Diagonalization **Geometric Algorithms** Lecture 19

CAS CS 132

Introduction

Recap Problem

For what values of h is dim(H) = 2, where H is the eigenspace of A for the eigenvalue -1?Hint. eigenspace of A for -1 is Nul(A-(-1)I)

Hint dim (NULB) = (#non pisots of B) $A = \begin{bmatrix} -1 & h & 2 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} \text{# non pirors of } & \\ \text{Fixoholds of B} \end{bmatrix}$ $= 3 - \begin{bmatrix} \text{# pirohs of B} \\ \text{Chy rank-millipy} \end{bmatrix}$

dim (Nul (A-(-DID)=2=# non piot column.

Objectives

- polynomial.
- 2. Motivate diagonalization via linear systems.
- 3. Describe how to diagonalize a matrix.

1. Finish our discussion on the characteristic

dynamical systems and changes of coordinate

Keywords

multiplicity
similar matrices
diagonalizable matrices
change of basis
eigenbasis

Recap

det(A) is an value associate with the matrix A_{\bullet}

det(A) is an value associate with the matrix A. **Theorem.** A matrix is invertible if and only if $det(A) \neq 0$.

det(A) is an value associate with the matrix A. **Theorem.** A matrix is invertible if and only if $det(A) \neq 0$.

So by the Invertible Matrix Theorem:

- det(A) is an value associate with the matrix A. **Theorem.** A matrix is invertible if and only if $det(A) \neq 0$.
- So by the Invertible Matrix Theorem:
- $det(A \lambda I) = 0 \equiv (A \lambda I)\mathbf{x} = \mathbf{0}$ has nontrivial solutions
 - λ is an eigenvalue of A \equiv

- det(A) is an value associate with the matrix A. **Theorem.** A matrix is invertible if and only if $det(A) \neq 0$.
- So by the Invertible Matrix Theorem:
- $det(A \lambda I) = 0 \qquad \equiv \qquad (A \lambda I)\mathbf{x} = \mathbf{0} \text{ has nontrivial solutions}$ polynomial in λ
 - λ is an eigenvalue of A \equiv

Question. Determine the eigenvalues of A.

Question. Determine the eigenvalues of A. **Solution.** Find the *roots* of the characteristic polynomial of A, which is

viewed as a *polynomial* in λ .

- $det(A \lambda I)$

Question. Determine the eigenvalues of A. **Solution.** Find the *roots* of the characteristic polynomial of A, which is

viewed as a *polynomial* in λ . **In Reality.** We'll use

- $det(A \lambda I)$

numpy.linalg.eig(A)

Last Remarks on the Characteristic Polynomial

Example: Triangular matrix

The characteristic polynomial of a triangular matrix comes <u>pre-factored</u>: $(1 - \lambda)(-\lambda)(1 - \lambda)(4)$ $- \lambda(1 - \lambda) = \lambda$ $\lambda = 0, 1, 4$ are ligenvalues.

 $\begin{bmatrix} 1 & -3 & 0 & 6 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 4 \end{bmatrix}$

$$-\lambda)^{2}$$

$$(\lambda - 1)^{2}(\lambda - 4)$$

An Observation: Multiplicity

$\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1}$ multiplicities

An Observation: Multiplicity $\lambda^{1}(\lambda - 1)^{2}(\lambda - 1)^$

In the examples so far, we've seen a number appear as a root <u>multiple times</u>.

 $\lambda^1(\lambda-1)^2(\lambda-4)^1$ multiplicities

An Observation: Multiplicity $\lambda^1(\lambda -$

In the examples so far, we've seen a number appear as a root <u>multiple times</u>. the root.

$$1)^2(\lambda - 4)^1$$
 multiplicities

This is called the (algebraic) multiplicity of

An Observation: Multiplicity $\lambda^1(\lambda -$

In the examples so far, we've seen a number appear as a root <u>multiple times</u>.

the root.

$$1)^2(\lambda - 4)^1$$
 multiplicities

This is called the (algebraic) multiplicity of

Is the multiplicity meaninaful in this context?

Multiplicity and Dimension

for the eigenvalue λ is <u>at most</u> the

The multiplicity is an upper bound on "how large" the eigenspace is.

Theorem. The dimension of the eigenspace of Amultiplicity of λ in det $(A - \lambda I)$ (and <u>at least</u> 1).

