
CAS CS 132

PageRank
Geometric Algorithms
Lecture 20

Introduction

Recap Problem

Determine if the above matrix is diagonalizable.

4 3 −1 2 0
0 2 −3 5 1
0 0 1 3 −10
0 0 0 −7 3
0 0 0 0 1

Answer: Yes
4 3 −1 2 0
0 2 −3 5 1
0 0 1 3 −10
0 0 0 −7 3
0 0 0 0 1

Objectives

1. Recall Graphs and Random Walks

2. Connect Random Walks with Markov Chains with
Eigenvectors.

3. Discuss PageRank from the perspective of
Markov Chains.

4. Learn about the power method as a way to
approximate

Keywords
Random Surfer Model

Graphs

Directed vs. Undirected

Weighted vs. Unweighted

Degree

Adjacency Matrices

Spectral/Algebraic Graph Theory

Random Walk

Transition Matrix

Stochastic Matrix

Regular Matrices

Markov Chains

Steady-state vectors

PageRank

Absorbing vs. Reflecting Boundaries

Damping Factor

Power Method

Some "History"

The Web

The World Wide Web is introduced
in the 1990s, invented by Tim
Berners-Lee.

It has obviously grown in
popularity...

At a high level, it is a
collection of media (websites)
connected by directed
hyperlinks.

https://inst.eecs.berkeley.edu/~cs61bl/r//cur/graphs/world-wide-web.html?topic=lab24.topic&step=6&course=
https://commons.wikimedia.org/wiki/File:WWW-LetShare.svg

The Web

The World Wide Web is introduced
in the 1990s, invented by Tim
Berners-Lee.

It has obviously grown in
popularity...

At a high level, it is a
collection of media (websites)
connected by directed
hyperlinks.

Nodes

Edges
https://inst.eecs.berkeley.edu/~cs61bl/r//cur/graphs/world-wide-web.html?topic=lab24.topic&step=6&course=

https://commons.wikimedia.org/wiki/File:WWW-LetShare.svg

Google

Created by Larry Page and
Sergey Brin in 1996 when they
were PhD students at Stanford.

Their idea was to build a
search engine, based on an
algorithm they called
PageRank.

Search Engines

Search Engines

Step 1. Given a search term, find a collection
of websites using that term.

Search Engines

Step 1. Given a search term, find a collection
of websites using that term.

Step 2. Given a collection of websites based on
search term, compute a ranking of them by
importance (the most important websites should
be presented first).

Search Engines

Step 1. Given a search term, find a collection
of websites using that term.

Step 2. Given a collection of websites based on
search term, compute a ranking of them by
importance (the most important websites should
be presented first).

How do we know which websites are important?

Ranking Websites

https://www.cs.cornell.edu/~kt/post/site-graph/

Ranking Websites

Idea 1. (Term frequency) If
your search term is used many
times on a page, it is likely
an important page for that
term.

https://www.cs.cornell.edu/~kt/post/site-graph/

Ranking Websites

Idea 1. (Term frequency) If
your search term is used many
times on a page, it is likely
an important page for that
term.

Idea 2. (Linking Structure) If
is a site is linked a bunch of
times, it is an important page

https://www.cs.cornell.edu/~kt/post/site-graph/

The Random Surfer Model

The anatomy of a large-scale hypertextual Web search engine (1998)

This is really just a random walk on
a directed graph

(which is really just a Markov Chain)

Graphs

Recall: Graphs

Definition (Informal). A graph is a collection
of nodes with edges between them.

https://commons.wikimedia.org/wiki/File:6n-graf.svg

Directed vs. Undirected Graphs

A graph is directed if its edges have a
direction.

undirected directed

A A

B

Weighted vs Unweighted graphs

A graph is weighted if its edges have
associated values.

weightedunweighted
https://commons.wikimedia.org/wiki/File:Weighted_network.svg

Weighted vs Unweighted graphs

A graph is weighted if its edges have
associated values.

