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Introduction



Recap Problem

Determine if the above matrix is diagonalizable.

4 3 −1 2 0
0 2 −3 5 1
0 0 1 3 −10
0 0 0 −7 3
0 0 0 0 1



Answer: Yes
4 3 −1 2 0
0 2 −3 5 1
0 0 1 3 −10
0 0 0 −7 3
0 0 0 0 1



Objectives

1. Recall Graphs and Random Walks 

2. Connect Random Walks with Markov Chains with 
Eigenvectors. 

3. Discuss PageRank from the perspective of 
Markov Chains. 

4. Learn about the power method as a way to 
approximate
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Some "History"



The Web

The World Wide Web is introduced 
in the 1990s, invented by Tim 
Berners-Lee. 

It has obviously grown in 
popularity... 

At a high level, it is a 
collection of media (websites) 
connected by directed 
hyperlinks.

https://inst.eecs.berkeley.edu/~cs61bl/r//cur/graphs/world-wide-web.html?topic=lab24.topic&step=6&course=
https://commons.wikimedia.org/wiki/File:WWW-LetShare.svg
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The World Wide Web is introduced 
in the 1990s, invented by Tim 
Berners-Lee. 

It has obviously grown in 
popularity... 

At a high level, it is a 
collection of media (websites) 
connected by directed 
hyperlinks.

Nodes

Edges
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Google

Created by Larry Page and 
Sergey Brin in 1996 when they 
were PhD students at Stanford. 

Their idea was to build a 
search engine, based on an 
algorithm they called 
PageRank. 



Search Engines
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Step 1. Given a search term, find a collection 
of websites using that term.
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Search Engines

Step 1. Given a search term, find a collection 
of websites using that term.

Step 2. Given a collection of websites based on 
search term, compute a ranking of them by 
importance (the most important websites should 
be presented first).

How do we know which websites are important?



Ranking Websites

https://www.cs.cornell.edu/~kt/post/site-graph/



Ranking Websites

Idea 1. (Term frequency) If 
your search term is used many 
times on a page, it is likely 
an important page for that 
term.

https://www.cs.cornell.edu/~kt/post/site-graph/



Ranking Websites

Idea 1. (Term frequency) If 
your search term is used many 
times on a page, it is likely 
an important page for that 
term.

Idea 2. (Linking Structure) If 
is a site is linked a bunch of 
times, it is an important page

https://www.cs.cornell.edu/~kt/post/site-graph/



The Random Surfer Model

The anatomy of a large-scale hypertextual Web search engine (1998)



This is really just a random walk on 
a directed graph 

 
(which is really just a Markov Chain)



Graphs



Recall: Graphs

Definition (Informal). A graph is a collection 
of nodes with edges between them. 

https://commons.wikimedia.org/wiki/File:6n-graf.svg



Directed vs. Undirected Graphs

A graph is directed if its edges have a 
direction. 

undirected directed

A A

B



Weighted vs Unweighted graphs

A graph is weighted if its edges have 
associated values.

weightedunweighted
https://commons.wikimedia.org/wiki/File:Weighted_network.svg



Weighted vs Unweighted graphs

A graph is weighted if its edges have 
associated values.

weightedunweighted

edge weights

https://commons.wikimedia.org/wiki/File:Weighted_network.svg



Four Kinds of Graphs

nodes are traffic lights

edges are streets


weights are number of lanes

nodes are musicians

edges are collaborations


weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land


edges are pedestrian bridges

directed undirected
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Four Kinds of Graphs

nodes are traffic lights

edges are streets


weights are number of lanes

nodes are musicians

edges are collaborations


weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land


edges are pedestrian bridges

directed undirected

weighted

unweighted

Markov Chains

The Web



Recall: Adjacency Matrices
Let  be an directed graph 
with its nodes labeled by 
numbers  through . 

We can create the adjacency 
matrix  for  as follows.

