Diagonalization

Geometric Algorithms
Lecture 19

Introduction

Recap Problem
Hint. $\operatorname{dim}(\operatorname{Nu}(B))$

$$
A=\left[\begin{array}{ccc}
-1 & h & 2 \\
0 & 2 & 2 \\
0 & 0 & -1
\end{array}\right] \begin{array}{r}
=(\text { \#non pivots of } B) \\
=3-\left(\begin{array}{l}
\text { \# pivots of } \\
\\
(\text { by }
\end{array}\right)
\end{array}
$$

For what values of h is $\operatorname{dim}(H)=2$, where H is the eigenspace of A for the eigenvalue -1 ?

Hint, eigenspare of A for -1 is $\operatorname{Nul}(A-(-1) I)$

Answer: $h=3$

$$
\begin{aligned}
& \text { Answer: } h=3 \\
& \operatorname{dim}(N v)(A-(-1) \Sigma))=2=\# \text { nor } \text { - pinot column. } \\
& A+I=\left[\begin{array}{ccc}
-\cdots & h & 2 \\
0 & 2+1 & 2 \\
0 & 0 & -1+1
\end{array}\right]=\left[\begin{array}{ccc}
0 & h & 2 \\
0 & 3 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
0 & 3 & 2 \\
0 & 3 & 2 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & 1 & 2 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad h=3}
\end{aligned}
$$

Objectives

1. Finish our discussion on the characteristic polynomial.
2. Motivate diagonalization via linear dynamical systems and changes of coordinate systems.
3. Describe how to diagonalize a matrix.

Keywords

multiplicity
similar matrices
diagonalizable matrices
change of basis
eigenbasis

Recap

Recall: Determinants and Invertibility

Recall: Determinants and Invertibility

$\operatorname{det}(A)$ is an value associate with the matrix A.

Recall: Determinants and Invertibility

$\operatorname{det}(A)$ is an value associate with the matrix A.
Theorem. A matrix is invertible if and only if $\operatorname{det}(A) \neq 0$.

Recall: Determinants and Invertibility

$\operatorname{det}(A)$ is an value associate with the matrix A.
Theorem. A matrix is invertible if and only if $\operatorname{det}(A) \neq 0$.

So by the Invertible Matrix Theorem:

Recall: Determinants and Invertibility

$\operatorname{det}(A)$ is an value associate with the matrix A. Theorem. A matrix is invertible if and only if $\operatorname{det}(A) \neq 0$.

So by the Invertible Matrix Theorem:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=0 & \equiv \quad(A-\lambda I) \mathbf{x}=\mathbf{0} \text { has nontrivial solutions } \\
& \equiv \quad \lambda \text { is an eigenvalue of } A
\end{aligned}
$$

Recall: Determinants and Invertibility

$\operatorname{det}(A)$ is an value associate with the matrix A. Theorem. A matrix is invertible if and only if $\operatorname{det}(A) \neq 0$.

So by the Invertible Matrix Theorem:
$\operatorname{det}(A-\lambda I)=0 \quad \equiv \quad(A-\lambda I) \mathbf{x}=\mathbf{0}$ has nontrivial solutions
polynomial in λ

$$
\equiv \quad \lambda \text { is an eigenvalue of } A
$$

How To: Finding Eigenvalues

How To: Finding Eigenvalues

Question. Determine the eigenvalues of A.

How To: Finding Eigenvalues

Question. Determine the eigenvalues of A.
Solution. Find the roots of the characteristic polynomial of A, which is

$$
\operatorname{det}(A-\lambda I)
$$

viewed as a polynomial in λ.

How To: Finding Eigenvalues

Question. Determine the eigenvalues of A.
Solution. Find the roots of the characteristic polynomial of A, which is

$$
\operatorname{det}(A-\lambda I)
$$

viewed as a polynomial in λ.
In Reality. We'll use
numpy.linalg.eig(A)

Example

$$
A=\left[\begin{array}{ll}
1 & -1 \\
7 & -3
\end{array}\right]
$$

$$
\begin{gathered}
a d-b l \\
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & -1 \\
7 & \text { polyromial } \\
(\lambda-1)(\lambda+3)+7 & =\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}
\end{array}\right.
\end{gathered}
$$

The only eigenvalues of A is 2.

