Eigenvalues and Eigenvectors

Geometric Algorithms
Lecture 17

Introduction

Recap Problem

Show that the set

$$
\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]: x_{2}=x_{3}\right\}
$$

is a subspace of \mathbb{R}^{4}.

Answer

Objectives

1. Motivate and introduce the fundamental notion of eigenvalues and eigenvectors.
2. Determine how to verify eigenvalues and eigenvectors.
3. Look at the subspace generated by eigenvectors.
4. Apply the study of eigenvectors to dynamical linear systems.

Keyword

Eigenvalues
Eigenvectors
Null Space
Eigenspace
Linear Dynamical Systems
Closed-Form Solutions

Motivation

demo

How can matrices transform vectors?*

In 2D and 3D we've seen:
» rotations
» projections
» shearing
» reflection
» scaling/stretching
» ...

How can matrices transform vectors?*

In 2D and 3D we've seen:
» rotations
» projections
» shearing
» reflection
» scaling/stretching
» ...

All matrices do some combination
of these things

How can matrices transform vectors?*

In 2D and 3D we've seen:
» rotations
» projections
» shearing
» reflection
» scaling/stretching
» ... Today's focus

All matrices do some combination of these things

What's special about scaling?

What's special about scaling?

We don't need a whole matrix to scaling

$$
\mathbf{X} \mapsto c \mathbf{X}
$$

What's special about scaling?

We don't need a whole matrix to scaling

$$
\mathbf{x} \mapsto c \mathbf{x}
$$

So if $A \mathbf{v}=c \mathbf{v}$ then it's "easy to describe" what A does to v .

Eigenvectors (Informal)

$$
A \mathbf{v} \stackrel{\text { i.genvalue }}{=}{\left.\underset{\text { eigenvector }}{ }{ }^{2}\right)}^{2}
$$

Eigenvectors (Informal)

$$
A \mathbf{v} \stackrel{\text { digenaliee }}{=} \overline{\mathbf{v}}
$$

eigenvector
Eigenvectors of A are stretched by A without changing their direction.

Eigenvectors (Informal)

$$
A \mathbf{v} \stackrel{\text { disenawo }}{=} \bar{\lambda}
$$

eigenvector
Eigenvectors of A are stretched by A without changing their direction.

The amount they are stretched is called the eigenvalue.

Example: Unequal Scaling

It's "easy to describe" how unequal scaling transforms vectors.

It transforms each entry individually and then combines them.

Eigenbases (Informal)

Eigenbases (Informal)

Imagine if $\mathbf{v}=2 \mathbf{b}_{1}-\mathbf{b}_{2}-5 \mathbf{b}_{3}$ and $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ are eigenvectors of A. Then

$$
A \mathbf{v}=2 \lambda_{1} \mathbf{b}_{1}-\lambda_{2} \mathbf{b}_{2}-5 \lambda_{3} \mathbf{b}_{3}
$$

Eigenbases (Informal)

Imagine if $\mathbf{v}=2 \mathbf{b}_{1}-\mathbf{b}_{2}-5 \mathbf{b}_{3}$ and $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ are eigenvectors of A. Then

$$
A \mathbf{v}=2 \lambda_{1} \mathbf{b}_{1}-\lambda_{2} \mathbf{b}_{2}-5 \lambda_{3} \mathbf{b}_{3}
$$

It's "easy to describe" how A transforms $\mathbf{v .}$
It transforms each "component" individually and then combines them.

Verify:

Eigenbases (Pictorially)

Fundamental Questions

How do we understand the effect of a matrix on a vector?

When is this effect "easy to describe"?
Which vectors are "just stretched" by a matrix?

Eigenvalues and Eigenvectors

Formal Definition

Formal Definition

A nonzero vector \mathbf{v} in \mathbb{R}^{n} and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Formal Definition

A nonzero vector \mathbf{v} in \mathbb{R}^{n} and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

We will say that \mathbf{v} is an eigenvector of the eigenvalue λ, and that λ is the eigenvalue corresponding to \mathbf{v}.

Formal Definition

A nonzero vector \mathbf{v} in \mathbb{R}^{n} and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

We will say that \mathbf{v} is an eigenvector of the eigenvalue λ, and that λ is the eigenvalue corresponding to \mathbf{v}.
Note. Eigenvectors must be nonzero, but it is possible for 0 to be an eigenvalue.

