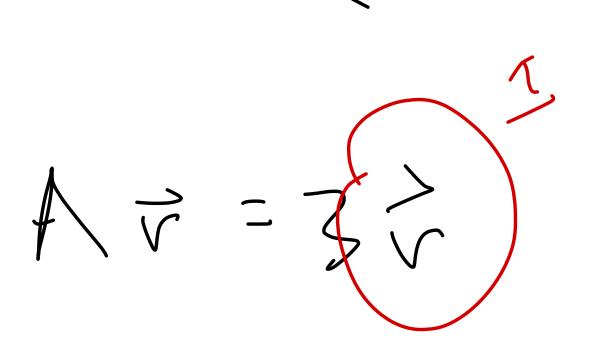
Analytic Geometry in \mathbb{R}^n Geometric Algorithms Lecture 21

CAS CS 132

Introduction

Recap Problem

Let A be a 4×4 matrix with eigenvalues 3 and -2True or False: A must be diagonalizable. ei senbacis erzvenz



Answer: True

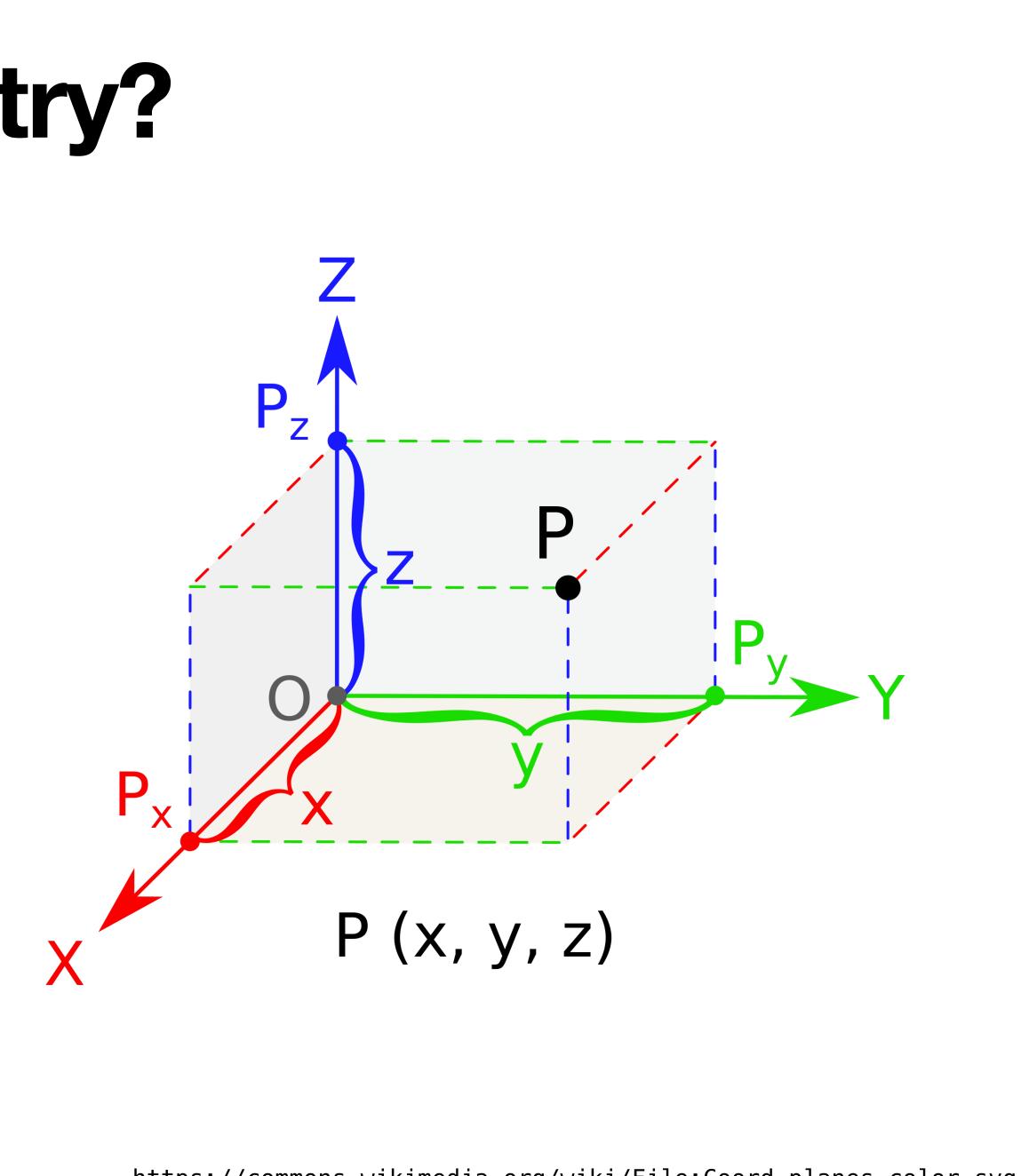
The set of eigenvectors we get from the diagonalization procedure is of size 4, which means there is an eigenbasis of \mathbb{R}^4 for A.