weightedunweighted

edge weights

https://commons.wikimedia.org/wiki/File:Weighted_network.svg

Four Kinds of Graphs

nodes are traffic lights

edges are streets

weights are number of lanes

nodes are musicians

edges are collaborations

weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land

edges are pedestrian bridges

directed undirected

weighted

unweighted

Four Kinds of Graphs

nodes are traffic lights

edges are streets

weights are number of lanes

nodes are musicians

edges are collaborations

weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land

edges are pedestrian bridges

directed undirected

weighted

unweighted
The Web

Four Kinds of Graphs

nodes are traffic lights

edges are streets

weights are number of lanes

nodes are musicians

edges are collaborations

weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land

edges are pedestrian bridges

directed undirected

weighted

unweighted

Markov Chains

The Web

Recall: Adjacency Matrices
Let be an directed graph
with its nodes labeled by
numbers through .

We can create the adjacency
matrix for as follows.

G

1 n

A G

0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

Aij = {1 there is an edge from j and i
0 otherwise

A21

A46

A13

Recall: Adjacency Matrices
Let be an directed graph
with its nodes labeled by
numbers through .

We can create the adjacency
matrix for as follows.

G

1 n

A G

0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

Aij = {1 there is an edge from j and i
0 otherwise

A21

A46

A13

represents edges out of 1

Once we have an adjacency
matrix, we can do linear

algebra on graphs.

Spectral/Algebraic Graph Theory

Connecting Back to PageRank

https://www.researchgate.net/figure/This-visualization-represents-the-network-of-web-pages-connected-to-vosonanueduau_fig4_262172827

Connecting Back to PageRank

The Web is a massive directed
graph.

https://www.researchgate.net/figure/This-visualization-represents-the-network-of-web-pages-connected-to-vosonanueduau_fig4_262172827

Connecting Back to PageRank

The Web is a massive directed
graph.

We will represent the surfer as
a random process which explores
this graph.

https://www.researchgate.net/figure/This-visualization-represents-the-network-of-web-pages-connected-to-vosonanueduau_fig4_262172827

Connecting Back to PageRank

The Web is a massive directed
graph.

We will represent the surfer as
a random process which explores
this graph.

Which connects us back to
Markov chains...

https://www.researchgate.net/figure/This-visualization-represents-the-network-of-web-pages-connected-to-vosonanueduau_fig4_262172827

Connecting Back to PageRank

The Web is a massive directed
graph.

We will represent the surfer as
a random process which explores
this graph.

Which connects us back to
Markov chains...

which connects us back to
eigenvectors...

https://www.researchgate.net/figure/This-visualization-represents-the-network-of-web-pages-connected-to-vosonanueduau_fig4_262172827

Random Walks

Visualization (In Undirected Case)

https://mathematica.stackexchange.com/questions/156626/generate-random-walk-on-a-graph
https://gist.github.com/clairemcwhite/7fb348acca2c84c464d751ba38ce72e1

Visualization (In Undirected Case)

https://mathematica.stackexchange.com/questions/156626/generate-random-walk-on-a-graph
https://gist.github.com/clairemcwhite/7fb348acca2c84c464d751ba38ce72e1

Visualization (In Undirected Case)

https://mathematica.stackexchange.com/questions/156626/generate-random-walk-on-a-graph
https://gist.github.com/clairemcwhite/7fb348acca2c84c464d751ba38ce72e1

Terminology: Degree

Let be an unweighted directed
graph and let be one of its
nodes.

The in-degree of is the number
of edges whose right endpoint is
 (that go into)

The out-degree of is the number
of edges whose left endpoint is
(that exit out of).

G
v

v

v v

v
v

v

out: 2
in:2

The Procedure

The Procedure

Definition. A random walk on an unweighted
directed graph with nodes starting at
is the following process:

G {1,...,n} v

The Procedure

Definition. A random walk on an unweighted
directed graph with nodes starting at
is the following process:

G {1,...,n} v

» if has out-degree , roll a -sided die
» if you rolled an , go to the th largest node
» repeat

v k k
i i

Warm-Up Example: Gamblers Ruin

0 1 2 3 4 5 6 7 8 9 10

Warm-Up Example: Gamblers Ruin

A single player game:

0 1 2 3 4 5 6 7 8 9 10

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

0 1 2 3 4 5 6 7 8 9 10

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

0 1 2 3 4 5 6 7 8 9 10

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Warm-Up Example: Gamblers Ruin

A single player game:

 » The player starts with 5 points.
 » They flips a coin.