G

1 n

A G

0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

Aij = {1 there is an edge from j and i
0 otherwise

A21

A46

A13



Recall: Adjacency Matrices
Let  be an directed graph 
with its nodes labeled by 
numbers  through . 

We can create the adjacency 
matrix  for  as follows.

G

1 n

A G

0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

Aij = {1 there is an edge from j and i
0 otherwise

A21

A46

A13

represents edges out of 1



Once we have an adjacency 
matrix, we can do linear 

algebra on graphs.

Spectral/Algebraic Graph Theory



Connecting Back to PageRank

https://www.researchgate.net/figure/This-visualization-represents-the-network-of-web-pages-connected-to-vosonanueduau_fig4_262172827
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Connecting Back to PageRank

The Web is a massive directed 
graph.

We will represent the surfer as 
a random process which explores 
this graph.

Which connects us back to 
Markov chains...

which connects us back to 
eigenvectors...

https://www.researchgate.net/figure/This-visualization-represents-the-network-of-web-pages-connected-to-vosonanueduau_fig4_262172827



Random Walks



Visualization (In Undirected Case)

https://mathematica.stackexchange.com/questions/156626/generate-random-walk-on-a-graph
https://gist.github.com/clairemcwhite/7fb348acca2c84c464d751ba38ce72e1
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Visualization (In Undirected Case)

https://mathematica.stackexchange.com/questions/156626/generate-random-walk-on-a-graph
https://gist.github.com/clairemcwhite/7fb348acca2c84c464d751ba38ce72e1



Terminology: Degree

Let  be an unweighted directed 
graph and let  be one of its 
nodes. 

The in-degree of  is the number 
of edges whose right endpoint is 
 (that go into ) 

The out-degree of  is the number 
of edges whose left endpoint is  
(that exit out of ). 

G
v

v

v v

v
v

v

out: 2
in:2
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The Procedure

Definition. A random walk on an unweighted 
directed graph  with nodes  starting at  
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The Procedure

Definition. A random walk on an unweighted 
directed graph  with nodes  starting at  
is the following process:

G {1,...,n} v

» if  has out-degree , roll a -sided die 
» if you rolled an , go to the th largest node 
» repeat

v k k
i i
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Normalization and Transition Matrices

Normalization is the process of preprocessing 
an adjacency matrix so that (almost) every 
column sums to 1.

0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

↦

0 0 1/3 0 0 0
1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

Adjacency Matrix Transition Matrix



Normalization and Transition Matrices

Normalization is the process of preprocessing 
an adjacency matrix so that (almost) every 
column sums to 1.

0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

↦

0 0 1/3 0 0 0
1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

Adjacency Matrix Transition Matrix

𝖯𝗋(going from 3 → 2)



Recall: Stochastic Matrices

Definition. A  matrix is stochastic if its 
entries are nonnegative and its columns sum to 
1. 

Example. 

n × n

[
0.7 0.1 0.3
0.2 0.8 0.3
0.1 0.1 0.4]



Recall: Markov Chains

Definition. A Markov chain is a linear 
dynamical system whose evolution function is 
given by a stochastic matrix. 

(We can construct a "chain" of state vectors, 
where each state vector only depends on the one 
before it.)



So we can consider the Markov Chain 
associated with a random walk



We did this in Homework 6
def random_step(a, i): 
    rng = np.random.default_rng() 
    return rng.choice(a.shape[0], p=a[:, i])

def adjacency_to_stochastic(a): 
    for i in range(a.shape[0]): 
        div = np.sum(a[:,i]) 
        if div != 0: 
            a[:,i] /= div

def random_walk(a, i, length): 
    walk = [] 
    next_index = i 
    for _ in range(length): 
        next_index = random_step(a, next_index) 
        walk.append(next_index)



Recall: Steady-State Vectors

Definition. A steady-state vector for a 
stochastic matrix  is a probability vector  
such that 

 

A steady-state vector is not changed by the 
stochastic matrix. They describe equilibrium 
distributions.

