The Characteristic Equation

Geometric Algorithms Lecture 18

Introduction

Recap Problem

$$
\left[\begin{array}{cccc}
5 & 2 & 3 & 0 \\
-1 & 2 & -3 & 1 \\
2 & 4 & 10 & 0 \\
1 & 2 & 3 & 5
\end{array}\right]
$$

Determine the dimension of the eigenspace of A for the eigenvalue 4. Hint, eigenspace is Nul(A-4I)
(try not to do any row reductions)
Hint, rank-nulity theorem

Answer: 2
farn a basir for $\operatorname{Col}(A)$

$$
\operatorname{rank}(A-4 I)=\operatorname{dim}(\operatorname{Col}(A-4 I))=2
$$

$\underset{\text { rank }}{\text { rankity }}$

$$
\begin{aligned}
\operatorname{rank}(B)+\operatorname{dim}(\operatorname{Nul}(B)) & =n \\
& \operatorname{dem}(N u l(A-4 I))=4-2=2
\end{aligned}
$$

Objectives

1. Briefly recap eigenvalues and eigenvectors.
2. Get a primer on determinants.
3. Determine how to find eigenvalues (not just verify them).

Keyword

eigenvectors
eigenvalues
eigenspaces
eigenbases
determinant
characteristic equation
polynomial roots
triangular matrices
multiplicity

Recap

Recall: Eigenvalues/vectors

A nonzero vector \mathbf{v} in \mathbb{R}^{n} and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$
\begin{aligned}
& \text { apply } A \text { to } \vec{v} \\
& \Gamma_{A \mathbf{v}} \sum_{\substack{\mathbf{v}}}^{\text {same as as }}
\end{aligned}
$$

Recall: Eigenvalues/vectors

A nonzero vector \mathbf{v} in \mathbb{R}^{n} and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Recall: Eigenvalues/vectors

A nonzero vector \mathbf{v} in \mathbb{R}^{n} and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$
\begin{gathered}
\qquad A \mathbf{v}=\lambda \mathbf{v} \\
\text { v is "just scaled" by } A, \text { not rotated }
\end{gathered}
$$

Recall: The Picture

Recall: Verifying Eigenvectors

Recall: Verifying Eigenvectors

Question. Determine if \mathbf{v} is an eigenvector of A and determine the corresponding eigenvalues.

Recall: Verifying Eigenvectors

Question. Determine if \mathbf{v} is an eigenvector of A and determine the corresponding eigenvalues.

Solution. Easy. Work out the matrix-vector multiplication.

Recall: Verifying Eigenvectors

Question. Determine if \mathbf{v} is an eigenvector of A and determine the corresponding eigenvalues.

Solution. Easy. Work out the matrix-vector multiplication. Example.

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{c}
6 \\
-5
\end{array}\right]=\left[\begin{array}{c}
-24 \\
20
\end{array}\right]=-4\left[\begin{array}{c}
6 \\
-5
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
13 \\
9
\end{array}\right]}
\end{gathered}
$$

Recall: Verifying Eigenvalues

Recall: Verifying Eigenvalues

Question. Find an eigenvector of A whose corresponding eigenvalue is λ.

Recall: Verifying Eigenvalues

Question. Find an eigenvector of A whose corresponding eigenvalue is λ.

Solution. Find a nontrivial solution to

$$
(A-\lambda I) \mathbf{x}=\mathbf{0}
$$

Recall: Verifying Eigenvalues

Question. Find an eigenvector of A whose corresponding eigenvalue is λ.

Solution. Find a nontrivial solution to

$$
(A-\lambda I) \mathbf{x}=\mathbf{0}
$$

If we don't need the vector we can just show that $A-\lambda I$ is not invertible (by IMT).

Recall: Finding Eigenspaces

Recall: Finding Eigenspaces

Question. Find a basis for the eigenspace of A corresponding to λ.

Recall: Finding Eigenspaces

Question. Find a basis for the eigenspace of A corresponding to λ.

Solution. Find a basis for $\operatorname{Nul}(A-\lambda I)$.

Recall: Finding Eigenspaces

Question. Find a basis for the eigenspace of A corresponding to λ.