Last Remarks on the Characteristic Polynomial

Example: Triangular matrix

$$
\left[\begin{array}{cccc}
1 & -3 & 0 & 6 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

The characteristic polynomial of a triangular matrix comes pre-factored:

$$
\begin{aligned}
& (1-\lambda)(-\lambda)(1-\lambda)(4-\lambda)= \\
& -\lambda(1-\lambda)^{2}(4-\lambda)=\left[\lambda(\lambda-1)^{2}(\lambda-4)\right. \\
& \lambda=0,1,4 \text { are eigenvalues. }
\end{aligned}
$$

An Observation: Multiplicity

$$
\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1} \text { multiplicities }
$$

An Observation: Multiplicity

$$
\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1 \text { multiplicities }}
$$

In the examples so far, we've seen a number appear as a root multiple times.

An Observation: Multiplicity

$$
\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1} \text { multiplicities }
$$

In the examples so far, we've seen a number appear as a root multiple times.

This is called the (algebraic) multiplicity of the root.

An Observation: Multiplicity

$$
\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1} \text { multiplicities }
$$

In the examples so far, we've seen a number appear as a root multiple times.

This is called the (algebraic) multiplicity of the root.

Is the multiplicity meaningful in this context?

Multiplicity and Dimension

Theorem. The dimension of the eigenspace of A for the eigenvalue λ is at most the multiplicity of λ in $\operatorname{det}(A-\lambda I)$ (and at least 1).

The multiplicity is an upper bound on "how large" the eigenspace is.

Example

Let A be a 5×5 matrix with characteristic polynomial $(x-1)^{3}(x-3)(x+5)$.
» What is $\operatorname{rank}(A) ?^{5} \operatorname{dim}\left(N_{u}(A)\right)=\operatorname{dim}\left(N_{\sim} \mid(A-O I)\right)$
»What is the minimum possible rank of $A-I$?

Motivating Diagonalization via Linear Dynamical Systems

Recall: Eigenbasis

Recall: Eigenbasis

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A.

Recall: Eigenbasis

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A. We will be almost exclusively interested of eigenbases of \mathbb{R}^{n} when $A \in \mathbb{R}^{n \times n}$.

Recall: Eigenbasis

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A. We will be almost exclusively interested of eigenbases of \mathbb{R}^{n} when $A \in \mathbb{R}^{n \times n}$.

The Question. When can we describe any vector in \mathbb{R}^{n} as a unique linear combination of eigenvectors of A ?

Recall: Linear Dynamical Systems

$$
\left.\begin{array}{rl}
\mathbf{v}_{1} & =A \mathbf{v}_{0} \\
\mathbf{v}_{2} & =A \mathbf{v}_{1}=A^{2} \mathbf{v}_{0} \\
\mathbf{v}_{3} & =A \mathbf{v}_{2}=A^{3} \mathbf{v}_{0} \\
\mathbf{v}_{4} & =A \mathbf{v}_{3}=A^{4} \mathbf{v}_{0} \\
& \vdots
\end{array}\right\} \text { retors afte time }+
$$

A linear dynamical system describes a sequence of state vectors starting at \mathbf{v}_{0}.

Recall: Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{v}_{1}=A \mathbf{v}_{0} \\
& \mathbf{v}_{2}=A \mathbf{v}_{1}=A^{2} \mathbf{v}_{0} \\
& \mathbf{v}_{3}=A \mathbf{v}_{2}=A^{3} \mathbf{v}_{0} \\
& \mathbf{v}_{4}=A \mathbf{v}_{3}=A^{4} \mathbf{v}_{0}
\end{aligned}
$$

multiplying by
A changes the state.