Objectives

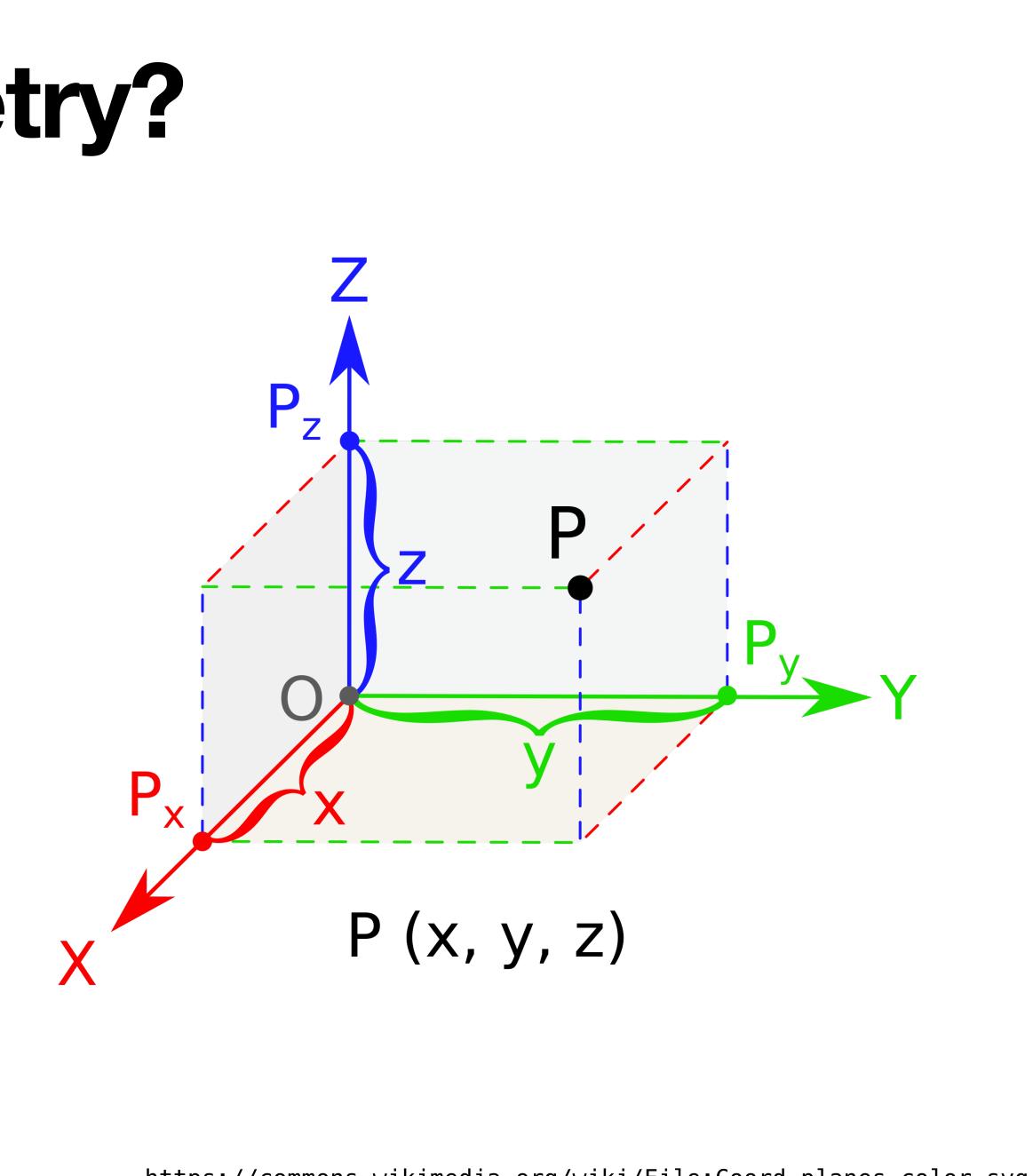
- 1. Recall what we learned in algebra class.
- 2. Connect the familiar notions of lengths, distances, and angles to inner products.
- 3. Begin discussing the fundamental concept of orthogonality.

