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Introduction



Recap Problem

4 3 -1 2 0
0 2 =3 5 1
00 I 3 =10
00 0 =7 3
00 0 O 1

Determine 1f the above matrix 1s diagonalizable.



Answer: Yes

—10

0 0

o O

o O
o O



Objectives

1. Recall Graphs and Random Walks

2. Connect Random Walks with Markov Chains with
Eigenvectors.

3. Discuss PageRank from the perspective of
Markov Chains.

4. Learn about the power method as a way to
approximate
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Google

Created by Larry Page and
Sergey Brin 1in 1996 when they

were PhD students at Stanford.

Thelir 1dea was to build a

search engine, based on an
algorithm they called
PageRank.

Google Search
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Search Engines

Step 1. Given a search term, find a collection
of websites using that term.

Step 2. Given a collection of websites based on

search term, compute a ranking of them Dby
importance (the most important websites should

be presented first).

How do we know which websites are important?



Ranking Websites

https://www.cs.cornell.edu/~kt/post/site-graph/
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Idea 1. (Term frequency) If
your search term 1s used many
times on a page, 1t 1s likely
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Ranking Websites

Idea 1. (Term frequency) If
yvour search term 1s used many
times on a page, 1t 1s likely
an 1mportant page for that
term.

Idea 2. (Linking Structure) If
is a site is linked a bunch of
times, it is an important page

https://www.cs.cornell.edu/~kt/post/site-graph/



The Random Surfer Model

2.1.2. [ntuitive justification

PageRank can be thought of as a model of user
behavior. We assume there 1s a “random surfer” who
1S given a Web page at random and keeps clicking on
links. never hitting “back™ but eventually gets bored
and starts on another random page. The probability
that the random surfer visits a page 1s its PageRank.

The anatomy of a large-scale hypertextual Web search engine (1998)



This 1s really just a random walk on
a directed graph

(which is really just a Markov Chain)






Recall: Graphs

Definition (Informal). A graph is a collection
of nodes with edges between them.

https://commons.wikimedia.org/wiki/File:6n—-graf.svg



Directed vs. Undirected Graphs

A graph is directed if its edges have a
direction.

undirected directed



Weighted vs Unweighted graphs

A graph is weighted if its edges have
assoclated values.
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Weighted vs Unweighted graphs

A graph is weighted if its edges have

assoclated values.
edge weights
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WE lg h t ed weights are number of lanes weights are number of collaborations

nodes are instagram users

nodes are bodies of land

Uunwe ]_g h 't Ed edges are follows edges are pedestrian bridges
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Four Kinds of Graphs

directed undirected

nodes are traffic lights nodes are musicians
' edges are streets edges are collaborations
WE lg h t ed weights are number of lanes weights are number of collaborations

Markov Chains

nodes are instagram users .
J nodes are bodies of land

Uunwe ]_g h 't Ed edges are follows edges are pedestrian bridges
The Web




Recall: Adjacency Matrices |V

Ayl 1
Let G be an directed graph 1
with its nodes labeled by 0
numbers 1 through =. 0
We can create the adjacency 0

matrix A for G as follows.

B _”{1 there is an edge from j and 1
L0 otherwise

OO O O OO




Recall: Adjacency Matrices |0 0 |

Al 0 1
Let G be an directed graph 100
with its nodes labeled by 0O 0 O
numbers 1 through =. 0 0 1
We can create the adjacency 0O 0 O

matrix A for G as follows.
represents edges out of 1

B _”{1 there is an edge from j and i
L0 otherwise




Spectral/Algebraic Graph Theory

Once we have an adjacency
matrix, we can do linear
algebra on graphs.



Connecting Back to PageRank
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Connecting Back to PageRank

The Web is a massive directed
graph.
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Connecting Back to PageRank

The Web is a massive directed
graph.

We will represent the surfer as
a random process which explores
this graph.
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onnecting Back to PageRank

The Web is a massive directed
graph.

We will represent the surfer as
a random process which explores
this graph.

Which connects us back to
Markov chains...

i
N

7
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Connecting Back to PageRank

The Web is a massive directed
graph.

We will represent the surfer as
a random process which explores
this graph.

Which connects us back to
Markov chains...

which connects us back to
eigenvectors...

https://www.researchgate.net/figure/This—visualization-represents—-the—-network-of-web—-pages—connected-to-vosonanueduau_fig4_ 262172827



Random Walks



Visualization (In Undirected Case)
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Terminology: Degree

Let G be an unweighted directed
graph and let v be one of 1its

nodes.