A linear dynamical system describes a sequence of state vectors starting at \mathbf{v}_{0}.

demo

Eigenbases and Closed-Form solutions

Eigenbases and Closed-Form solutions

Given $\mathbf{v}_{k}=A \mathbf{v}_{k-1}=A^{k} \mathbf{v}_{0}$, if

$$
\mathbf{v}_{0}=\alpha_{1} \mathbf{b}_{1}+\alpha_{2} \mathbf{b}_{2}+\alpha_{3} \mathbf{b}_{3}
$$

Eigenbases and Closed-Form solutions

$$
\begin{aligned}
& \text { Given } \mathbf{v}_{k}=A \mathbf{v}_{k-1}=A^{k} \mathbf{v}_{0} \text {, if } \\
& \qquad \mathbf{v}_{0}=\alpha_{1} \mathbf{b}_{1}+\alpha_{2} \mathbf{b}_{2}+\alpha_{3} \mathbf{b}_{3}
\end{aligned}
$$

Eigenbases and Closed-Form solutions

$$
\begin{aligned}
& \text { Given } \mathbf{v}_{k}=A \mathbf{v}_{k-1}=A^{k} \mathbf{v}_{0} \text {, if } \\
& \qquad \mathbf{v}_{0}=\alpha_{1} \mathbf{b}_{1}+\alpha_{2} \mathbf{b}_{2}+\alpha_{3} \mathbf{b}_{3}
\end{aligned}
$$

then

$$
A^{k} \mathbf{v}_{0}=\alpha_{1} \lambda_{1}^{k} \mathbf{b}_{1}+\alpha_{2} \lambda_{2}^{k} \mathbf{b}_{2}+\alpha_{3} \lambda_{3}^{k} \mathbf{b}_{3}
$$

Eigenbases and Closed-Form solutions

$$
\begin{aligned}
& \text { Given } \mathbf{v}_{k}=A \mathbf{v}_{k-1}=A^{k} \mathbf{v}_{0} \text {, if } \\
& \qquad \mathbf{v}_{0}=\alpha_{1} \mathbf{b}_{1}+\alpha_{2} \mathbf{b}_{2}+\alpha_{3} \mathbf{b}_{3}
\end{aligned}
$$

then

$$
A^{k} \mathbf{v}_{0}=\alpha_{1} \lambda_{1}^{k} \mathbf{b}_{1}+\alpha_{2} \lambda_{2}^{k} \mathbf{b}_{2}+\alpha_{3} \lambda_{3}^{k} \mathbf{b}_{3}
$$

Eigenbases and Closed-Form solutions

Given $\mathbf{v}_{k}=A \mathbf{v}_{k-1}=A^{k} \mathbf{v}_{0}$, if
eigenvectors of A

$$
\mathbf{v}_{0}=\alpha_{1} \mathbf{b}_{1}+\alpha_{2} \mathbf{b}_{2}+\alpha_{3} \mathbf{b}_{3}
$$

then

$$
A^{k} \mathbf{v}_{0}=\alpha_{1} \lambda_{1}^{k} \mathbf{b}_{1}+\alpha_{2} \lambda_{2}^{k} \mathbf{b}_{2}+\alpha_{3} \lambda_{3}^{k} \mathbf{b}_{3}
$$

Verify:

$$
\begin{aligned}
A^{k}\left(\alpha_{1} \vec{b}_{1}+\alpha_{2} \vec{b}_{2}\right) & =\alpha_{1} A^{k} \vec{b}_{1}+\alpha_{2} A^{k} \vec{b}_{2} \\
& =\alpha_{1} \lambda_{1}^{k} \vec{b}_{1}+\alpha_{2} \lambda_{2}^{k} \vec{b}_{2}
\end{aligned}
$$

Application: Eigenbases and Limiting Behavior

Theorem. If A has an eigenbasis with eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{k}
$$

then $\mathbf{v}_{k} \sim \lambda_{1}^{k} \mathbf{u}$ for some vector \mathbf{u}.
In the long term, the system grows exponentially in λ_{4}. Verify:

Application: Eigenbases and Limiting Behavior

Theorem. If A has an eigenbasis with eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{k}
$$

then $\mathbf{v}_{k} \sim \lambda_{1}^{k} \mathbf{u}$ for some vector \mathbf{u}.

$$
\lambda_{2}<\lambda_{1}
$$

In the long term, the system grows exponentially in λ_{4}.
Verify:

$$
v_{k}=\frac{\alpha\left(\lambda / 1 b_{1}^{1}\right.}{\left.\lambda_{1}^{k}\right)}+\frac{\alpha_{2}\left(\lambda_{2}^{k} b_{2}\right.}{k_{1}^{k}}
$$

ε^{k}
$0<\varepsilon<1$

The Takeaway

The Takeaway

Given a basis \mathscr{B} for \mathbb{R}^{n}, we only need to know how $A \in \mathbb{R}^{n}$ behaves on \mathscr{B}.