inner product norm orthogonal

Motivation

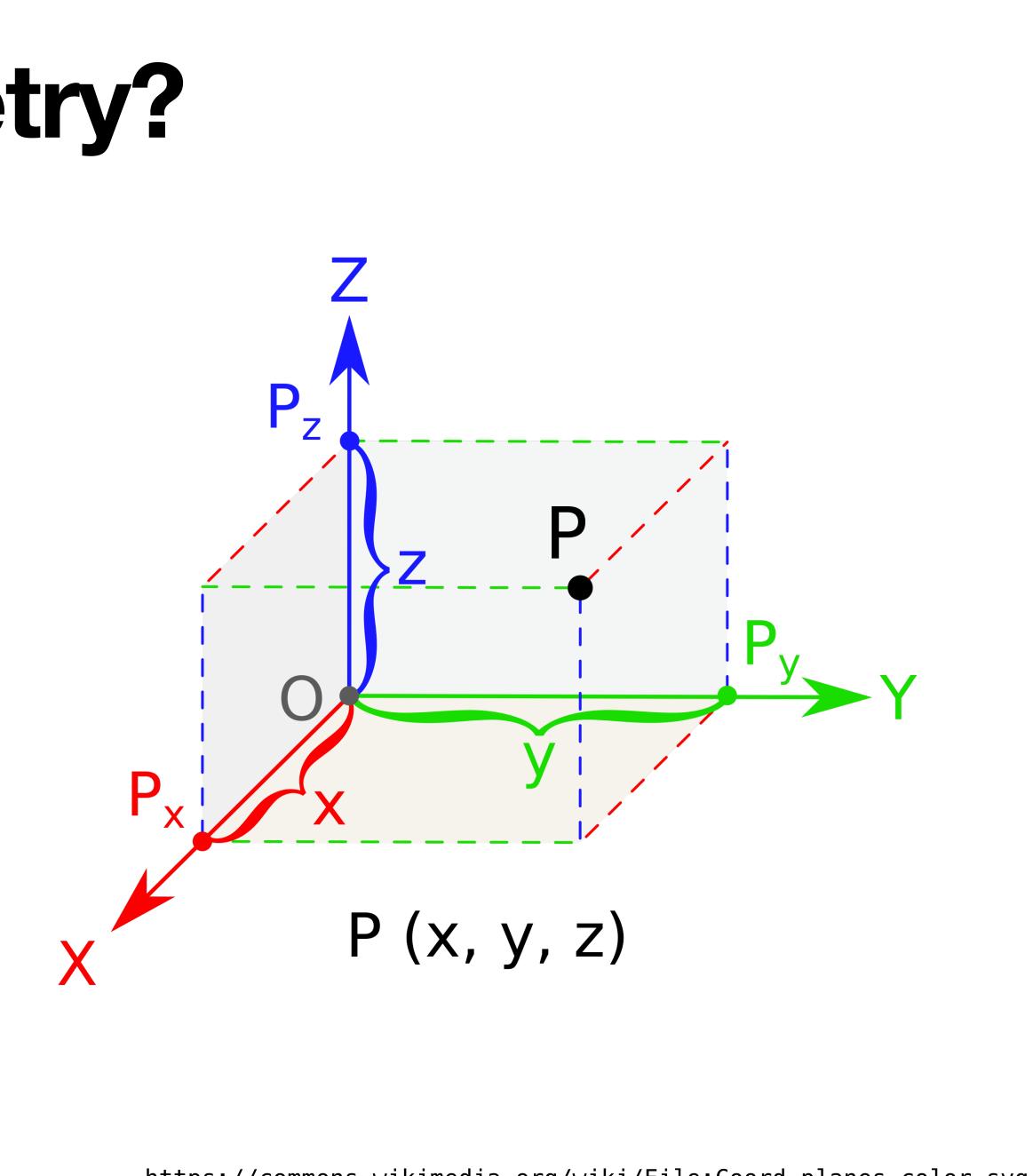


Analytic geometry is the study of space using a <u>coordinate system</u>.



Analytic geometry is the study of space using a <u>coordinate system</u>.

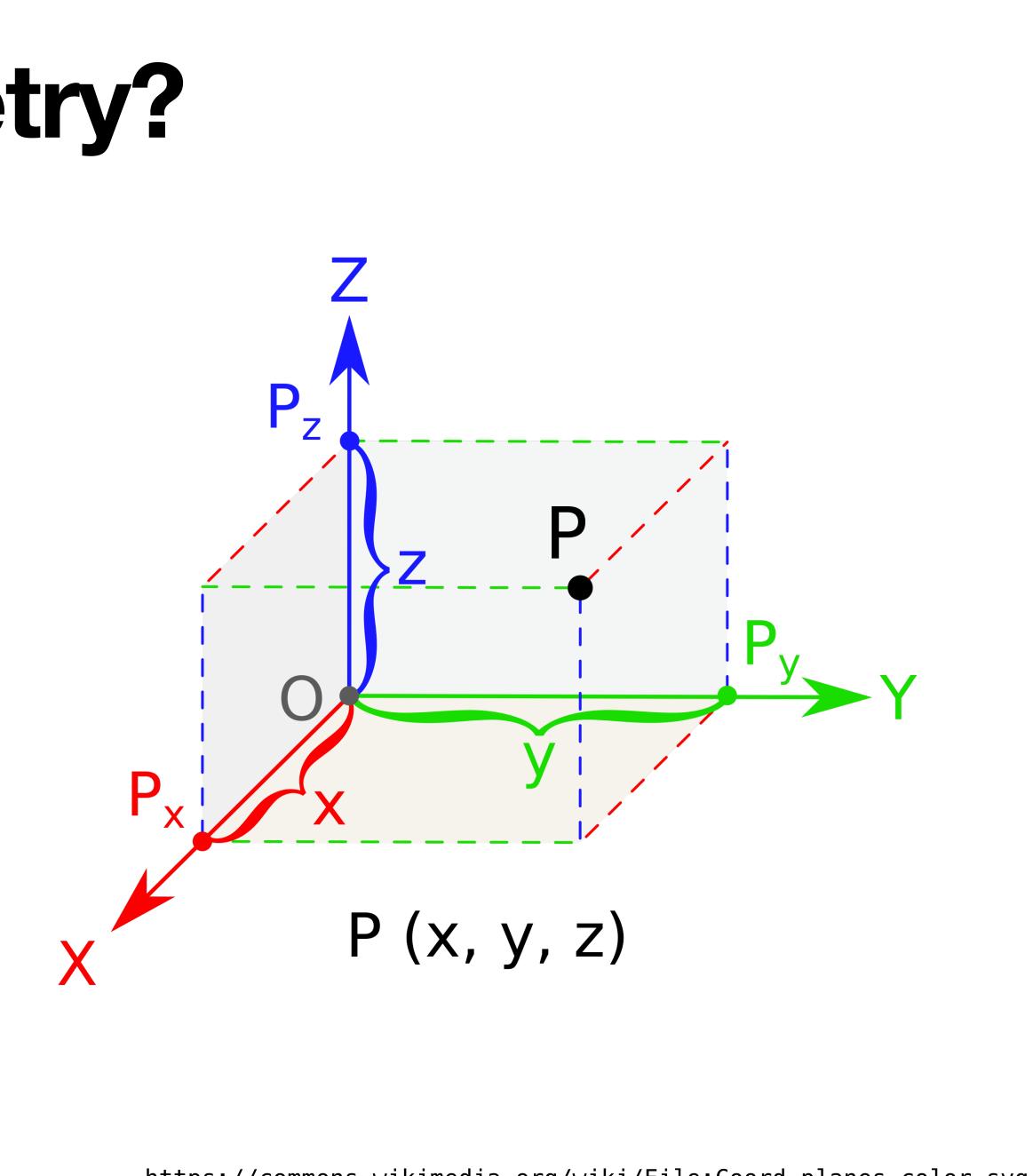
We're interested in <u>equations</u> about lines, curves, shapes, angles, etc.