The 1n-degree of v is the number
of edges whose right endpoint 1is
v (that go into v)

The out-degree of v 1s the number

of edges whose left endpoint 1s v
(that exit out of v). ‘ﬂ'



The Procedure



The Procedure

Definition. A random walk on an unweighted
directed graph G with nodes {l1,..,n} starting at v
1s the following process:




The Procedure

Definition. A random walk on an unweighted
directed graph G with nodes {l1,..,n} starting at v
1s the following process:

» 1T v has out-degree k, roll a k—sided die
» 1T you rolled an i, go to the ith largest node
» repeat
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A single player game:
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Normalization and Transition Matrices

O O0O1 O O O o 0 I/3 0 0 O
1 O1 O O O 1/2 0 1/3 0O O O
1 0O 0 0 0 O N /20 0 0 0 O
O 0 0 0 1 1 o 0 0 0 1/2 1
O 01 1 0O O 0 1/3 1/72 0 O
0O 0 0 1 1 O O 0 0 1/2 1/2 0
Adjacency Matrix Transition Matrix

Normalization is the process of preprocessing
an adjacency matrix so that (almost) every
column sums to 1.




Normalization and Transition Matrices
Pr(going from 3 — 2)
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Normalization is the process of preprocessing
an adjacency matrix so that (almost) every
column sums to 1.




Recall: Stochastic Matrices

Definition. A nxn matrix is stochastic if its
entries are nonnegative and 1ts columns sum to

1.

Example.

0.7 0.1 0.3
0.2 0.8 0.3
0.1 0.1 04



Recall: Markov Chains

Definition. A Markov chain is a linear
dynamical system whose evolution function 1s

given by a stochastic matrix.

(We can construct a '"chain" of state vectors,
where each state vector only depends on the one

before it.)



So we can consider the Markov Chain
assoclated with a random walk



We did this iIn Homework 6

def adjacency_to_stochastic(a):
for i in range(a.shapel0]):

def random_step(a, 1i):
rng = np.random.default_rng()

div = np.sum(al:,i])
if div !'= 0:
al:,1] /= div

return rng.choice(a.shapel[0], p=al:, il)

def random walk(a, i, length):
walk = []
next _i1ndex = 1
for _ in range(length):

next _1ndex =
walk.append(next_index)

random_step(a, next_index)




Recall: Steady-State Vectors

Definition. A steady-state vector for a
stochastic matrix A 1s a probability vector q
such that

Aq=q

A steady-state vector 1s not changed by the
stochastic matrix. They describe equilibrium
distributions.




Recall: Steady-State Vectors

Definition. A steady-state vector for a
stochastic matrix A 1s a probability vector q

S| A steady state of A 1s an eigenvector
with eigenvalue 1.

A steady-state vector 1s not changed by the
stochastic matrix. They describe equilibrium
distributions.




How do we 1nterpret steady
states of random walks?



Recall: Steady States of Random Walks

IT a random walk goes on for a sufficiently
long time, then the probability that we end up
1in a particular place becomes fixed.

If you wander for a sufficiently long time, 1t
doesn't matter where you started.



Fundamental Question

How do we (quickly) determine a
steady state of a random walk?



Special Case: Undirected Graphs
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of edges are always present. 5 6

Linear Algebra and its Applications, Lay, Lay, McDonald
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Note. An undirected graph 1s just a
directed 1n which both directions
of edges are always present.
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a random walk on an undirected
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> deg(i) |
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Linear Algebra and its Applications, Lay, Lay, McDonald



Special Case: Undirected Graphs

Note. An undirected graph 1s just a
directed 1n which both directions
of edges are always present.

Theorem. TF
3 random w e don t need to do any work. 7

graph 1s

deg(1)
1 deg(2)

>, deg(i)

2

3

1 4

steadyState = T6 ;
3

1

deg(n)

Linear Algebra and its Applications, Lay, Lay, McDonald



The Random Surfer Model

The random surfer 1s not on an undirected graph

2.1.2. Intuitive justification

PageRank can be thought ot as a model of user
behavior. We assume there 1s a “‘random surfer” who
1S given a Web page at random and keeps clicking on
links, never hitting “back™ but eventually gets bored

and starts on another random page. The probability
that the random Qirfer vicite a naoce 18 11 PaceRank

The anatomy of a large-scale hypertextual Web search engine (1998)



PageRank requires quickly finding
steady—-states for directed graphs



Tricky Issue: Boundaries
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There 1s no way to

Tricky Issue: Boundaries leave (2)
0O 0 1/3 O 0
1/2 0 1/3 0 0
1/2 0 O 0 0

0O 0 0 0 1/2
0 0 1/3 1/2 0
0O 0 0 1/2 1/2

OO = O OO

The transition matrix of a graph may not actually be
stochastic because of @s columns.