What if 0 is an eigenvalue?

What if 0 is an eigenvalue?

If A has the eigenvalue 0 with the eigenvector \mathbf{v}, then

$$
A \mathbf{v}=\mathbf{0} \mathbf{v}=\mathbf{0}
$$

What if 0 is an eigenvalue?

If A has the eigenvalue 0 with the eigenvector \mathbf{v}, then

$$
A \mathbf{v}=\mathbf{0} \mathbf{v}=\mathbf{0}
$$

In other words,
》 $\mathbf{v} \in \operatorname{Nul}(A)$
» \mathbf{v} is a nontrivial solution to $A \mathbf{v}=\mathbf{0}$

Extending the IMT (Again)

Extending the IMT (Again)

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

Extending the IMT (Again)

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

To reiterate. An eigenvalue 0 implies

Extending the IMT (Again)

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

To reiterate. An eigenvalue 0 implies
》 $A \mathbf{x}=\mathbf{0}$
» the columns of A are linearly dependent
$» \operatorname{Col}(A) \neq \mathbb{R}^{n}$
> ! !

Example: Unequal Scaling

Let's determine it's eigenvalues and eigenvectors:

$$
\left[\begin{array}{cc}
1.5 & 0 \\
0 & 0.7
\end{array}\right]
$$

Example: Shearing

Let's determine it's eigenvalues and eigenvectors:

Example (Algebraic)

$$
A=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

How do we verify eigenvalues and eigenvectors?

Verifying Eigenvectors

Verifying Eigenvectors

Question. Determine if $\left[\begin{array}{c}6 \\ -5\end{array}\right]$ or $\left[\begin{array}{c}3 \\ -2\end{array}\right]$ are eigenvectors of $\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and determine the corresponding eigenvalues.

Verifying Eigenvectors

Question. Determine if $\left[\begin{array}{c}6 \\ -5\end{array}\right]$ or $\left[\begin{array}{c}3 \\ -2\end{array}\right]$ are eigenvectors of $\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and determine the corresponding eigenvalues.
Solution. Easy. Work out the matrix-vector multiplication.

Verifying Eigenvectors

$$
\left[\begin{array}{c}
6 \\
-5
\end{array}\right]\left[\begin{array}{c}
3 \\
-2
\end{array}\right]\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]
$$

Verifying Eigenvalues

Verifying Eigenvalues

This is harder...

Verifying Eigenvalues

This is harder...
Question. Show that 7 is an eigenvalue of $\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$.

Verifying Eigenvalues

This is harder...
Question. Show that 7 is an eigenvalue of $\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$.
Before we go over how to do this...

Verifying Eigenvalues (Warm Up)

Question. Verify that 1 is an eigenvalue of

$$
\left[\begin{array}{ll}
0.1 & 0.7 \\
0.9 & 0.3
\end{array}\right]
$$

Hint. Recall our discussion of Markov Chains. Solution:

Steady-States and Eigenvectors

Steady-state vectors of stochastic matrices are eigenvectors corresponding to the eigenvalue 1. How did we find steady-state vectors?:

Steady-States and Eigenvectors

\mathbf{v} is a steady-state vector ${ }^{*} \equiv \mathbf{v} \in \operatorname{Nul}(A-I)$

Verifying Eigenvalues

This is harder...
Question. Show that λ is an eigenvalue of A. Solution:

Verifying Eigenvalues

\mathbf{v} is an eigenvector for $\lambda \equiv \mathbf{v} \in \operatorname{Nul}(A-\lambda I)$

Verifying Eigenvalues

This is harder...
Question. Show that 7 is an eigenvalue of $\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$.
Solution:

Problem

$$
\text { Verify that } 2 \text { is an eigenvalue of }\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]
$$

Answer

How many eigenvectors can a matrix have?

Linear Independence of Eigenvectors

Theorem.* If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are eigenvectors for distinct eigenvalues, then they are linearly independent.

So an $n \times n$ matrix can have at most n eigenvalues. Why?:

Eigenspace

Fact. The set of eigenvectors for a eigenvalue λ of $A \in \mathbb{R}^{n \times n}$ form a subspace of \mathbb{R}^{n}.