The Takeaway

Given a basis \mathscr{B} for \mathbb{R}^{n}, we only need to know how $A \in \mathbb{R}^{n}$ behaves on \mathscr{B}.

Sometimes, A behaves simply on \mathscr{B}, as in the case of eigenbases.

The Takeaway

Given a basis \mathscr{B} for \mathbb{R}^{n}, we only need to know how $A \in \mathbb{R}^{n}$ behaves on \mathscr{B}.

Sometimes, A behaves simply on \mathscr{B}, as in the case of eigenbases.

What we're really doing is changing our coordinate system to expose a behavior of A.

Recap: Change of Basis

Recall: Bases define Coordinate Systems

FIGURE 1 Standard graph paper.

FIGURE $2 \mathcal{B}$-graph paper.

Recall: Bases define Coordinate Systems

FIGURE 1 Standard graph paper.

FIGURE $2 \mathcal{B}$-graph paper.

Given a basis \mathscr{B} of \mathbb{R}^{n}, there is exactly one way to write every vector as a linear combination of vectors in \mathscr{B}.

Recall: Bases define Coordinate Systems

FIGURE 1 Standard graph paper.

FIGURE $2 \mathcal{B}$-graph paper.

Given a basis \mathscr{B} of \mathbb{R}^{n}, there is exactly one way to write every vector as a linear combination of vectors in \mathscr{B}.

Every basis provides a way to write down coordinates of a vector.

Recall: Bases define Coordinate Systems

FIGURE 1 Standard graph paper.

FIGURE $2 \mathcal{B}$-graph paper.

Given a basis \mathscr{B} of \mathbb{R}^{n}, there is exactly one way to write every vector as a linear combination of vectors in \mathscr{B}.

Every basis provides a way to write down coordinates of a vector.
\mathscr{B} defines a "different grid for our graph paper"

Recall: How to think about this

Changing the coordinate system "warps space".

The Question. how do we represent a vector \mathbf{v} in the warped space if we wanted it to "be in the same place"?

Recall: Coordinate Vectors

Recall: Coordinate Vectors

Let \mathbf{v} be a vector in $a \mathbb{R}^{n}$ and let $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of \mathbb{R}^{n} where

$$
\mathbf{v}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\ldots+a_{n} \mathbf{b}_{n} \text { unigue lin. comb. }
$$

Recall: Coordinate Vectors

Let \mathbf{v} be a vector in $a \mathbb{R}^{n}$ and let $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of \mathbb{R}^{n} where

$$
\mathbf{v}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\ldots+a_{n} \mathbf{b}_{n}
$$

Definition. The coordinate vector of \mathbf{v} relative to \mathscr{B} is

Recall: Coordinate Vectors

Let \mathbf{v} be a vector in a \mathbb{R}^{n} and let $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of \mathbb{R}^{n} where

$$
\mathbf{v}=a_{2}\left(\mathbf{b}_{1}\right)+a_{2}\left(\mathbf{b}_{2}\right)+\ldots+a_{n}\left(\mathbf{b}_{n}\right)
$$

Definition. The coordinate vector of \mathbf{v} relative to \mathscr{B} is

$$
[\mathbf{v}]_{\mathscr{B}}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Recall: Coordinate Vectors

FIGURE 1 Standard graph paper.

FIGURE $2 \mathcal{B}$-graph paper.

Question (Conceptual)

Hint:

$$
\left[\vec{b}_{1}, \vec{b}_{2}, \ldots \vec{b}_{n}\right]
$$

$$
\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=c_{1} \vec{b}_{1}+\ldots c_{n} \vec{b}_{n}
$$

We know that if a $n \times n$ matrix $B=\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{n}\end{array}\right]$ is invertible, then the columns of B form a basis \mathscr{B} of \mathbb{R}^{n}.

What is the matrix that implements the transformation

$$
\mathbf{x} \mapsto[\mathbf{x}]_{\mathscr{B}}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \quad B^{-1}
$$

where $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+\ldots+c_{n} \mathbf{b}_{n}$?