 » If its head they get 1 point.
 » If its tails they lose 1 point.

 » They win if they get to 10 points.
 » They lose if they get to 0 points.

0 1 2 3 4 5 6 7 8 9 10

We can think of
this as a random

walk on the
above graph

Normalization and Transition Matrices

Normalization is the process of preprocessing
an adjacency matrix so that (almost) every
column sums to 1.

0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

↦

0 0 1/3 0 0 0
1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

Adjacency Matrix Transition Matrix

Normalization and Transition Matrices

Normalization is the process of preprocessing
an adjacency matrix so that (almost) every
column sums to 1.

0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

↦

0 0 1/3 0 0 0
1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

Adjacency Matrix Transition Matrix

𝖯𝗋(going from 3 → 2)

Recall: Stochastic Matrices

Definition. A matrix is stochastic if its
entries are nonnegative and its columns sum to
1.

Example.

n × n

[
0.7 0.1 0.3
0.2 0.8 0.3
0.1 0.1 0.4]

Recall: Markov Chains

Definition. A Markov chain is a linear
dynamical system whose evolution function is
given by a stochastic matrix.

(We can construct a "chain" of state vectors,
where each state vector only depends on the one
before it.)

So we can consider the Markov Chain
associated with a random walk

We did this in Homework 6
def random_step(a, i):
 rng = np.random.default_rng()
 return rng.choice(a.shape[0], p=a[:, i])

def adjacency_to_stochastic(a):
 for i in range(a.shape[0]):
 div = np.sum(a[:,i])
 if div != 0:
 a[:,i] /= div

def random_walk(a, i, length):
 walk = []
 next_index = i
 for _ in range(length):
 next_index = random_step(a, next_index)
 walk.append(next_index)

Recall: Steady-State Vectors

Definition. A steady-state vector for a
stochastic matrix is a probability vector
such that

A steady-state vector is not changed by the
stochastic matrix. They describe equilibrium
distributions.

A q

Aq = q

Recall: Steady-State Vectors

Definition. A steady-state vector for a
stochastic matrix is a probability vector
such that

A steady-state vector is not changed by the
stochastic matrix. They describe equilibrium
distributions.

A q

Aq = q

A steady state of is an eigenvector
with eigenvalue .

A
1

How do we interpret steady
states of random walks?

If a random walk goes on for a sufficiently
long time, then the probability that we end up
in a particular place becomes fixed.

If you wander for a sufficiently long time, it
doesn't matter where you started.

Recall: Steady States of Random Walks

Fundamental Question

How do we (quickly) determine a
steady state of a random walk?

Special Case: Undirected Graphs

Linear Algebra and its Applications, Lay, Lay, McDonald

Special Case: Undirected Graphs
Note. An undirected graph is just a
directed in which both directions
of edges are always present.

Linear Algebra and its Applications, Lay, Lay, McDonald

Special Case: Undirected Graphs
Note. An undirected graph is just a
directed in which both directions
of edges are always present.

Theorem. The steady state vector of
a random walk on an undirected
graph is

1
∑n

i=1 deg(i)

deg(1)
deg(2)

⋮
deg(n)

Linear Algebra and its Applications, Lay, Lay, McDonald

Special Case: Undirected Graphs
Note. An undirected graph is just a
directed in which both directions
of edges are always present.

Theorem. The steady state vector of
a random walk on an undirected
graph is

1
∑n

i=1 deg(i)

deg(1)
deg(2)

⋮
deg(n)

Linear Algebra and its Applications, Lay, Lay, McDonald

𝗌𝗍𝖾𝖺𝖽𝗒𝖲𝗍𝖺𝗍𝖾 =
1
16

2
3
4
1
2
3
1

Special Case: Undirected Graphs
Note. An undirected graph is just a
directed in which both directions
of edges are always present.