Solution. Find a basis for $\operatorname{Nul}(A-\lambda I)$.
(we did this for our recap problem)

Finding Eigenvalues

Finding Eigenvalues

Question. Determine the eigenvalues of A, along with their associated eigenspaces.

Finding Eigenvalues

Question. Determine the eigenvalues of A, along with their associated eigenspaces.

Solution (Idea). Can we somehow "solve for λ " in the equation

$$
(A-\lambda I) \mathbf{x}=\mathbf{0}
$$

Determinants

An Aside: Determinants are Mysterious

Determinants are strangely polarizing

Some people love them, some people hate them

We'll only scratch the surface...

What kind of thing is the determinant?

What kind of thing is the determinant?

A determinant is a number associated with a matrix.

What kind of thing is the determinant?

A determinant is a number associated with a matrix.

Notation. We will write $\operatorname{det}(A)$ for the determinant of A.

What kind of thing is the determinant?

A determinant is a number associated with a matrix.

Notation. We will write $\operatorname{det}(A)$ for the determinant of A.

In broad strokes, it's a big sum of products of entries of A.

A Scary-Looking Definition (we won't use)

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} A_{1 \sigma(1)} A_{2 \sigma(2)} \ldots A_{n \sigma(n)}
$$

We can think of this function as a procedure:

A Scary-Looking Definition (we won't use)

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} A_{1 \sigma(1)} A_{2 \sigma(2)} \ldots A_{n \sigma(n)}
$$

We can think of this function as a procedure:

```
FUNCTION det(A):
    total = 0
    FOR all matrix B we can get by swapping a bunch of rows of A:
        s = 1 IF (# of swaps necessary) is even ELSE -1
        total += s * (product of the diagonal entries of B)
    RETURN total
```


The Determinant of 2×2 Matrices

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

The Determinant of 2×2 Matrices

$\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}
\end{gathered} \rightarrow^{0}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],
$$

The Determinant of 2×2 Matrices

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \rightarrow^{1}\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]} \\
(-1)^{1} c b
\end{gathered}
$$

The Determinant of 3×3 matrices

$\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=a e i+b f g+c d h-c e g-b d i-a f h$

The Determinant of 3×3 matrices

$\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=a e i+b f g+c d h-c e g-b d i-a f h$

$$
\begin{gathered}
{\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \rightarrow^{0}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]} \\
(-1)^{0} a e i
\end{gathered}
$$

The Determinant of 3×3 matrices

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ccc}
a & (b) & c \\
d & e & f \\
g & h & i
\end{array}\right]=a e i+b f g+c d h-c e g-b d i-a f h \\
& \left(\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \rightarrow 2\left[\begin{array}{lll}
g & h & i \\
a & b & c \\
d & e & f
\end{array}\right]\right. \\
& (-1)^{2} g b f
\end{aligned}
$$

The Determinant of 3×3 matrices

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{ccc}
a & \frac{b}{c} \\
\hdashline d & e & f \\
g & (h) & i
\end{array}\right]=a e i+b f g+c d h-c e g-b d i-a f h \\
{\left[\begin{array}{lll}
\vec{l} \\
\bullet & {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \rightarrow^{2}}
\end{array}\right]\left[\begin{array}{lll}
d & e & f \\
g & h & i \\
a & b & c
\end{array}\right]} \\
(-1)^{2} d h c
\end{gathered}
$$

The Determinant of 3×3 matrices

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{lll}
a & b & (c \\
d & e & f \\
g & h & i
\end{array}\right]=a e i+b f g+c d h-c e g-b d i-a f h \\
\left.\qquad \begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \rightarrow \rightarrow^{1}\left[\begin{array}{lll}
g & h & i \\
d & e & f \\
a & b & c
\end{array}\right] \\
(-1)^{1} g e c
\end{gathered}
$$

The Determinant of 3×3 matrices

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\operatorname{det} & {\left[\begin{array}{c}
c \\
\hdashline d
\end{array}\right.} & e \\
\hdashline g & h & f
\end{array}\right]=a e i+b f g+c d h-c e g-b d i-a f h} \\
\\
\left.\qquad \begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \rightarrow^{1}\left[\begin{array}{lll}
d & e & f \\
a & b & c \\
g & h & i
\end{array}\right]
\end{gathered}
$$