Change of Basis Matrix

Theorem. If $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ form a basis of \mathbb{R}^{n}, then

$$
[\mathbf{x}]_{\mathscr{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{n}
\end{array}\right]^{-1} \mathbf{x}
$$

Matrix inverses perform changes of bases.

How To: Change of Basis

Question. Given a basis $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ of \mathbb{R}^{n}, find the matrix which implements $\mathbf{x} \mapsto[\mathbf{x}]_{\mathscr{G}}$. Solution. Construct the matrix $\left[\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{n}\right]^{-1}$.

Diagonalization

Diagonal Matrices

$$
\text { ex. }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -0.4 & 0 & 0 \\
0 & 0 & 22 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Diagonal Matrices

$$
\text { ex. }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -0.4 & 0 & 0 \\
0 & 0 & 22 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Definition. A $n \times n$ matrix A is diagonal if $i \neq j$ if and only if $A_{i j}=0$.

Diagonal Matrices

ex. $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -0.4 & 0 & 0 \\ 0 & 0 & 22 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Definition. A $n \times n$ matrix A is diagonal if $i \neq j$ if and only if $A_{i j}=0$.

Only the diagonal entries can be nonzero.

Diagonal Matrices

$$
\text { ex. }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -0.4 & 0 & 0 \\
0 & 0 & 22 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Definition. A $n \times n$ matrix A is diagonal if $i \neq j$ if and only if $A_{i j}=0$.

Only the diagonal entries can be nonzero. Diagonal matrices are scaling matrices.

Recall: Unequal Scaling

The scaling matrix affects each component of a vector in a simple way.

The diagonal entries scale each corresponding entry.

$$
\left[\begin{array}{cc}
1.5 & 0 \\
0 & 0.7
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1.5 x \\
0.7 y
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1.5 & 0 \\
0 & 0.7
\end{array}\right]
$$

High level question:

When do matrices "behave" like scaling matrices "up to" change of basis?

Scaling and Eigenvectors

Scaling and Eigenvectors

The idea. Matrices behave like scaling matrices on eigenvectors.

Scaling and Eigenvectors

The idea. Matrices behave like scaling matrices on eigenvectors.

$$
\begin{aligned}
{\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}\right)=x 2 \mathbf{e}_{1}+y(-3) \mathbf{e}_{2} \\
A\left[\begin{array}{l}
x \\
y
\end{array}\right]_{\mathscr{B}} & =A\left(x \mathbf{b}_{1}+y \mathbf{b}_{2}\right)=x \lambda_{1} \mathbf{b}_{1}+y \lambda_{2} \mathbf{b}_{2}
\end{aligned}
$$

Scaling and Eigenvectors

The idea. Matrices behave like scaling matrices on eigenvectors.

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} & =\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}\right)=x 2 \mathbf{e}_{1}+y(-3) \mathbf{e}_{2} \\
A\left[\begin{array}{l}
x \\
y
\end{array}\right]_{\mathscr{B}} & =A\left(x \mathbf{b}_{1}+y \mathbf{b}_{2}\right)=x \lambda_{1} \mathbf{b}_{1}+y \lambda_{2} \mathbf{b}_{2}
\end{array}\right]
$$

The fundamental question: Can we expose this behavior in terms of a matrix factorization?

Recall: Matrix Factorization

Recall: Matrix Factorization

A factorization of a matrix A is an equation which expresses A as a product of one or more matrices, e.g.,

$$
A=P B P^{-1}
$$

Recall: Matrix Factorization

A factorization of a matrix A is an equation which expresses A as a product of one or more matrices, e.g.,

$$
A=P B P^{-1}
$$

Factorizations can:
» make working with A easier
» expose important information about A

Similar Matrices

$$
A=P B \widehat{P^{-1}}
$$

Definition. A matrix A is similar to a matrix B if there is some invertible matrix P such that $A=P B P^{-1}$.
A and B are the same up to a change of basis.

Similar Matrices and Eigenvalues

Theorem. Similar matrices have the same eigenvalues.

$$
\text { Verify: } \begin{aligned}
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left(P B P^{-1}-\lambda I\right) \\
&=\operatorname{det}\left(P B P^{-1}-P(\lambda I) P^{-1}\right) \\
&=\operatorname{det}\left(P(B-\lambda I) P^{-1}\right) \\
&=\operatorname{det}(P) \operatorname{det}(B-\lambda I) \operatorname{det}(P-2) \quad=\operatorname{det}(B-\lambda I)
\end{aligned}
$$

Diagonalizable Matrices

Diagonalizable Matrices

Definition. A matrix A is diagonalizable if it is similar to a diagonal matrix.