Example

Let A be a 5 x 5 matrix with characteristic polynomial $(x-1)^{3}(x-3)(x+5)$. > What is rank(A)? dim (NJ(A)) = dim (NJ(A-OI))

» What is the minimum possible rank of A - I?

Motivating Diagonalization via Linear Dynamical Systems

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A.

We will be almost exclusively interested of eigenbases of \mathbb{R}^n when $A \in \mathbb{R}^{n \times n}$.

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A_{\bullet}

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A.

We will be almost exclusively interested of eigenbases of \mathbb{R}^n when $A \in \mathbb{R}^{n \times n}$.

<u>The Question.</u> When can we describe any vector in \mathbb{R}^n as a unique linear combination of eigenvectors of A?

Recall: Linear Dynamical Systems state vectors starting at v_0 .

A linear dynamical system describes a sequence of

Recall: Linear Dynamical Systems $\mathbf{v}_1 = A \mathbf{v}_0$ $\mathbf{v}_2 = A\mathbf{v}_1 = A^2\mathbf{v}_0$ $\mathbf{v}_3 = A\mathbf{v}_2 = A^3\mathbf{v}_0$ $\mathbf{v}_4 = A\mathbf{v}_3 = A^4\mathbf{v}_0$ A linear dynamical system describes a sequence of state vectors starting at v_0 .

- multiplying by A changes the state.

demo

Eigenbases and Closed-Form solutions

Eigenbases and Closed-Form solutions

Given $\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k\mathbf{v}_0$, if

 $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3$
Given $\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k \mathbf{v}_0$, if $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1$

eigenvectors of A $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3$

Given $\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k\mathbf{v}_0$, if eigenvectors of A $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3$

then

 $(A^k \mathbf{v}_0 = \alpha_1 \lambda_1^k \mathbf{b}_1 + \alpha_2 \lambda_2^k \mathbf{b}_2 + \alpha_3 \lambda_3^k \mathbf{b}_3)$

Given $\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k \mathbf{v}_0$, if eigenvectors of A $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3$

then

eigenvalues of A $A^{k}\mathbf{v}_{0} = \alpha_{1}\lambda_{1}^{k}\mathbf{b}_{1} + \alpha_{2}\lambda_{2}^{k}\mathbf{b}_{2} + \alpha_{3}\lambda_{3}^{k}\mathbf{b}_{3}$

Given
$$\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k \mathbf{v}_0$$
, if
eigenvectors of A
 $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3$

then $A^{k}\mathbf{v}_{0} = \alpha_{1}\lambda_{1}^{k}\mathbf{b}_{1}$ Verify: $A^{k}\left(\varkappa, \overleftarrow{b}, + \varkappa, \overleftarrow{b}_{2}, \overleftarrow{b}_{2}\right)$

genvalues of A
+
$$\alpha_2 \lambda_2^k \mathbf{b}_2 + \alpha_3 \lambda_3^k \mathbf{b}_3$$

closed-form solution
 $\lambda_{\alpha_1} A^k \vec{b}_1 + \alpha_2 A^k \vec{b}_3$
= $\alpha_1 A^k \vec{b}_1 + \alpha_2 A^k \vec{b}_3$

Application: Eigenbases and Limiting Behavior

Theorem. If A has an eigenbasis with eigenvalues $\lambda_1 \geq \lambda_2 \dots \geq \lambda_k$ then $\mathbf{v}_k \sim \lambda_1^k \mathbf{u}$ for some vector \mathbf{u}_{\bullet} In the long term, the system grows <u>exponentially in λ_1 </u>. Verify:

Application: Eigenbases and Limiting Behavior

Theorem. If A has an eigenbasis with eigenvalues $\lambda_1 \geq$ then $\mathbf{v}_k \sim \lambda_1^k \mathbf{u}$ for some vector \mathbf{u}_{\bullet} $V_{k} = \alpha, \alpha, b$ Verify:

$$\lambda_2 \dots \geq \lambda_k$$

 $\lambda_{7} < \lambda_{1}$

5 K 0 2 9 2]

In the long term, the system grows exponentially in λ_1 .

Given a basis \mathscr{B} for \mathbb{R}^n , we only need to know how $A \in \mathbb{R}^n$ behaves on \mathscr{B} .

how $A \in \mathbb{R}^n$ behaves on \mathscr{B} .

Sometimes, A behaves simply on \mathcal{B} , as in the case of <u>eigenbases</u>.