The Determinant of 3×3 matrices

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
a c & b & c \\
d & e & f \\
g & h & i
\end{array}\right] & =a e i+b f g+c d h-c e g-b d i-a f h \\
& \left.\begin{array}{llll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \rightarrow^{1}\left[\begin{array}{lll}
a & b & c \\
g & h & i \\
d & e & f
\end{array}\right]
\end{aligned}
$$

Another Perspective

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Let's row reduce an arbitrary 2×2 matrix:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \sim\left[\begin{array}{cc}
a & b \\
c a^{-a} & d a
\end{array}\right] \sim\left[\begin{array}{cc}
a & b \\
0 & d a-c b
\end{array}\right]
$$

$d a-c b=O$ then A is nor invertible

Another Perspective
Let's row reduce an arbitrary 3×3 matrix: $\quad\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
$\left[\begin{array}{ll}{\left[\begin{array}{ll}a & b \\ d & e\end{array}\right.} & \frac{c}{f} \\ \hline g & h\end{array}\right] \sim\left[\begin{array}{ccc}a & b & c \\ a d & a e & a f \\ a g & a h & a i\end{array}\right] \sim\left[\begin{array}{ccc}a & b & c \\ 0 & a e-b d & a f-c d \\ 0 & a h-b g & a i-c g\end{array}\right]$ $\operatorname{det}\left(\left[\begin{array}{cc}a e-\operatorname{lod} & a f-c d \\ a h-\log & \operatorname{ai-cg}\end{array}\right]\right)=a(\ldots)$ formula trow leet side.

Determinants and Invertibility

Determinants and Invertibility

Theorem. A matrix is invertible if and only if $\operatorname{det}(A) \neq 0$.

Determinants and Invertibility

Theorem. A matrix is invertible if and only if $\operatorname{det}(A) \neq 0$.

So we can yet again extend the IMT:

Determinants and Invertibility

Theorem. A matrix is invertible if and only if $\operatorname{det}(A) \neq 0$.

So we can yet again extend the IMT:
» A is invertible
» $\operatorname{det}(A) \neq 0$
» 0 is not an eigenvalue
These must be all true or all false.

Determinants (the definition we'll use)

$$
\operatorname{det}(A)=\frac{(-1)^{s}}{c} U_{11} U_{22} \ldots U_{n n}
$$

Determinants (the definition we'll use)

$$
\operatorname{det}(A)=\frac{(-1)^{s}}{c} U_{11} U_{22} \ldots U_{n n}
$$

Defintion. The determinant of a matrix A is given by the above equation, where

Determinants (the definition we'll use)

$$
\operatorname{det}(A)=\frac{(-1)^{s}}{c} U_{11} U_{22} \ldots U_{n n}
$$

Defintion. The determinant of a matrix A is given by the above equation, where

- U is an echelon form of A

Determinants (the definition we'll use)

$$
\operatorname{det}(A)=\frac{(-1)^{s}}{c} U_{11} U_{22} \ldots U_{n n}
$$

Defintion. The determinant of a matrix A is given by the above equation, where

- U is an echelon form of A
- s is the number of row swaps used to get U

Determinants (the definition we'll use)

$$
\operatorname{det}(A)=\frac{(-1)^{s}}{c} U_{11} U_{22} \ldots U_{n n}
$$

Defintion. The determinant of a matrix A is given by the above equation, where

- U is an echelon form of A
- s is the number of row swaps used to get U
- c is the product of all scalings used to get U
if tho $n e$ no scaling trea $c=1$

Determinants (the definition we'll use)

$$
\operatorname{det}(A)=\frac{(-1)^{s}}{c} U_{11} U_{22} \ldots U_{n n}
$$

Defintion. The determinant of a matrix A is given by the above equation, where

- U is an echelon form of A
- s is the number of row swaps used to get U
- c is the product of all scalings used to get U
non -invarible \Rightarrow nat pivot blumer $\Rightarrow 0$ an the digorel