A q

Aq = q



Recall: Steady-State Vectors

Definition. A steady-state vector for a 
stochastic matrix  is a probability vector  
such that 

 

A steady-state vector is not changed by the 
stochastic matrix. They describe equilibrium 
distributions.

A q

Aq = q

A steady state of  is an eigenvector 
with eigenvalue .

A
1



How do we interpret steady 
states of random walks?



If a random walk goes on for a sufficiently 
long time, then the probability that we end up 
in a particular place becomes fixed. 

If you wander for a sufficiently long time, it 
doesn't matter where you started.

Recall: Steady States of Random Walks



Fundamental Question

How do we (quickly) determine a 
steady state of a random walk?



Special Case: Undirected Graphs

Linear Algebra and its Applications, Lay, Lay, McDonald
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Special Case: Undirected Graphs
Note. An undirected graph is just a 
directed in which both directions 
of edges are always present.

Theorem. The steady state vector of 
a random walk on an undirected 
graph is

1
∑n

i=1 deg(i)

deg(1)
deg(2)

⋮
deg(n)

Linear Algebra and its Applications, Lay, Lay, McDonald

𝗌𝗍𝖾𝖺𝖽𝗒𝖲𝗍𝖺𝗍𝖾 =
1
16

2
3
4
1
2
3
1

deg: 3

We don't need to do any work.



The Random Surfer Model

The anatomy of a large-scale hypertextual Web search engine (1998)

The random surfer is not on an undirected graph



PageRank requires quickly finding 
steady-states for directed graphs



Tricky Issue: Boundaries
0 0 1/3 0 0 0

1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

There is no way to 
leave (2) 
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Tricky Issue: Boundaries

The transition matrix of a graph may not actually be 
stochastic because of 0s columns.

We can't use standard techniques for Markov Chains.

There are two typical fixes to this.

0 0 1/3 0 0 0
1/2 0 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0

There is no way to 
leave (2) 



Absorbing Boundaries

We create a self-loop at the boundaries so that 
we stay at the node when we get there. 

0 0 1/3 0 0 0
1/2 1 1/3 0 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1
0 0 1/3 1/2 0 0
0 0 0 1/2 1/2 0



Reflecting Boundaries

We make it possible to go anywhere after 
getting to a boundary.

0 1/6 1/3 0 0 0
1/2 1/6 1/3 0 0 0
1/2 1/6 0 0 0 0
0 1/6 0 0 1/2 1
0 1/6 1/3 1/2 0 0
0 1/6 0 1/2 1/2 0



Moving Forward

What is the connection between steady 
states and website importance?



PageRank



The Picture website with many links

"central" website linked 
to many times



Page Importance

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(k) = ∑
j

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾( j)
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Page Importance

We're interested in defining a function  
which tells us how important website  is.

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾( ⋅ )
k

A website is important if it is linked to by 
many important websites.

This is circular, but familiar...

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾(k) = ∑
j

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾( j)
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Importance Vector

Instead, let's say we're trying to find an 
importance vector, whose th component is the 
importance of website .

k
k

Then we recognize that these probabilities are 
entries of a transition matrix...

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾k =
n

∑
i=1

𝖯𝗋(going from j → k) ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾𝗃



Importance Vector

𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾k =
n

∑
i=1

Akj ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾j

= (A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾)k



where  is a transition matrix for the part of 
the web associate with our search term.

A
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Page Importance and Eigenvectors

The eigenvector with eigenvalue  of our transition 
matrix is our importance vector.

1

We order webpages by importance, so this gives a ranking 
of webpages.

This vector tells us the probability a random surfer is 
on a given page in the long term.

A ⋅ 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾 = 𝖨𝗆𝗉𝗈𝗋𝗍𝖺𝗇𝖼𝖾
eigenvector
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The Algorithm (High Level)

1. Build a graph encoding the websites 
and their links for the query we're 
given. 

2. Build the adjacency matrix for this 
graph. 

3. Turn boundaries into reflectors. 

4. Normalize the matrix. 

5. Add a damping factor. 

6. Compute the eigenvector for the 
largest eigenvalues. 

7. Order indices according to the entries 
of this vector.

PageRank
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We just talked about the 
importance of these 

steps.
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1. Build a graph encoding the websites 
and their links for the query we're 
given. 