Verify:

Eigenspace

Definition. The set of eigenvectors for a eigenvalue λ of A is called the eigenspace of A corresponding to λ.

It is the same as $\operatorname{Nul}(A-\lambda I)$.

How To: Basis of an Eigenspace

Question. Find a basis for the eigenspace of A corresponding to λ.

Solution. Find a basis for $\operatorname{Nul}(A-\lambda I)$.

We know how to do this.

How do we find eigenvalues?

How do we find eigenvalues?

We'll cover this next time...

Eigenvalues of Triangular Matrices

Theorem. The eigenvalues of a triangular matrix are its entries along the diagonal.

Verify:

Problem

Determine the eigenvalues of the following matrix

$$
\left[\begin{array}{ccc}
3 & 6 & -8 \\
0 & 0 & 6 \\
0 & 0 & 2
\end{array}\right]
$$

Then find eigenvectors for those eigenvalues.

Answer

Linear Dynamical Systems

Recall: Linear Dynamical Systems

Recall: Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A \mathbf{x}$.

Recall: Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A x$.

The possible states of the system are vectors in \mathbb{R}^{n}.

Recall: Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A x$.

The possible states of the system are vectors in \mathbb{R}^{n}.
Given an initial state vector \mathbf{v}_{0}, we can determine the state vector of the system after i time steps:

$$
\mathbf{v}_{i}=A \mathbf{v}_{i-1}
$$

Recall: Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A x$.

Given an initial state vector \mathbf{v}_{0}, we can determine the state vector of the system after i time steps:

$$
\mathbf{v}_{i}=A \mathbf{v}_{i-1}
$$

Recall: State Vectors

$$
\begin{aligned}
\mathbf{v}_{1} & =A \mathbf{v}_{0} \\
\mathbf{v}_{2} & =A \mathbf{v}_{1}=A\left(A \mathbf{v}_{0}\right) \\
\mathbf{v}_{3} & =A \mathbf{v}_{2}=A\left(A A \mathbf{v}_{0}\right) \\
\mathbf{v}_{4} & =A \mathbf{v}_{3}=A\left(A A A \mathbf{v}_{0}\right) \\
\mathbf{v}_{5} & =A \mathbf{v}_{4}=A\left(A A A A \mathbf{v}_{0}\right)
\end{aligned}
$$

The state vector \mathbf{v}_{k} tells us what the system looks like after a number k time steps.

This is also called a recurrence relation or a linear difference function.

Recall: State Vectors

$$
\begin{aligned}
& \mathbf{v}_{1}=A \mathbf{v}_{0} \\
& \mathbf{v}_{2}=A \mathbf{v}_{1}=A\left(A \mathbf{v}_{0}\right) \\
& \mathbf{v} \\
& \mathbf{v}_{k}=A^{k} \mathbf{v}_{0} \\
& \mathbf{v}_{5}=A \mathbf{v}_{4}=A\left(A A A A \mathbf{v}_{0}\right)
\end{aligned}
$$

The state vector \mathbf{v}_{k} tells us what the system looks like after a number k time steps.

This is also called a recurrence relation or a linear difference function.

The Issue

The Issue

The equation $\mathbf{v}_{k}=A^{k} \mathbf{v}_{0}$ is okay but it doesn't tell us much about the nature of \mathbf{v}_{k}.

The Issue

The equation $\mathbf{v}_{k}=A^{k} \mathbf{v}_{0}$ is okay but it doesn't tell us much about the nature of \mathbf{v}_{k}.

It's defined in terms of A itself, which doesn't tell us much about how the system behaves.

The Issue

The equation $\mathbf{v}_{k}=A^{k} \mathbf{v}_{0}$ is okay but it doesn't tell us much about the nature of \mathbf{v}_{k}.

It's defined in terms of A itself, which doesn't tell us much about how the system behaves.

It's also difficult computationally because matrix multiplication is expensive.

(Closed-Form) Solutions

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1}=A \mathbf{v}_{i}$ is an expression for \mathbf{v}_{k} which is is not defined in terms of A or previously defined terms.

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1}=A \mathbf{v}_{i}$ is an expression for \mathbf{v}_{k} which is is not defined in terms of A or previously defined terms.

In other word, it does not depend on A and is not recursive.