Determinants (the definition we'll use)

$$
\operatorname{det}(A)=\frac{(-1)^{s}}{c_{0} U_{11}^{\text {product of diagonal entries }} U_{22} \ldots U_{n n} \text { is not invertible }}
$$

Defintion. The determinant of a matrix A is given by the above equation, where

- U is an echelon form of A
- s is the number of row swaps used to get U
- c is the product of all scalings used to get U

Example

$$
\left[\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
$$

Let's find the determinant of this matrix:

$$
\begin{aligned}
& s=\phi \perp c=1 \\
& {\left[\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right] \xrightarrow{R_{2}+R_{2}-2 R_{1}}\left[\begin{array}{ccc}
1 & 5 & 0 \\
0 & -6 & -1 \\
0 & -2 & 0
\end{array}\right] \xrightarrow{\text { swap }\left(h_{1}, R_{3}\right)}\left[\begin{array}{ccc}
1 & 5 & 0 \\
0 & -2 & 0 \\
0 & -6 & -1
\end{array}\right]} \\
& R_{2}=R_{3}^{-3 R_{0}}\left[\begin{array}{ccc}
(1) & 5 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right] \\
& \operatorname{det}(A)=\frac{(-1)^{3}}{c}(1)(-2)(-1) \\
& =\frac{(-1)^{\prime}}{1}(1)(-2)(-1)=-2
\end{aligned}
$$

Example (Again) $\quad\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$
Let's find the determinant of this matrix again but with a different sequence of row operations:

$$
\begin{aligned}
& \begin{array}{lcc}
G=0 & =1 \cdot 2 \\
{\left[\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right] \xrightarrow{R_{1} \&\left[2 R_{1}\right.}\left[\begin{array}{ccc}
2 & 10 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right] \xrightarrow{R_{2} \in R_{1}-R_{1}}\left[\begin{array}{ccc}
2 & 10 & 0 \\
0 & -6 & -1 \\
0 & -2 & 0
\end{array}\right]} \\
\xrightarrow{R_{3} \in R_{3}-\frac{1}{3} R_{2}}\left[\begin{array}{ccc}
2 & 10 & 0 \\
0 & -6 & -1 \\
0 & 0 & \frac{1}{3}
\end{array}\right] \quad \operatorname{det}(A)=\frac{(-1)^{3}}{c}(2)(-6)\left(\frac{1}{3}\right) \\
& =\frac{\left(-15^{2}\right.}{\mu}(h)(-6)\left(\frac{1}{3}\right)
\end{array}
\end{aligned}
$$

The definition holds no matter which sequence of row operations you use.

How To: Determinants

How To: Determinants

Question. Determine the determinant of a matrix A.

How To: Determinants

Question. Determine the determinant of a matrix A. Solution.

How To: Determinants

Question. Determine the determinant of a matrix A. Solution.

1. Convert A to an echelon form U.

How To: Determinants

Question. Determine the determinant of a matrix A.
Solution.

1. Convert A to an echelon form U.
2. Keep track of the number of row swaps you used, call this s, and the product of all scalings, call this c

How To: Determinants

Question. Determine the determinant of a matrix A.
Solution.

1. Convert A to an echelon form U.
2. Keep track of the number of row swaps you used, call this s, and the product of all scalings, call this c
3. Determine the product of entries along the diagonal of U, call this P.

How To: Determinants

Question. Determine the determinant of a matrix A.
Solution.

1. Convert A to an echelon form U.
2. Keep track of the number of row swaps you used, call this s, and the product of all scaling, call this c
3. Determine the product of entries along the diagonal of U, call this P. $(-1)^{5}$
4. The determinant of A is $\frac{P}{c}$.

The Shorter Version

Beyond small matrices, we'll often just use computers.

With NumPy:
numpy, linalg.det(A)

Properties of Determinants

Properties of Determinants (1)

$\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

It follows that $A B$ is invertible if and only if A and B are invertible
(we won't verify this)

Question

Use the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ to give an expression for $\operatorname{det}\left(A^{-1}\right)$ in terms of $\operatorname{det}(A)$.