Given a basis \mathscr{B} for \mathbb{R}^n , we only need to know

- how $A \in \mathbb{R}^n$ behaves on \mathscr{B} .
- Sometimes, A behaves simply on \mathcal{B} , as in the case of <u>eigenbases</u>.
- What we're really doing is <u>changing our</u> <u>coordinate system</u> to expose a behavior of A.

Given a basis \mathscr{B} for \mathbb{R}^n , we only need to know

Recap: Change of Basis

FIGURE 1 Standard graph paper.

FIGURE 2 \mathcal{B} -graph paper.

FIGURE 1 Standard graph paper.

Given a basis \mathscr{B} of \mathbb{R}^n , there is **exactly one way** to write every vector as a linear combination of vectors in \mathscr{B} .

FIGURE 2 \mathcal{B} -graph paper.

FIGURE 1 Standard graph paper.

Given a basis \mathscr{B} of \mathbb{R}^n , there is **exactly one way** to write every vector as a linear combination of vectors in \mathscr{B} .

Every basis provides a way to write down coordinates of a vector.

FIGURE 2 \mathcal{B} -graph paper.

FIGURE 1 Standard graph paper.

Given a basis \mathscr{B} of \mathbb{R}^n , there is **exactly one way** to write every vector as a linear combination of vectors in \mathscr{B} .

Every basis provides a way to write down coordinates of a vector.

FIGURE 2 \mathcal{B} -graph paper.

defines a "different grid for our graph paper"

Recall: How to think about this

Changing the coordinate system "warps space".

The Question. how do
we represent a vector
v in the warped space
if we wanted it to "be
in the same place"?

basis of \mathbb{R}^n where

Let v be a vector in a \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$ be a $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \ldots + a_n \mathbf{b}_n$

basis of \mathbb{R}^n where

is

Let v be a vector in a \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ be a

- $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \ldots + a_n \mathbf{b}_n$
- **Definition.** The coordinate vector of v relative to *B*

basis of \mathbb{R}^n where

is

 $[\mathbf{v}]_{\mathscr{B}} =$

Let v be a vector in a \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ be a

$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_n \mathbf{b}_n$

Definition. The coordinate vector of v relative to \mathscr{R}

FIGURE 1 Standard graph paper.

FIGURE 2 \mathcal{B} -graph paper.

Question (Conceptual) $\begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}$ $\begin{bmatrix} c_1 & b_2 & \cdots & b_n \end{bmatrix}$ $\begin{bmatrix} c_1 & b_2 & \cdots & b_n \end{bmatrix}$

We know that if a $n \times n$ matrix $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$ is invertible, then the columns of B form a basis \mathscr{B} of \mathbb{R}^n . What is the matrix that implements the transformation

where $\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + ... + c_n \mathbf{b}_n$?

 $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

Change of Basis Matrix

Theorem. If $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$ form a basis of \mathbb{R}^n , then

Matrix inverses perform changes of bases.

$[\mathbf{x}]_{\mathscr{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]^{-1} \mathbf{x}$

How To: Change of Basis

Question. Given a basis $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ of \mathbb{R}^n , find the matrix which implements $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$. **Solution.** Construct the matrix $[\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]^{-1}$.

Diagonalization

 $\begin{bmatrix} ex. & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -0.4 & 0 & 0 \\ 0 & 0 & 22 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Definition. A $n \times n$ matrix A is **diagonal** if $i \neq j$ if and only if $A_{ij} = 0$.

$$\begin{array}{c} \text{ex.} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & -0.4 & 0 \\ 0 & 0 & 22 \\ 0 & 0 & 0 \end{bmatrix}$$

Definition. A $n \times n$ matrix A is **diagonal** if

Only the diagonal entries can be nonzero.

$$\begin{array}{c} \mathsf{ex.} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & -0.4 & 0 \\ 0 & 0 & 22 \\ 0 & 0 & 0 \end{array} \right.$$

$i \neq j$ if and only if $A_{ii} = 0$.

- $i \neq j$ if and only if $A_{ii} = 0$.
- **Definition.** A $n \times n$ matrix A is **diagonal** if Only the diagonal entries can be nonzero. Diagonal matrices are scaling matrices.

$$\begin{array}{c} \mathsf{ex.} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & -0.4 & 0 \\ 0 & 0 & 22 \\ 0 & 0 & 0 \end{array} \right.$$

Recall: Unequal Scaling

The scaling matrix affects each component of a vector in a simple way.