Diagonalizable Matrices

Definition. A matrix A is diagonalizable if it is similar to a diagonal matrix.

There is an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.

Diagonalizable Matrices

Definition. A matrix A is diagonalizable if it is similar to a diagonal matrix.

There is an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.

Diagonalizable matrices are the same as scaling matrices up to a change of basis.

Important: Not all Matrices are Diagonalizable

This is very different from the LU factorization.
We will need to figure out which matrices are diagonalizable.

Question. Is the zero matrix diagonalizable? Yesis diagonal

Application: Matrix Powers
only take the power of B
Theorem. If $A=P B P^{-1}$, then $A^{k}=P B^{k} P^{-1}$.
It may be easier to take the power of B (as in the case of diagonal matrices).
Verify:

$$
\begin{aligned}
A A A= & \left(P B P^{-1}\right)\left(\phi B Q^{-1}\right)\left(\rho B P^{-1}\right) \\
& P B^{3} P^{-1}
\end{aligned}
$$

How To: Matrix Powers

Question. Given A is diagonalizable, determine A^{k}. Solution. Find it's diagonalization $P D P^{-1}$ and then compute $P D^{k} P^{-1}$.

Remember that

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]^{k}=\left[\begin{array}{ccc}
a^{k} & 0 & 0 \\
0 & b^{k} & 0 \\
0 & 0 & c^{k}
\end{array}\right]
$$

But how do we find the diagonalization...

Diagonalization and Eigenvectors

Suppose we have a diagonalization

$$
A=P D P^{-1}
$$

What do we know about it?

Columns of P are eigenvectors

$$
\begin{aligned}
& A= {\left[\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}\right]^{-1} } \\
&\left.\begin{array}{rl}
A \vec{p}_{2} & =P Q\left(\left[\vec{p}, \vec{p}_{1} \vec{p}_{3}\right]^{-1} \vec{p}_{2}\right.
\end{array}\right] \\
&=P O \vec{e}_{2} \\
&=P \lambda_{2} \vec{e}_{2}=\lambda_{2} P \vec{e}_{2}=\lambda_{2} \vec{p}_{2}
\end{aligned}
$$

Columns of P are eigenvectors

$$
A=\left[\begin{array}{lll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{1}
\end{array} \mathbf{p}_{2} \mathbf{p}_{3}\right]^{-1}
$$

Columns of P are eigenvectors

$$
A=\left[\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}\right]^{-1}
$$

In fact, the columns of P form an eigenbasis of \mathbb{R}^{n} for A.

Columns of P are eigenvectors

$$
A=\left[\begin{array}{lll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}\right]^{-1}
$$

In fact, the columns of P form an eigenbasis of \mathbb{R}^{n} for A.

And the entries of D are the eigenvalues associated to each eigenvector.

Columns of P are eigenvectors

$$
A=\left[\begin{array}{l}
\text { eigenbasis } \\
\mathbf{p}_{1}
\end{array} \mathbf{p}_{2} \mathbf{p}_{3}\right]\left[\begin{array}{ccc}
\text { eigenvalues } \\
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}\right]^{-1}
$$

In fact, the columns of P form an eigenbasis of \mathbb{R}^{n} for A.

And the entries of D are the eigenvalues associated to each eigenvector.

A diagonalization exposes a lot of information about A.

The Diagonalization Theorem

The Diagonalization Theorem

Theorem. A matrix is diagonalizable if and only if it has an eigenbasis.

The Diagonalization Theorem

Theorem. A matrix is diagonalizable if and only if it has an eigenbasis.
(we just did the hard part, if a matrix is diagonalizable then it has an eigenbasis)

The Diagonalization Theorem

Theorem. A matrix is diagonalizable if and only if it has an eigenbasis.
(we just did the hard part, if a matrix is diagonalizable then it has an eigenbasis)

We can use the same recipe to go in the other direction, given an eigenbasis, we can build a diagonalization.