Analytic geometry is the study of space using a <u>coordinate system</u>.

We're interested in <u>equations</u> about lines, curves, shapes, angles, etc.

The fundamental concepts are:

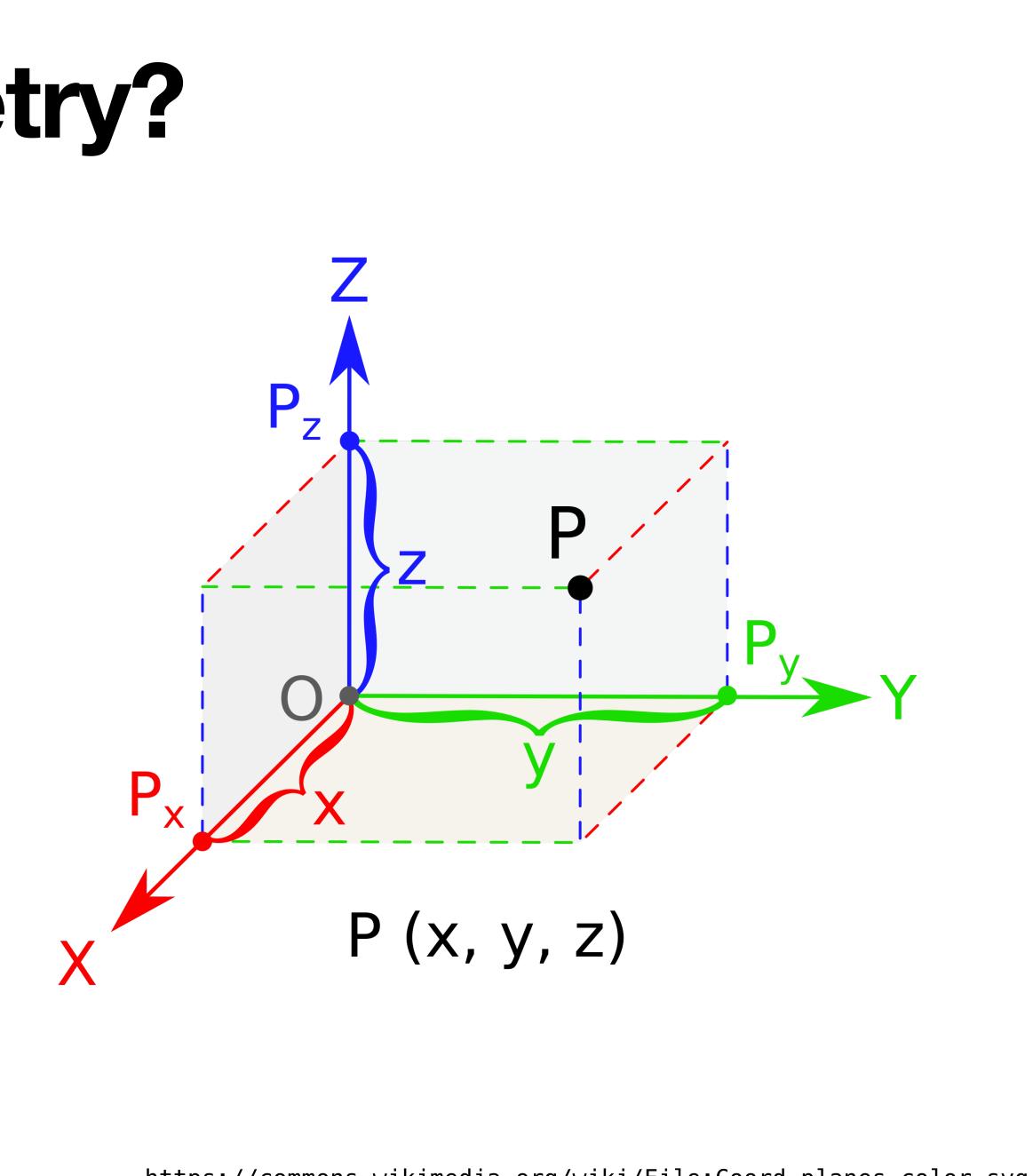


Analytic geometry is the study of space using a <u>coordinate system</u>.