The diagonal entries <u>scale</u> each corresponding entry.

 $\begin{bmatrix} 1.5 & 0 \\ 0 & 0.7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1.5x \\ 0.7y \end{bmatrix}$

 -

High level question: When do matrices "behave" like scaling matrices "up to" change of basis?

on eigenvectors.

The idea. Matrices behave like scaling matrices

The idea. Matrices beh on eigenvectors.

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{pmatrix} x \\ y \end{bmatrix} = A(x\mathbf{b}_1 + \mathbf{b}_1)$$

The idea. Matrices behave like scaling matrices

$(x\mathbf{e}_1 + y\mathbf{e}_2) = x2\mathbf{e}_1 + y(-3)\mathbf{e}_2$

 $+ y\mathbf{b}_2) = x\lambda_1\mathbf{b}_1 + y\lambda_2\mathbf{b}_2$

on eigenvectors.

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}_{\mathscr{B}}$$

The idea. Matrices behave like scaling matrices $(x\mathbf{e}_1 + y\mathbf{e}_2) = x\mathbf{2}\mathbf{e}_1 + y(-3)\mathbf{e}_2$

The fundamental question: Can we expose this behavior in terms of a matrix factorization?
Recall: Matrix Factorization

Recall: Matrix Factorization

A factorization of a matrix A is an equation which expresses A as a product of one or more matrices, e.g.,

 $A = PBP^{-1}$

Recall: Matrix Factorization

A factorization of a matrix A is an equation which expresses A as a product of one or more matrices, e.g.,

Factorizations can:

» make working with A easier \gg expose important information about A

$A = PRP^{-1}$

Similar Matrices

Definition. A matrix A is **similar** to a matrix B if there is some invertible matrix P such that $A = PBP^{-1}$

A and B are the same up to a change of basis.

Similar Matrices and Eigenvalues

Theorem. Similar matrices have the <u>same eigenvalues</u>. Verify: $dt(A - \lambda I) = dt(PBP' - \lambda I)$ = dt(PBP' - P(A I)P')= dt(PBP' - P(A I)P')= $dt(P(B - \lambda I)P')$ = $dt(P(B - \lambda I)P')$ = $dt(B - \Delta I)P'$

is similar to a diagonal matrix.

Definition. A matrix A is **diagonalizable** if it

is similar to a diagonal matrix.

There is an invertible matrix P and <u>diagonal</u> matrix D such that $A = PDP^{-1}$.

Definition. A matrix A is **diagonalizable** if it

is similar to a diagonal matrix.

There is an invertible matrix P and <u>diagonal</u> matrix D such that $A = PDP^{-1}$.

Diagonalizable matrices are the same as scaling matrices up to a change of basis.

Definition. A matrix A is **diagonalizable** if it

Important: Not all Matrices are Diagonalizable

This is very different from the LU factorization. We will need to figure out which matrices are diagonalizable.

<u>Question</u>. Is the zero matrix diagonalizable? [0 ()] is diagonal

Application: Matrix Powers

Theorem. If $A = PBP^{-1}$, then $A^k = PB^k P^{-1}$.

only take the power of B It may be easier to take the power of B (as in the case of diagonal matrices). Verify: AAA = (PBP')(PBP')(PBP') $PB^{3}P^{-1}$

How To: Matrix Powers

Solution. Find it's diagonalization PDP^{-1} and then compute PD^kP^{-1} . Remember that

 $\begin{bmatrix} a & 0 & 0 \end{bmatrix}^{k} \\ 0 & b & 0 \end{bmatrix}^{k} =$ 0 0 *c*

Question. Given A is diagonalizable, determine A^k .

$$= \begin{bmatrix} a^k & 0 & 0 \\ 0 & b^k & 0 \\ 0 & 0 & c^k \end{bmatrix}$$

But how do we find the diagonalization...

Diagonalization and Eigenvectors

Suppose we have a diagonalization $A = PDP^{-1}$ What do we know about it?

Columns of *P* are eigenvectors $A = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]^{-1}$ Verify: $\bigvee = \mathcal{PO}\left(\begin{bmatrix} \vec{p}_1 & \vec{p}_2 & \vec{p}_3 \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix}^{-1}$ $= P \cap \tilde{e}_{1}$ $= P \lambda_{2} \tilde{e}_{2} = \lambda_{2} P \tilde{e}_{1} = \lambda_{2} P \tilde{e}_{1}$

Columns of *P* are eigenvectors $A = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]^{-1}$

Columns of *P* are eigenvectors $A = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]^{-1}$

In fact, the columns of P form an **eigenbasis** of \mathbb{R}^n for A.