Hint. What is $\operatorname{det}(I) ?=1$

Answer: 1/det (A)

$$
\begin{aligned}
& 1=\operatorname{det}(I)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \cdot \operatorname{det}\left(A^{-1}\right) \\
& \text { so } \\
& \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
\end{aligned}
$$

Properties of Determinants (2)

$\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$

It follows that A^{T} is invertible if and only if A is invertible.
(we also won't verify this)

Question

If $A^{-1}=A^{T}$, then what are the possible values of $\operatorname{det}(A)$?

$$
\begin{aligned}
& \operatorname{det}\left(A^{\top}\right) \operatorname{det}(A)= \operatorname{det}\left(A^{\top} A\right)=1 \\
& \operatorname{det}(A)^{2}=1 \\
& \operatorname{det}(A)=1,-1
\end{aligned}
$$

Answer: ± 1

Properties of Determinants (3)

Theorem. If A is triangular, then $\operatorname{det}(A)$ is the product of entries along the diagonal.

Verify:

Question

$$
\left[\begin{array}{ccc}
1 & 5 & -4 \\
-1 & -5 & 5 \\
-2 & -8 & 7
\end{array}\right]
$$

Find the determinant of the above matrix.

$$
\left[\begin{array}{ccc}
1 & 5 & -4 \\
-1 & -5 & 5 \\
-2 & -8 & 7
\end{array}\right]
$$

Answer

$$
\begin{gathered}
\text { Answer } \\
{\left[\begin{array}{ccc}
1 & 5 & -4 \\
-1 & -5 & 5 \\
-2 & -8 & 7
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 5 & -4 \\
0 & 0 & 1 \\
0 & 2 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 5 & -4 \\
0 & 2 & -1 \\
0 & 0 & 1
\end{array}\right]} \\
\operatorname{det}(A)=\frac{(-1)}{1}(1)(2)(1)=-2
\end{gathered}
$$

Characteristic Equation

What kind of thing is the determinant, really?

What kind of thing is the determinant, really?

The determinant of a matrix A is an arithmetic expression written in terms of the entries of A.

What kind of thing is the determinant, really?

The determinant of a matrix A is an arithmetic expression written in terms of the entries of A.

But a matrix may not have numbers as entries.

What kind of thing is the determinant, really?

The determinant of a matrix A is an arithmetic expression written in terms of the entries of A.

But a matrix may not have numbers as entries. We might think of the matrix $A-\lambda I$ has having polynomials as entries.

What kind of thing is the determinant, really?

The determinant of a matrix A is an arithmetic expression written in terms of the entries of A.

But a matrix may not have numbers as entries. We might think of the matrix $A-\lambda I$ has having polynomials as entries.

Then $\operatorname{det}(A-\lambda I)$ is a polynomial.

Reminder: Polynomial Roots

Reminder: Polynomial Roots

A root of a polynomial $p(x)$ is a value r such that $p(r)=0$.

Reminder: Polynomial Roots

A root of a polynomial $p(x)$ is a value r such that $p(r)=0$.
(A polynomial may have many roots)

Reminder: Polynomial Roots

A root of a polynomial $p(x)$ is a value r such that $p(r)=0$.
(A polynomial may have many roots)
If r is a root of $p(x)$, then it is possible to find a polynomial $q(x)$ such that

$$
p(x)=(x-r) q(x)
$$

Characteristic Polynomial

Characteristic Polynomial

Definition. The characteristic polynomial of a matrix A is $\operatorname{det}(A-\lambda I)$ viewed as a polynomial in the variable λ.

Characteristic Polynomial

Definition. The characteristic polynomial of a matrix A is $\operatorname{det}(A-\lambda I)$ viewed as a polynomial in the variable λ.

This is a polynomial with the eigenvalues of A as roots.

Characteristic Polynomial

Definition. The characteristic polynomial of a matrix A is $\operatorname{det}(A-\lambda I)$ viewed as a polynomial in the variable λ.

This is a polynomial with the eigenvalues of A as roots.