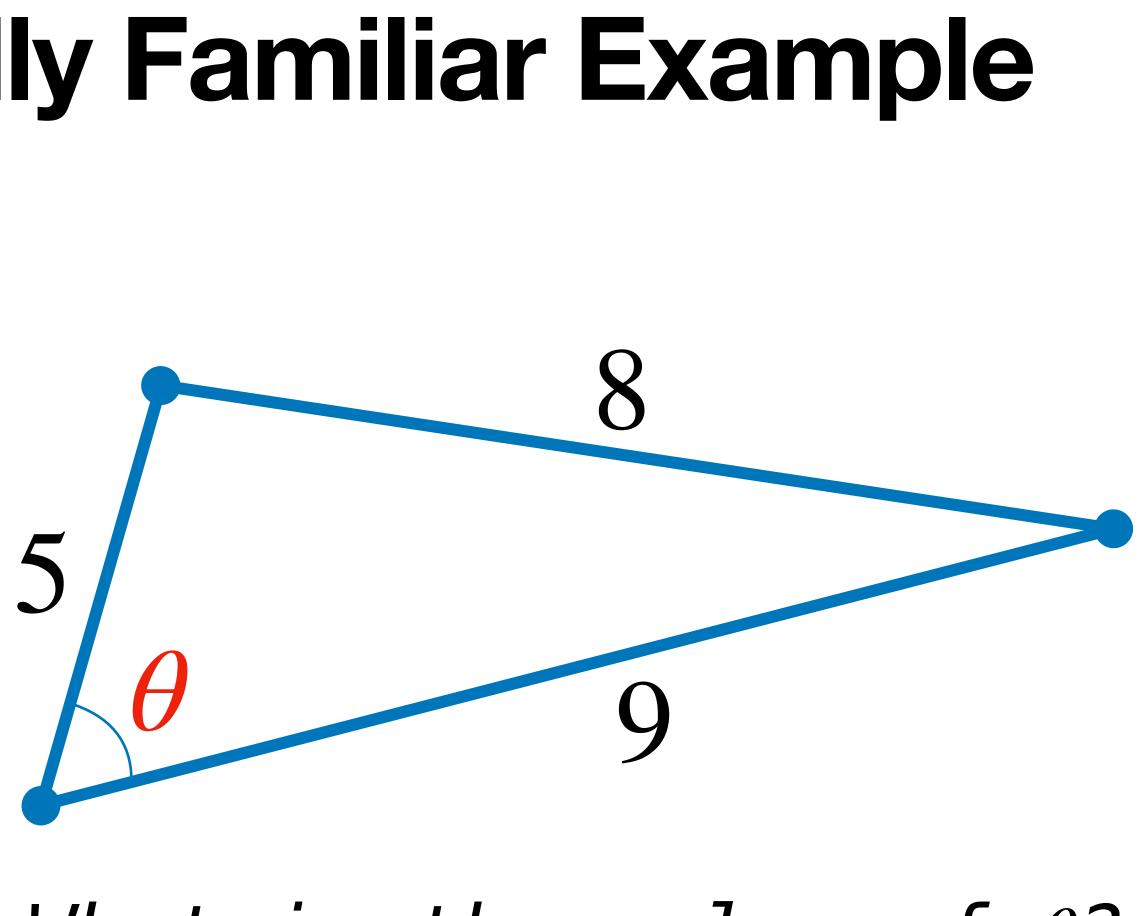
We're interested in <u>equations</u> about lines, curves, shapes, angles, etc.

The fundamental concepts are:

>> distance >> position >> area >> angle



A Potentially Familiar Example

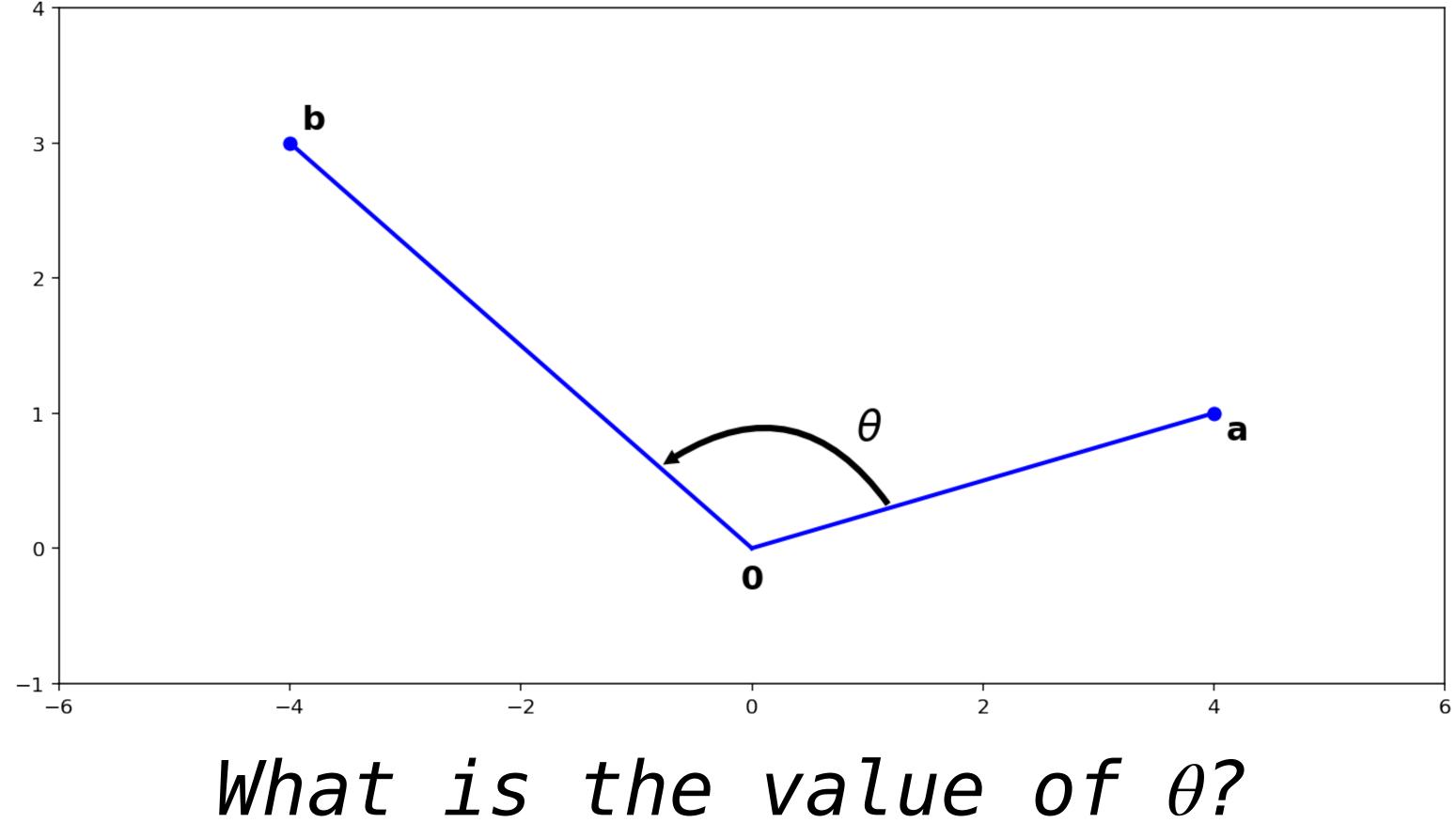


What is the value of θ ?

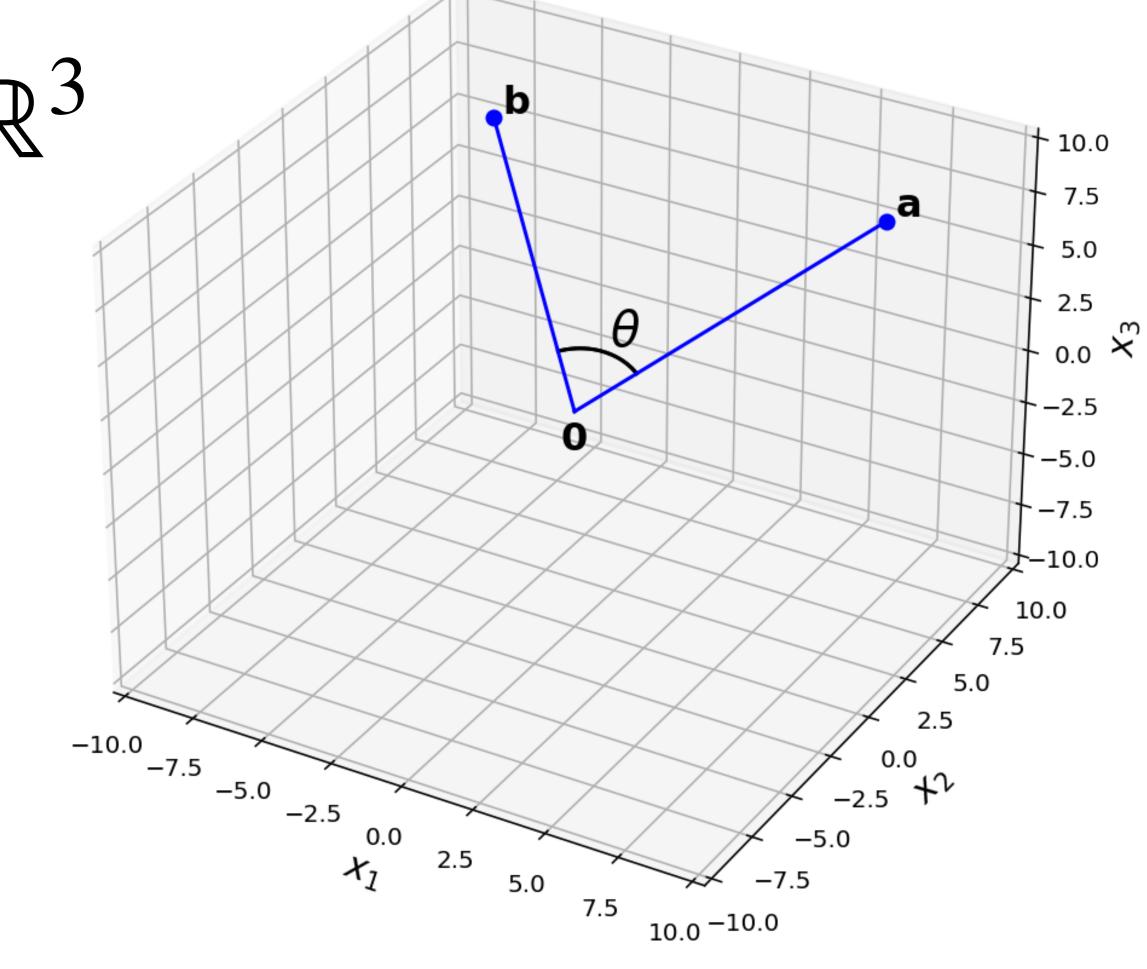
https://www.mathsisfun.com/algebra/trig-cosine-law.html