Theorem. The steady state vector of
a random walk on an undirected
graph is

1
∑n

i=1 deg(i)

deg(1)
deg(2)

⋮
deg(n)

Linear Algebra and its Applications, Lay, Lay, McDonald

𝗌𝗍𝖾𝖺𝖽𝗒𝖲𝗍𝖺𝗍𝖾 =
1
16

2
3
4
1
2
3
1

deg: 3

Special Case: Undirected Graphs
Note. An undirected graph is just a
directed in which both directions
of edges are always present.

Theorem. The steady state vector of
a random walk on an undirected
graph is

1
∑n

i=1 deg(i)

deg(1)
deg(2)

⋮
deg(n)

Linear Algebra and its Applications, Lay, Lay, McDonald

𝗌𝗍𝖾𝖺𝖽𝗒𝖲𝗍𝖺𝗍𝖾 =
1
16

2
3
4
1
2
3
1

deg: 3

We don't need to do any work.

The Random Surfer Model

The anatomy of a large-scale hypertextual Web search engine (1998)

The random surfer is not on an undirected graph

PageRank requires quickly finding
steady-states for directed graphs

Tricky Issue: Boundaries
0 0 1/3 0 0 0

1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

There is no way to
leave (2)

Tricky Issue: Boundaries

The transition matrix of a graph may not actually be
stochastic because of 0s columns.

0 0 1/3 0 0 0
1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

There is no way to
leave (2)

Tricky Issue: Boundaries

The transition matrix of a graph may not actually be
stochastic because of 0s columns.

We can't use standard techniques for Markov Chains.

0 0 1/3 0 0 0
1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

There is no way to
leave (2)

Tricky Issue: Boundaries

The transition matrix of a graph may not actually be
stochastic because of 0s columns.

We can't use standard techniques for Markov Chains.

There are two typical fixes to this.

0 0 1/3 0 0 0
1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

There is no way to
leave (2)

Absorbing Boundaries

We create a self-loop at the boundaries so that
we stay at the node when we get there.

0 0 1/3 0 0 0
1/2 1 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

Reflecting Boundaries

We make it possible to go anywhere after
getting to a boundary.

0 1/6 1/3 0 0 0
1/2 1/6 1/3 0 0 0
1/2 1/6 0 0 0 0
0 1/6 0 0 1/2 1
0 1/6 1/3 1/2 0 0
0 1/6 0 1/2 1/2 0

Moving Forward

What is the connection between steady
states and website importance?

PageRank

The Picture website with many links

"central" website linked
to many times

Page Importance

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(k) = ∑
j

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(j)

Page Importance

We're interested in defining a function
which tells us how important website is.

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(⋅)
k

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(k) = ∑
j

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(j)

Page Importance

We're interested in defining a function
which tells us how important website is.

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(⋅)
k

A website is important if it is linked to by
many important websites.

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(k) = ∑
j

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(j)

Page Importance

We're interested in defining a function
which tells us how important website is.

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(⋅)
k

A website is important if it is linked to by
many important websites.

This is circular, but familiar...

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(k) = ∑
j

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(j)

Importance Vector

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾k =
n

∑
i=1

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾𝗃

Importance Vector

Instead, let's say we're trying to find an
importance vector, whose th component is the
importance of website .

k
k

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾k =
n

∑
i=1

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾𝗃

Importance Vector

Instead, let's say we're trying to find an
importance vector, whose th component is the
importance of website .

k
k

Then we recognize that these probabilities are
entries of a transition matrix...

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾k =
n

∑
i=1

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾𝗃

Importance Vector

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾k =
n

∑
i=1

Akj ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾j

= (A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾)k

where is a transition matrix for the part of
the web associate with our search term.

A

Importance Vector

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾k =
n

∑
i=1

Akj ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾j

= (A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾)k

where is a transition matrix for the part of
the web associate with our search term.