We can't use standard techniques for Markov Chains.

There are two typical fixes to this.



Absorbing Boundaries

0O 0 1I/3 0 0 O
/21 1/73 0 0 O
/720 0 0 0 O
0O 0 0 0 1/2 1
0 0 1/3 1/72 0 O
0O 0 0 1/2 1/2 0

We create a self-loop at the boundaries so that
we stay at the node when we get there.



Reflecting Boundaries

0 1/6 1/3 0 0
172 1/6 1/3 0 0
172 1/6 0 0 O

0 1/6 0 0 1/2

0 1/6 1/3 1/2 0

0 1/6 0 1/2 1/2

We make 1t possible to go anywhere after
getting to a boundary.



Moving Forward

What 1s the connection between steady
states and website 1importance?
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Page Importance

Importance(k) = Z Pr(golng from j — k) - Importance(;)
J

We're interested 1in defining a function Importance(-)
which tells us how important website k 1s.

A website 1s important 1f 1t 1s linked to by
many important websites.

This 1s circular, but familiar...
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Importance, = Z Pr(going from j — k) - Importance
i=1
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Importance Vector

n
Importance, = Z Pr(going from j — k) - Importance
i=1
Instead, let's say we're trying to find an

importance vector, whose kth component 1s the
importance of website k.

Then we recognize that these probabilities are
entries of a transition matriX...
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Importance Vector

Importance, = ZAkf - Impcrtancej
i=1
= (A - Importance),

where A 1s a transition matrix for the part of
the web associate with our search term.

A - Importance = Importance

The importance vectors 1s a steady state.
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Page Importance and Eigenvectors

A - Importance = Importance
elgenvector

The eigenvector with eigenvalue 1 of our transition
matrix 1s our 1importance vector.

We order webpages by importance, so this gives a ranking
of webpages.

This vector tells us the probability a random surfer 1s
on a given page 1in the long term.
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The Algorithm (High Level)
PageRank

1.

o UL B~ W

Build a graph encoding the websites
and their links for the query we're
given.

. Build the adjacency matrix for this

graph.

. Turn boundaries into reflectors. (1 —a)
. Normalize the matrix.
. Add a damping factor.

. Compute the eigenvector for the

largest eigenvalues.

. Order 1indices according to the entries

of this vector.

0 1/6
1/2 1/6
1/2 1/6
0 1/6
0 1/6
0 1/6

/3 0 0
/73 0 0
0O 0 O
0 0 1/2
1/3 1/2 0
0 1/2 1/2

0
0
0
1
0
0

(more on this later)
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The Algorithm (High Level)

PageRank

1.

2.

3.
4.
5.
0.

/. Order 1indices according to the entries

Build a graph encoding the websites
and their links for the query we're
given.

Build the adjacency matrix for this
graph.

Turn boundaries 1into reflectors.
Normalize the matrix.
Add a damping factor.

Compute the eigenvector for the
largest eigenvalues.

of this vector.

Google

personal 737 jets

Web News Images Shopping Videos More ~ Search tools

About 399,000 results (0.40 secon ds)

Images for personal 737 jets

More images for personal 737 jets

Boeing: Boeing Business Jets

www.boeing.com > Commercial ¥ Boeing

Boeing Business Jets is dedicated to bringing the best of commercial aviation into the
realm of private air ... Boeing Launches BBJ 737 MAX with First Order.




The Algorithm (High Level)

PageRank

1. Build a graph encoding the websites V
and their links for the query we're

given.
2. Build the adjacency matrix for this V

graph.
?cto rs. V

We just talked about the
importance of these
steps.

. Turn boundaries 1into

. Normalize the matrix.

. Add a damping factor.

o UL B~ W

. Compute the eigenvector for the
largest eigenvalues.

/. Order 1indices according to the entries
of this vector.



Damping Factor

PageRank

1.

oo UL B~ W

Build a graph encoding the websites
and their links for the query we're
given.

. Build the adjacency matrix for this

graph.

. Turn boundaries into reflectors. (1 —a)
. Normalize the matrix.
. Add a damping factor.

. Compute the eigenvector for the

largest eigenvalues.

. Order 1indices according to the entries

of this vector.