Angles in \mathbb{R}^2



Angles in \mathbb{R}^3



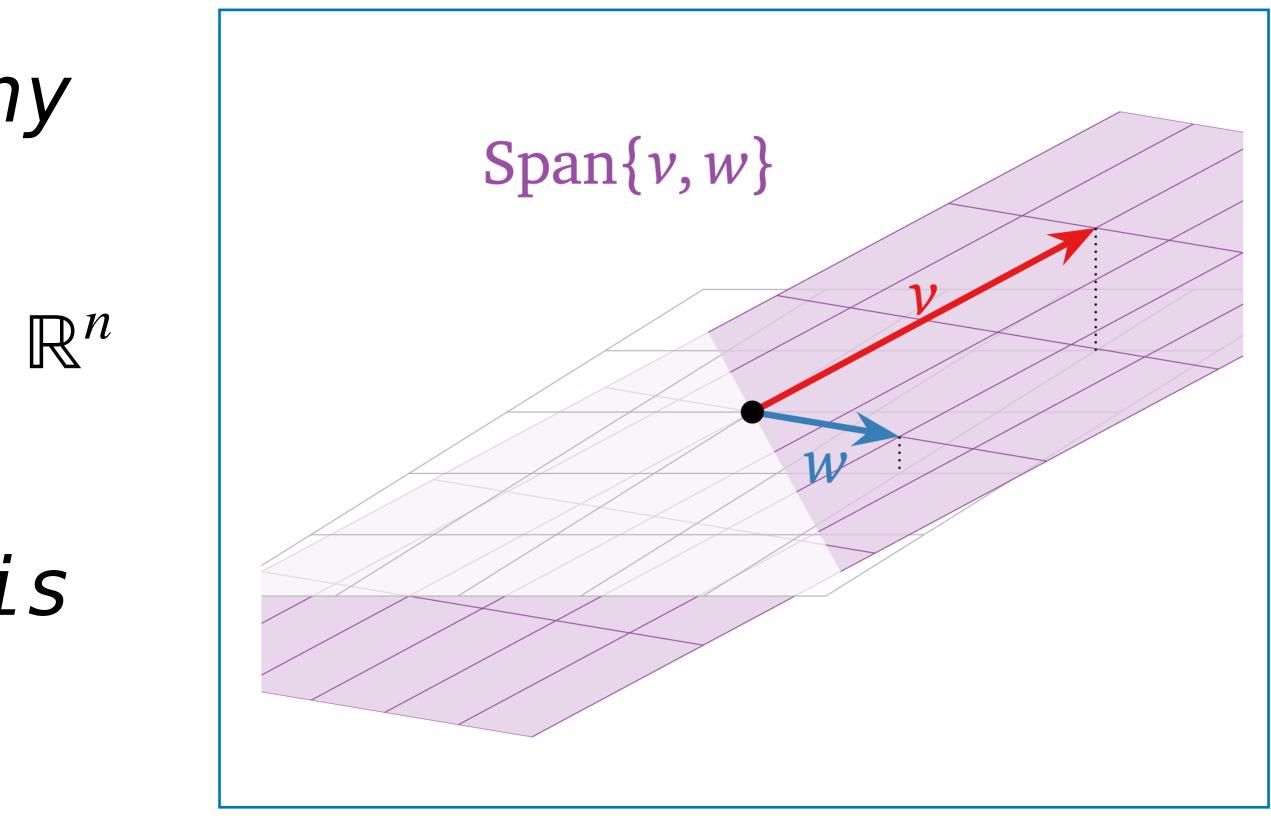
What is the value of θ ?