A

A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾 = 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾

Importance Vector

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾k =
n

∑
i=1

Akj ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾j

= (A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾)k

where is a transition matrix for the part of
the web associate with our search term.

A

A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾 = 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾

The importance vectors is a steady state.

Importance Vector

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾k =
n

∑
i=1

Akj ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾j

= (A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾)k

Page Importance and Eigenvectors

A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾 = 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾

Page Importance and Eigenvectors

The eigenvector with eigenvalue of our transition
matrix is our importance vector.

1

A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾 = 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾
eigenvector

Page Importance and Eigenvectors

The eigenvector with eigenvalue of our transition
matrix is our importance vector.

1

We order webpages by importance, so this gives a ranking
of webpages.

A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾 = 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾
eigenvector

Page Importance and Eigenvectors

The eigenvector with eigenvalue of our transition
matrix is our importance vector.

1

We order webpages by importance, so this gives a ranking
of webpages.

This vector tells us the probability a random surfer is
on a given page in the long term.

A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾 = 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾
eigenvector

The Algorithm

The Algorithm (High Level)

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

PageRank

The Algorithm (High Level)
PageRank

0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

The Algorithm (High Level)
PageRank

0 1 1 0 0 0
1 1 1 0 0 0
1 1 0 0 0 0
0 1 0 0 1 1
0 1 1 1 0 0
0 1 0 1 1 0

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

The Algorithm (High Level)
PageRank

0 1/6 1/3 0 0 0
1/2 1/6 1/3 0 0 0
1/2 1/6 0 0 0 0
0 1/6 0 0 1/2 1
0 1/6 1/3 1/2 0 0
0 1/6 0 1/2 1/2 0

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

The Algorithm (High Level)
PageRank

(1 − α)

0 1/6 1/3 0 0 0
1/2 1/6 1/3 0 0 0
1/2 1/6 0 0 0 0
0 1/6 0 0 1/2 1
0 1/6 1/3 1/2 0 0
0 1/6 0 1/2 1/2 0

+
α
6

1

(more on this later)

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

The Algorithm (High Level)
PageRank

np.linalg.eig(a)
(more on this later)

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

The Algorithm (High Level)
PageRank
1. Build a graph encoding the websites

and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

The Algorithm (High Level)
PageRank

We just talked about the
importance of these

steps.

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

Damping Factor
PageRank

(1 − α)

0 1/6 1/3 0 0 0
1/2 1/6 1/3 0 0 0
1/2 1/6 0 0 0 0
0 1/6 0 0 1/2 1
0 1/6 1/3 1/2 0 0
0 1/6 0 1/2 1/2 0

+
α
6

1

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

damping factor

Damping Factor: The Random Surfer Model

The anatomy of a large-scale hypertextual Web search engine (1998)

The damping factor models this "boredom"

Damping Factor

If , then every zero gets increased
slightly so that there is always some chance of
jumping to a random node.

α = 0.1

0.9

0 1/6 1/3 0 0 0
1/2 1/6 1/3 0 0 0
1/2 1/6 0 0 0 0
0 1/6 0 0 1/2 1
0 1/6 1/3 1/2 0 0
0 1/6 0 1/2 1/2 0

+
0.1
6

1 =

1/60 1/6 19/60 1/60 1/60 1/60
7/15 1/6 19/60 1/60 1/60 1/60
7/15 1/6 1/60 1/60 1/60 1/60
1/60 1/6 1/60 1/60 7/15 11/12
1/60 1/6 19/60 7/15 1/60 1/60
1/60 1/6 1/60 7/15 7/15 1/60

This is a reasonable model,
but it's also strategic

Recall: Convergence

Recall: Convergence

Definition. For a Markov chain with stochastic
matrix , an initial state converges to the
state if .

A v0
v lim

k→∞
Akv0 = v

Recall: Convergence

Definition. For a Markov chain with stochastic
matrix , an initial state converges to the
state if .