Columns of *P* are eigenvectors $A = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]^{-1}$

In fact, the columns of P form an **eigenbasis** of \mathbb{R}^n for A.

And the entries of *D* are the **eigenvalues** associated to each eigenvector.

Columns of *P* are eigenvalues $A = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix}^{-1}$ $\begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix}^{-1}$

In fact, the columns of P form an **eigenbasis** of \mathbb{R}^n for A .

And the entries of *D* are the **eigenvalues** associated to each eigenvector.

A diagonalization exposes a lot of information about A.

Theorem. A matrix is diagonalizable if and only if it has an eigenbasis.

if it has an eigenbasis.

(we just did the hard part, if a matrix is diagonalizable then it has an **eigenbasis**)

- **Theorem.** A matrix is diagonalizable if and only

if it has an eigenbasis.

(we just did the hard part, if a matrix is diagonalizable then it has an eigenbasis)

diagonalization.

- **Theorem.** A matrix is diagonalizable if and only
- We can use the same recipe to go in the other direction, given an eigenbasis, we can build a

Diagonalizing a Matrix

High Level

$A = PDP^{-1}$

High Level A =

$A = PDP^{-1}$

The columns of P form an <u>eigenbasis</u> for A_{\bullet}

High Level

column of P.

$A = PDP^{-1}$

The columns of P form an <u>eigenbasis</u> for A_{\bullet} The diagonal of D are the eigenvalues for each

High Level

The columns of P form an <u>eigenbasis</u> for A_{\bullet}

column of P.

The matrix P^{-1} is a change of basis to this eigenbasis of A.

$A = PDP^{-1}$

The diagonal of D are the eigenvalues for each

Step 1: Eigenvalues

Find all the eigenvalues of A. Find the roots of $det(A - \lambda I)$. e.g.

$det(A - \lambda I) = -(\lambda - 1)(\lambda + 2)^2$

Step 2: Eigenvectors

Find **bases** of the corresponding eigenspaces. *e.g.*

$\operatorname{Nul}(A - I) = \operatorname{span} \left\{ \begin{array}{c} I \\ -1 \\ 1 \end{array} \right\}$ $\operatorname{Nul}(A+2I) = \operatorname{span} \left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$

Step 3: Construct P ve card gail

If there are n eigenvectors from the previous step they form an eigenbasis.

Build the matrix with these vectors as the columns

e.g.

$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

Step 5: Construct D

Build the matrix with eigenvalues as diagonal entries.

Note the order. It should be the same as the order of columns of P_{\bullet}

e.g.

 $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

Step 6: Invert P

to do this).

$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & 3 \\ 3 & 3 & 1 \end{bmatrix}$ Find the inverse of P (we know how $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ to do this). $P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

Putting it Together

baris

How to: Diagonalizing a Matrix

Question. Find a diagonalization of $A \in \mathbb{R}^n$, or determine that A is not diagonalizable.

Solution.

- in the same order.
- 4. Invert P.
- 5. The diagonalization of A is PDP^{-1} .

1. Find the eigenvalues of A, and bases for their eigenspaces. If these eigenvectors don't form a basis of \mathbb{R}^n , then A is **not diagonalizable**.

2. Otherwise, build a matrix P whose columns are the eigenvectors of A.

3. Then build a diagonal matrix D whose entries are the eigenvalues of A

We know how to do every step, its a matter of putting it all together.

$A = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$ **Example of Failure: Shearing**

- The shearing matrix has a single eigenvalue with an eigenspace of dimension 1.
- We can't build an eigenbasis of \mathbb{R}^2 for A.
- In other words, A is not diagonalizable.

eigenvalues, then it is diagonalizable.

This is because eigenvectors with distinct eigenvalues are linearly independent.

- **Theorem.** If an $n \times n$ matrix has has n distinct

The Picture

Example (Geometric)

Example (Geometric)

$\sim P^{-1}$			

$A = PDP^{-1}$ $\begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}^{-1}$

				-
_		_	_	_
				_
			_	_
				_
		I		
		I		
	-	ł	-	-