Diagonalizing a Matrix

High Level

$$
A=P D P^{-1}
$$

High Level

$$
A=P D P^{-1}
$$

The columns of P form an eigenbasis for A.

High Level

$$
A=P D P^{-1}
$$

The columns of P form an eigenbasis for A.
The diagonal of D are the eigenvalues for each column of P.

High Level

$$
A=P D P^{-1}
$$

The columns of P form an eigenbasis for A.
The diagonal of D are the eigenvalues for each column of P.

The matrix P^{-1} is a change of basis to this eigenbasis of A.

Step 1: Eigenvalues

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & 3 \\
3 & 3 & 1
\end{array}\right]
$$

Find all the eigenvalues of A.
Find the roots of $\operatorname{det}(A-\lambda I)$.
e.g.

$$
\operatorname{det}(A-\lambda I)=-(\lambda-1)(\lambda+2)^{2}
$$

Step 2: Eigenvectors

$$
A=\begin{gathered}
{\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & 3 \\
3 & 3 & 1
\end{array}\right]} \\
\lambda_{1}=1
\end{gathered}
$$

Find bases of the corresponding eigenspaces. $\lambda_{2}=-2$
e.g.

$$
\begin{gathered}
\operatorname{Nul}(A-I)=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\} \\
\operatorname{Nul}(A+2 I)=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

Step 3: Construct P

$$
A=\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & 3 \\
3 & 3 & 1
\end{array}\right]} \\
\lambda_{1}=1
\end{array}
$$

If there are n eigenvectors from the previous step they form an eigenbasis.

Build the matrix with these vectors as the columns

$$
\operatorname{Nul}(A+2 I)=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

e.g.

$$
P=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Step 5: Construct D

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & 3 \\
3 & 3 & 1
\end{array}\right] \\
\lambda_{1}=1 \\
\lambda_{2}=-2 \\
P=\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]} \\
\lambda_{1} & \lambda_{2}
\end{array}\right.
\end{gathered}
$$

Build the matrix with eigenvalues as diagonal entries.

Note the order. It should be the same as the order of columns of P. e.g.

Step 6: Invert P

Find the inverse of P (we know how

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & 3 \\
3 & 3 & 1
\end{array}\right] \\
D & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right] \\
P & =\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
\end{aligned}
$$ to do this).

Putting it Together

How to: Diagonalizing a Matrix

Question. Find a diagonalization of $A \in \mathbb{R}^{n}$, or determine that A is not diagonalizable.

Solution.

1. Find the eigenvalues of A, and bases for their eigenspaces. If these eigenvectors don't form a basis of \mathbb{R}^{n}, then A is not diagonalizable.
2. Otherwise, build a matrix P whose columns are the eigenvectors of A.
3. Then build a diagonal matrix D whose entries are the eigenvalues of A in the same order.
4. Invert P.
5. The diagonalization of A is $P D P^{-1}$.

We know how to do every step, its a matter of putting it all together.

Example of Failure: Shearing
 $A=\left[\begin{array}{cc}1 & 0.5 \\ 0 & 1\end{array}\right]$

The shearing matrix has a single eigenvalue with an eigenspace of dimension 1. We can't build an eigenbasis of \mathbb{R}^{2} for A.

In other words, A is not diagonalizable.

Important case: Distinct Eigenvalues ${ }^{\text {ex. }}\left[\begin{array}{cccc}1 & -3 & 4 & 2 \\ 0 & -2 & 3 & -1 \\ 0 & 0 & 10 & 5 \\ 0 & 0 & 0 & 6\end{array}\right]$
Theorem. If an $n \times n$ matrix has has n distinct eigenvalues, then it is diagonalizable.

This is because eigenvectors with distinct eigenvalues are linearly independent.

The Picture

Example (Geometric)

$A=\left[\begin{array}{cc}2 & 0 \\ -1 & 1\end{array}\right]$

Example (Geometric)

$$
P^{-1}=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]^{-1}
$$

Example (Geometric)

$D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$

Example (Geometric)

$$
P=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]
$$

Example (Geometric)

$$
\begin{gathered}
A=P D P^{-1} \\
{\left[\begin{array}{cc}
2 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]^{-1}}
\end{gathered}
$$