A v0
v lim

k→∞
Akv0 = v

As we repeatedly multiply by , we get closer
and closer to (in the limit).

v0 A
v

Recall: Regular Stochastic Matrices

Recall: Regular Stochastic Matrices

Definition. A stochastic matrix is regular if
has all positive entries for some nonnegative .

A Ak

k

Recall: Regular Stochastic Matrices

Definition. A stochastic matrix is regular if
has all positive entries for some nonnegative .

A Ak

k

Theorem. A regular stochastic matrix has a
unique steady state, and

P

every probability vector
converges to it

Damping Factor and regularity

After damping, the matrix is regular.

It has a unique steady state.

0.9

0 1/6 1/3 0 0 0
1/2 1/6 1/3 0 0 0
1/2 1/6 0 0 0 0
0 1/6 0 0 1/2 1
0 1/6 1/3 1/2 0 0
0 1/6 0 1/2 1/2 0

+
0.1
6

1 =

1/60 1/6 19/60 1/60 1/60 1/60
7/15 1/6 19/60 1/60 1/60 1/60
7/15 1/6 1/60 1/60 1/60 1/60
1/60 1/6 1/60 1/60 7/15 11/12
1/60 1/6 19/60 7/15 1/60 1/60
1/60 1/6 1/60 7/15 7/15 1/60

The Algorithm (High Level)
PageRank

np.linalg.eig(a)
(more on this later)

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this
graph.

3. Turn boundaries into reflectors.

4. Normalize the matrix.

5. Add a damping factor.

6. Compute the eigenvector for the
largest eigenvalues.

7. Order indices according to the entries
of this vector.

demo

The Issue

This is way too slow in practice.
And we don't need every eigenvector.

Recall AGAIN: Regular Stochastic Matrices

Recall AGAIN: Regular Stochastic Matrices

Definition. A stochastic matrix is regular if
has all positive entries for some nonnegative .

A Ak

k

Recall AGAIN: Regular Stochastic Matrices

Definition. A stochastic matrix is regular if
has all positive entries for some nonnegative .

A Ak

k

Theorem. A regular stochastic matrix has a
unique steady state, and

P

every probability vector
converges to it

The Power Method

The Easiest Idea with the Most Intense Name

The Easiest Idea with the Most Intense Name

By regularity, we know that converges to the
unique steady state starting at any vector.

Akv

The Easiest Idea with the Most Intense Name

By regularity, we know that converges to the
unique steady state starting at any vector.

Akv

So...let's do that.

The Easiest Idea with the Most Intense Name

By regularity, we know that converges to the
unique steady state starting at any vector.

Akv

So...let's do that.

Let's multiply any vector a bunch of
times by .A

The Easiest Idea with the Most Intense Name

By regularity, we know that converges to the
unique steady state starting at any vector.

Akv

So...let's do that.

Let's multiply any vector a bunch of
times by .A

Since approximates the steady-state, this will
likely be a reasonably close solution.

Akv

Power Methods

Power methods are common
in computational linear
algebra because matrix
multiplication is highly
optimized.

They only give approximate
solutions. But they can be
very good, and they can be
obtained very quickly.

Linear Algebra and its Applications, Lay, Lay, McDonald

The Power Method

1 FUNCTION steady_state_power_method():
2 random vector (or just)
3 scale so that it is a probability vector
4 WHILE TRUE:
5

A
v ← 1

v

v ← Av

The Power Method

1 FUNCTION steady_state_power_method():
2 random vector (or just)
3 scale so that it is a probability vector
4 WHILE TRUE:
5

A
v ← 1

v

v ← Av
When should we stop?

Termination Conditions

Option 1. (Timeout) Run for some fixed amount
of time.

Option 2. (Error tolerance) Run until the
change to the vector is very small.

The Power Method (Error Tolerance)

1 FUNCTION steady_state_power_method(,):
2 random vector (or just)
3 scale so that it is a probability vector
4

5 WHILE :

6
7 RETURN

A ϵ
v ← 1

v
v′ = Av

n

∑
i=1

|vi − v′ i | > ϵ

v′ , v ← Av, v′

v′

while the absolute difference
between the last two

approximations is large

