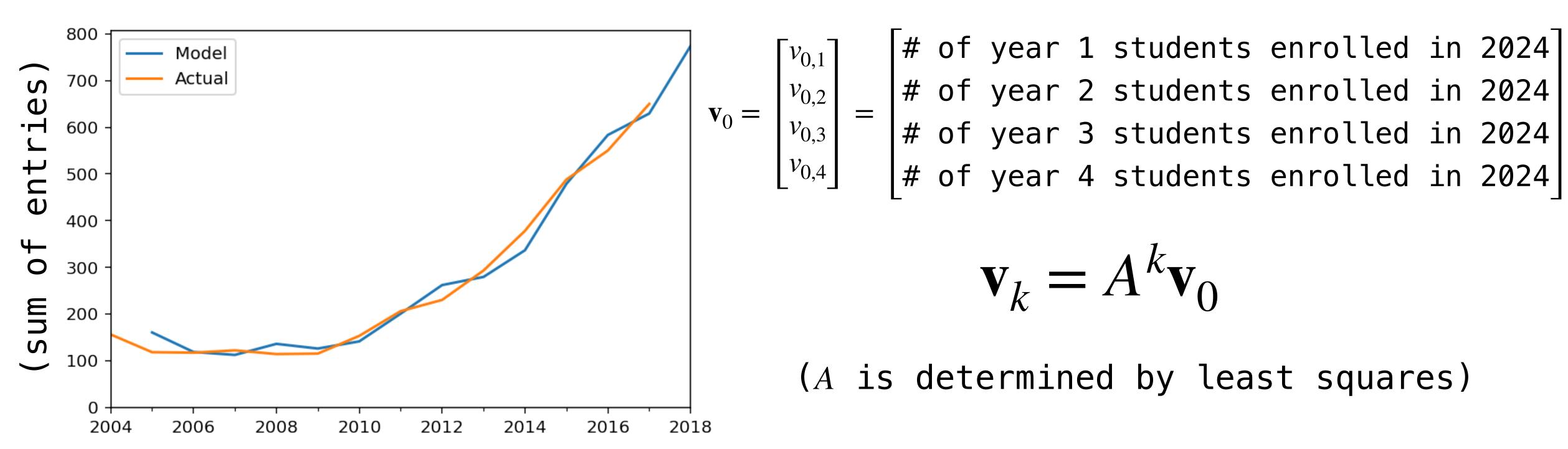
$$\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$$

for some constant c_1 , where where λ_1 is the largest eigenvalue of A and b_1 is its eigenvalue.

The largest eigenvalue describes the long-term exponential behavior of the system.

Example: CS Major Growth

see the notes for more details



This is clearly exponential. If we want to "extract" the exponent, we need to look at the <u>largest eigenvalue</u>.

Extended Example: Golden Ratio

A Special Linear Dynamical System

$$\mathbf{v}_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{v}_k \qquad \mathbf{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Consider the system given by the above matrix. What does this matrix represent?:

Fibonacci Numbers

$$F_0 = 0$$

$$F_1 = 1$$

$$F_k = F_{k-1} + F_{k-2}$$
 define fib(n): curr, next \leftarrow 0, 1 repeat n times: curr, next \leftarrow next, curr + next return curr

The Fibonacci numbers are defined in terms of a recurrence relation.

They seem to crop-up in nature.

demo

Finding the Eigenvalues (Looking forward a bit)

$$\begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix}$$

Recall: $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if $\det A = 0$

Golden Ratio

$$\varphi = \frac{1+\sqrt{5}}{2} \qquad \frac{F_{k+1}}{F_k} \to \varphi \quad \text{as} \quad k \to \infty$$

The "long term behavior" is the Fibonacci sequence is defined by the golden ratio.

This is the largest eigenvalue of $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$.

Challenge Problem

Find the eigenvalues for these eigenvectors.

Find a closed-form solution for the Fibonacci sequence.

Summary

Eigenvectors of A are "just stretched" by A.

We can easily describe what A does to \mathbf{v} if we can write \mathbf{v} in terms of eigenvectors of A.

Eigenvalues of A give us information about A, like the long term behavior of the dynamical system described by A.