Solutions with Eigenvectors as Initial States

Solutions with Eigenvectors as Initial States

It's easy to give a solution if the initial state is an eigenvector:

$$
\mathbf{v}_{k}=A^{k} \mathbf{v}_{0}=\lambda^{k} \mathbf{v}_{0}
$$

Solutions with Eigenvectors as Initial States

It's easy to give a solution if the initial state is an eigenvector:

$$
\mathbf{v}_{k}=A^{k} \mathbf{v}_{0}=\lambda^{k} \mathbf{v}_{0}^{\text {No dependence on } A \text { or } v_{k-1}}
$$

Solutions with Eigenvectors as Initial States

It's easy to give a solution if the initial state is an eigenvector:

$$
\mathbf{v}_{k}=A^{k} \mathbf{v}_{0}=\lambda^{k} \mathbf{v}_{0}^{\text {No dependence on } A \text { or } \mathbf{v}_{k-1}}
$$

The Key Point. This is still true of sums of eigenvectors.

Solutions in terms of eigenvectors

Let's simplify $A^{k} \mathbf{v}$, given we have eigenvectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}$ for A which span all of \mathbb{R}^{4} :

Eigenvectors and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_{0}, if \mathbf{v}_{0} can be written in terms of eigenvectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$ of A with eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{k}
$$

then $\mathbf{v}_{k} \sim \lambda_{1}^{k} c_{1} \mathbf{b}_{1}$ for some constant c_{1} (in other words, in the long term, the system grows exponentially in λ_{4}).

Verify:

Eigenbases

Definition. An eigenbasis of \mathbb{R}^{n} for a $n \times n$ matrix A is a basis of \mathbb{R}^{n} made up entirely of eigenvectors of A.

We can represent vectors as unique linear combinations of eigenvectors.

Not all matrices have eigenbases.

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_{0}, if A has an eigenbasis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}$, then

$$
\mathbf{v}_{k} \sim \lambda_{1}^{k} c_{1} \mathbf{b}_{1}
$$

for some constant c_{1}, where where λ_{1} is the largest eigenvalue of A and b_{1} is its eigenvalue.

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_{0}, if A has an eigenbasis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}$, then

$$
\mathbf{v}_{k} \sim \lambda_{1}^{k} c_{1} \mathbf{b}_{1}
$$

for some constant c_{1}, where where λ_{1} is the largest eigenvalue of A and b_{1} is its eigenvalue.
The largest eigenvalue describes the long-term exponential behavior of the system.

Example: CS Major Growth

This is clearly exponential. If we want to "extract" the exponent, we need to look at the largest eigenvalue.

Extended Example: Golden Ratio

A Special Linear Dynamical System

$$
\mathbf{v}_{k+1}=\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right] \mathbf{v}_{k} \quad \mathbf{v}_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Consider the system given by the above matrix. What does this matrix represent?:

Fibonacci Numbers

$$
\begin{array}{ll}
F_{0}=0 & \begin{array}{l}
\text { define fib(n): } \\
\text { curr, next } \leftarrow 0,1 \\
\text { repeat } n \text { times: }
\end{array} \\
F_{1}=1 & \begin{array}{l}
\text { curr, next } \leftarrow \text { next, curr }+ \text { next } \\
\text { return curr }
\end{array}
\end{array}
$$

The Fibonacci numbers are defined in terms of a recurrence relation.

They seem to crop-up in nature.

demo

Finding the Eigenvalues (Looking forward a bit)

$$
\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array}\right]
$$

Recall: $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if $\operatorname{det} A=0$

Golden Ratio

$$
\varphi=\frac{1+\sqrt{5}}{2} \quad \frac{F_{k+1}}{F_{k}} \rightarrow \varphi \text { as } k \rightarrow \infty
$$

The "long term behavior" is the Fibonacci sequence is defined by the golden ratio.

This is the largest eigenvalue of

Challenge Problem

Find the eigenvalues for these eigenvectors.
Find a closed-form solution for the Fibonacci sequence.

Summary

Eigenvectors of A are "just stretched" by A. We can easily describe what A does to v if we can write \mathbf{v} in terms of eigenvectors of A.

Eigenvalues of A give us information about A, like the long term behavior of the dynamical system described by A.