2. Build the adjacency matrix for this 
graph. 

3. Turn boundaries into reflectors. 

4. Normalize the matrix. 

5. Add a damping factor. 

6. Compute the eigenvector for the 
largest eigenvalues. 

7. Order indices according to the entries 
of this vector.

damping factor



Damping Factor: The Random Surfer Model

The anatomy of a large-scale hypertextual Web search engine (1998)

The damping factor models this "boredom"



Damping Factor

If , then every zero gets increased 
slightly so that there is always some chance of 
jumping to a random node.

α = 0.1

0.9

0 1/6 1/3 0 0 0
1/2 1/6 1/3 0 0 0
1/2 1/6 0 0 0 0
0 1/6 0 0 1/2 1
0 1/6 1/3 1/2 0 0
0 1/6 0 1/2 1/2 0

+
0.1
6

1 =

1/60 1/6 19/60 1/60 1/60 1/60
7/15 1/6 19/60 1/60 1/60 1/60
7/15 1/6 1/60 1/60 1/60 1/60
1/60 1/6 1/60 1/60 7/15 11/12
1/60 1/6 19/60 7/15 1/60 1/60
1/60 1/6 1/60 7/15 7/15 1/60



This is a reasonable model, 
but it's also strategic
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Recall: Convergence

Definition. For a Markov chain with stochastic 
matrix , an initial state  converges to the 
state  if .

A v0
v lim

k→∞
Akv0 = v

As we repeatedly multiply  by , we get closer 
and closer to  (in the limit).

v0 A
v
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Theorem. A regular stochastic matrix  has a 
unique steady state, and

P

every probability vector 
converges to it



Damping Factor and regularity

After damping, the matrix is regular. 

It has a unique steady state.
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and their links for the query we're 
given. 

2. Build the adjacency matrix for this 
graph. 

3. Turn boundaries into reflectors. 

4. Normalize the matrix. 

5. Add a damping factor. 

6. Compute the eigenvector for the 
largest eigenvalues. 

7. Order indices according to the entries 
of this vector.



demo



The Issue

This is way too slow in practice. 
And we don't need every eigenvector.
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The Easiest Idea with the Most Intense Name

By regularity, we know that  converges to the 
unique steady state starting at any vector.

Akv

So...let's do that.

Let's multiply any vector a bunch of 
times by .A

Since  approximates the steady-state, this will 
likely be a reasonably close solution.

Akv



Power Methods

Power methods are common 
in computational linear 
algebra because matrix 
multiplication is highly 
optimized. 

They only give approximate 
solutions. But they can be 
very good, and they can be 
obtained very quickly.

Linear Algebra and its Applications, Lay, Lay, McDonald



The Power Method

1 FUNCTION steady_state_power_method( ): 
2     random vector (or just ) 
3     scale  so that it is a probability vector 
4     WHILE TRUE: 
5         

A
v ← 1

v

v ← Av



The Power Method

1 FUNCTION steady_state_power_method( ): 
2     random vector (or just ) 
3     scale  so that it is a probability vector 
4     WHILE TRUE: 
5         

A
v ← 1

v

v ← Av
When should we stop?



Termination Conditions

Option 1. (Timeout) Run for some fixed amount 
of time. 

Option 2. (Error tolerance) Run until the 
change to the vector is very small.



The Power Method (Error Tolerance)

1 FUNCTION steady_state_power_method( , ): 
2     random vector (or just ) 
3     scale  so that it is a probability vector 
4      

5     WHILE : 

6          
7      RETURN 

A ϵ
v ← 1

v
v′ = Av

n

∑
i=1

|vi − v′ i | > ϵ

v′ , v ← Av, v′ 

v′ 

# while the absolute difference 
between the last two 

approximations is large