So we can "solve" for the eigenvalues in the equation

$$
\operatorname{det}(A-\lambda I)=0
$$

Example: 2×2 Matrix ${ }^{*}$

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Let's find the characteristic polynomial of this matrix:

$$
\begin{aligned}
& d e+\left[\begin{array}{cc}
1-\lambda & \gamma \\
1
\end{array}\right]=(1-\lambda)(-1)-1= \\
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \frac{1 \pm \sqrt{\left.(-1)^{2}-4(1)(1)\right]}}{2} \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2} \\
& \begin{array}{c}
\text { *we wont deal explicitly with matrices beyond } 2 \times 2 \text {, though there } \\
\text { may be conceptual questions about larger matrices }
\end{array}
\end{aligned}
$$

Example: 2×2 Matrix ${ }^{*}$

Let's find the characteristic polynomial of this matrix:

An Aside: What is this matrix?

A Special Linear Dynamical System

$$
\mathbf{v}_{k+1}=\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right] \mathbf{v}_{k} \quad \mathbf{v}_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Consider the system given by the above matrix. What does this system represent?:

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{l}
5 \\
3
\end{array}\right],\left[\begin{array}{l}
8 \\
5
\end{array}\right],\left[\begin{array}{c}
13 \\
8
\end{array}\right], \ldots
$$

Fibonacci Numbers

$$
\begin{array}{ll}
F_{0}=0 & \begin{array}{l}
\text { define fib(n): } \\
\text { curr, next } \leftarrow 0,1 \\
\text { repeat } n \text { times: }
\end{array} \\
F_{1}=1 & \begin{array}{l}
\text { curr, next } \leftarrow \text { next, curr }+ \text { next }
\end{array} \\
F_{k}=F_{k-1}+F_{k-2} & \text { return curr }
\end{array}
$$

The Fibonacci numbers are defined in terms of a recurrence relation.

They seem to crop-up in nature, engineering, etc.

Recall: The Fibonacci Matrix

The largest eigenvalue is the slope of this line The slope is the ratio of the entries

Golden Ratio

$$
\varphi=\frac{1+\sqrt{5}}{2} \quad \frac{F_{k+1}}{F_{k}} \rightarrow \varphi \text { as } k \rightarrow \infty
$$

This is the largest eigenvalue of $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
To Come. The "long term behavior" is the Fibonacci sequence is defined by the golden ratio.

Example: Triangular matrix

$$
\left[\begin{array}{cccc}
1 & -3 & 0 & 6 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

The characteristic polynomial of a triangular matrix comes pre-factored:

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)(-\lambda)(1-\lambda)(4-\lambda)
$$

How To: Finding Eigenvalues

How To: Finding Eigenvalues

Question. Find all eigenvalues of the matrix A.

How To: Finding Eigenvalues

Question. Find all eigenvalues of the matrix A. Solution. Find the roots of the characteristic polynomial of A.

How To: Finding Eigenvalues

Question. Find all eigenvalues of the matrix A. Solution. Find the roots of the characteristic polynomial of A.

In Reality. We'll mostly just use
numpy.linalg.eig(A)

An Observation: Multiplicity

$$
\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1} \text { multiplicities }
$$

In the examples so far, we've seen a number appear as a root multiple times.

This is called the multiplicity of the root.
Is the multiplicity meaningful in this context?

Multiplicity and Dimension

Theorem. The dimension of the eigenspace of A for the eigenvalue λ is at most the multiplicity of λ in $\operatorname{det}(A-\lambda I)$.

The multiplicity is an upper bound on "how large" the eigenspace is.

Example

Let A be a 5×5 matrix with characteristic polynomial $(x-1)^{3}(x-3)(x+5)$.
» What is $\operatorname{rank}(A)$?
» What is the minimum possible rank of $A-I$?

Application: Similar Matrices

Definition. Two square matrices A and B are similar if there is an invertible matrix P such that

$$
A=P^{-1} B P
$$

Application: Similar Matrices

Theorem. Similar matrices have the same eigenvalues.

Verify:

Summary

The determinant of a matrix is an arithmetic expression of its entries.

The characteristic polynomial is the determinant of $A-\lambda I$ viewed as a polynomial of λ, and it tells us what the eigenvalues of a matrix are.