0 1/6
1/2 1/6
1/2 1/6
0 1/6
0 1/6
0 1/6

damping factor

/3 0 0
/73 0 0
0O 0 O
0 0 1/2
1/3 1/2 0
0 1/2 1/2

OO = OO O



Damping Factor: The Random Surfer Model

The damping factor models this "boredom"
2.1.2. [ntuitive justification

PageRank can be thought of as a model of user
behavior. We assume there 1s a “random surfer” who
1S given a Web page at random and keeps clicking on
links. never hitting “back™ but eventually gets bored
and starts on another random page. The probability
that the random surfer visits a page 1s its PageRank.

The anatomy of a large-scale hypertextual Web search engine (1998)
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Damping Factor

0
1/2
1/2

0

0

0

IT a=0.1, then every zero gets 1increased

1/6
1/6
1/6
1/6
1/6
1/6

/73 0 0
/73 0 0
0O 0 O
0 0 1/2
1/3 1/2 0
0 1/2 1/2

0 1/60
0 7/15
0 L O1, _|7/15
Il 6 1/60
0 1/60
0 1/60

1/6
1/6
1/6
1/6
1/6
1/6

19/60
19/60
1/60
1/60

1/60
1/60
1/60
1/60

19/60 7/15
1/60 7/15

1/60
1/60
1/60
7/15
1/60
7/15

1/60
1/60
1/60
11/12
1/60
1/60

slightly so that there 1s always some chance of
jumping to a random node.



This 1s a reasonable model,
put 1t's also strategic
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Recall: Convergence

Definition. For a Markov chain with stochastic
matrix A, an 1nltial state v, converges to the

state v if lim A%y, =v.

k— o0

As we repeatedly multiply v, by A, we get closer
and closer to v (in the limit).
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Recall: Regular Stochastic Matrices

Definition. A stochastic matrix A is regqular if A*
has all positive entries for some nonnegative k.

Theorem. A regular stochastic matrix P has a
unique steady state, and

every probability vector
converges to 1t
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Damping Factor and regularity

0
1/2
1/2

0

0

0

1/6
1/6
1/6
1/6
1/6
1/6

/73 0 0
/73 0 0
0O 0 O
0 0 1/2
1/3 1/2 0
0 1/2 1/2

0 1/60
0 7/15
0 L O1, _|7/15
Il 6 1/60
0 1/60
0 1/60

1/6
1/6
1/6
1/6
1/6
1/6

19/60
19/60

1/60
1/60

1/60 1/60
1/60 1/60
19/60 7/15
1/60 7/15

After damping, the matrix 1s reqular.

It has a unique steady state.

1/60
1/60
1/60
7/15
1/60
7/15

1/60
1/60
1/60
11/12
1/60
1/60



The Algorithm (High Level)

PageRank

1. Build a graph encoding the websites
and their links for the query we're
given.

2. Build the adjacency matrix for this . ;
graph. oo ey MEEERCIONE np.linalg.eig(a)

. Turn boundaries into reflectors.

. Normalize the matrix. (more on this later)

. Add a damping factor.

o UL B~ W

. Compute the eigenvector for the
largest eigenvalues.

/. Order 1indices according to the entries
of this vector.



demo



The Issue

This 1s way too slow 1n practice.

And we don't need every eigenvector.
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every probability vector
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The Easiest Idea with the Most Intense Name

By reqularity, we know that A% converges to the
unique steady state starting at any vector.

So...let's do that.

Let's multiply any vector a bunch of
times by A.

Since A*v approximates the steady-state, this will
likely be a reasonably close solution.



Power Methods

Power methods are common )
1n computational Llinear 2
algebra because matrix
multiplication 1s highly gll
optimized. o\

| Eigenspace

They only give approximate = | Multipleof v, .
solutions. But they can be 1 4
very good, and they can be

obtained very quickly.

Linear Algebra and its Applications, Lay, Lay, McDonald
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The Power Method

FUNCTION steady state power method(A):
v « random vector (or just 1)

scale v so that 1t 1s a probability vector
WHILE TRUE:

V < Av

When should we stop?



Termination Conditions

Option 1. (Timeout) Run for some fixed amount
of time.

Option 2. (Error tolerance) Run until the
change to the vector 1s very small.



The Power Method (Error Tolerance)

FUNCTION steady state power method(A, e€):
v «— random vector (or just 1)
scale v so that 1t 1s a probability vector
vV = Av
WHILE Z ‘Vi B V” S e # whi lbeett;eeenabtshoelultaestditiVZerence
i—1 approximations 1s large

v,V < Av.V

RETURN v’