The First Key Idea

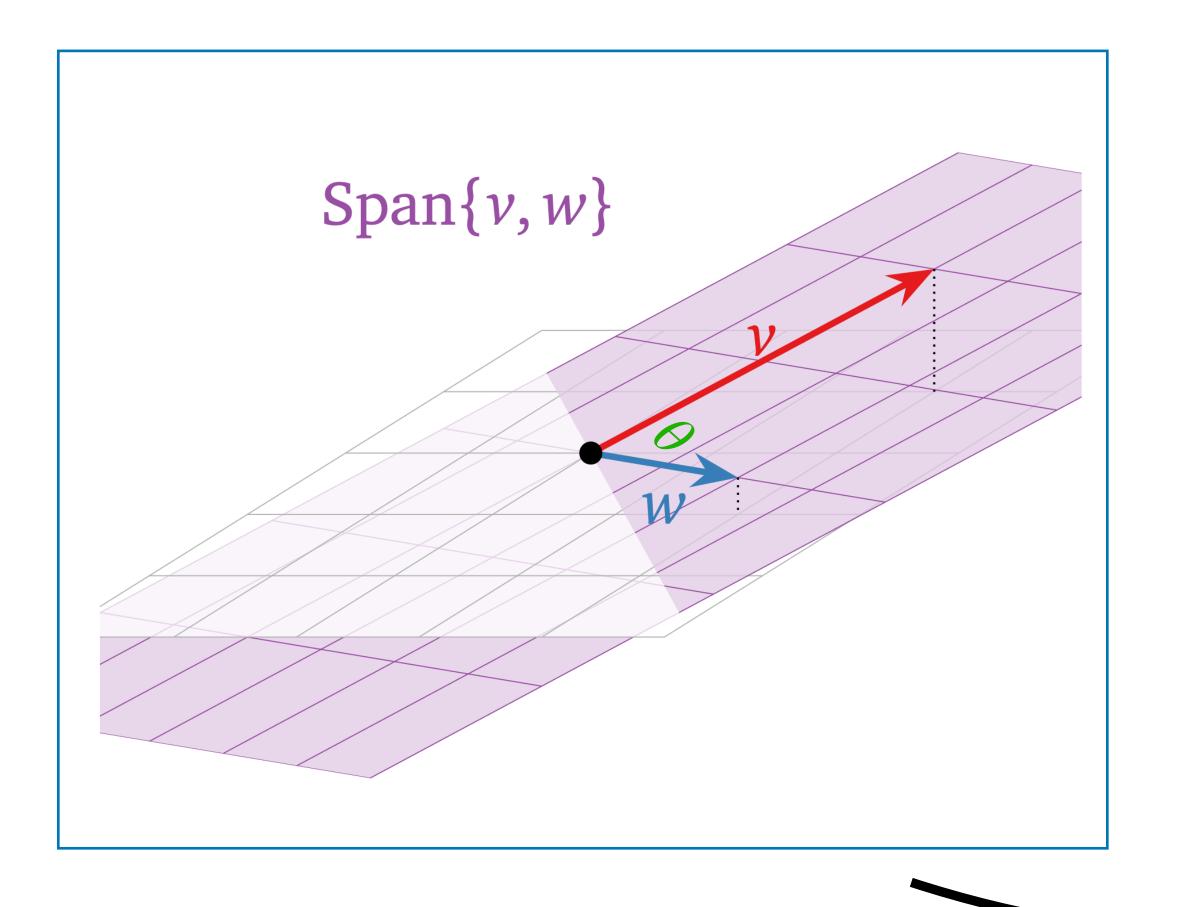
Angles make sense in *any* dimension.

Any pair of vectors in \mathbb{R}^n span a (2D) plane.

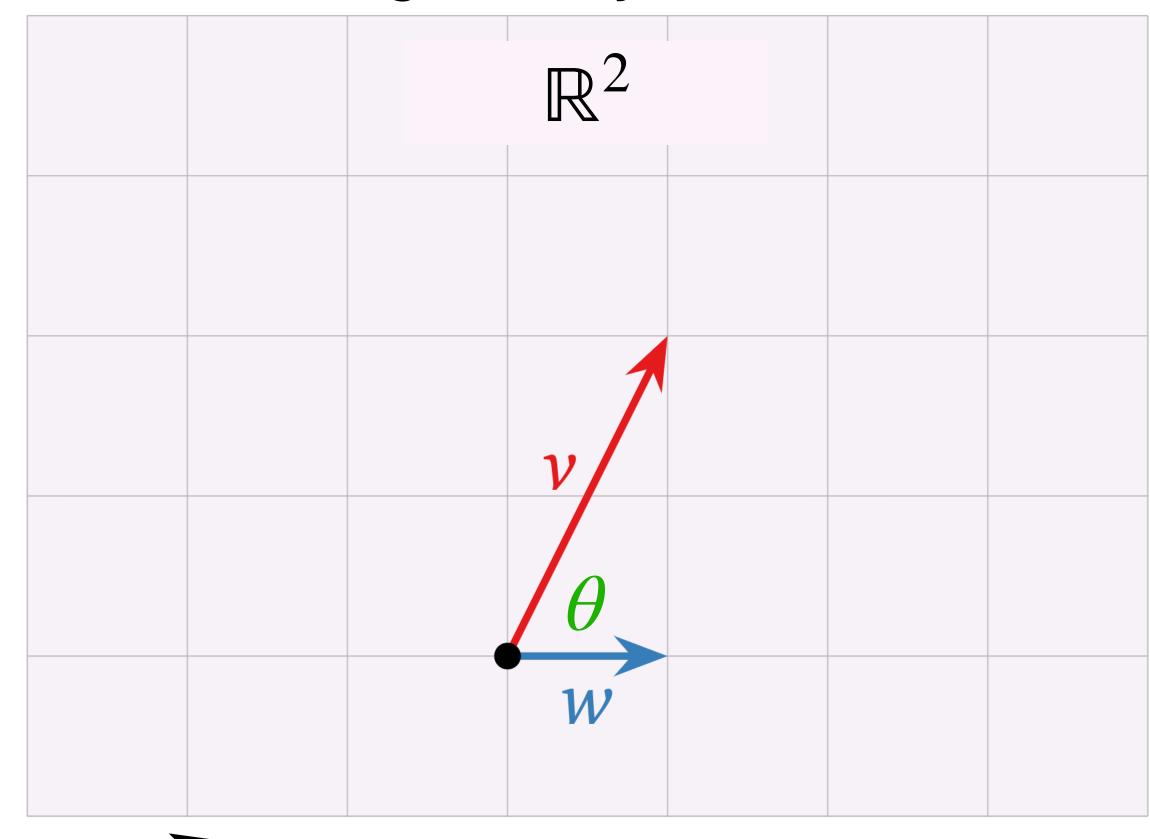
(We could formalize this via change of bases)



The Picture



We can do "normal" analytic geometry here

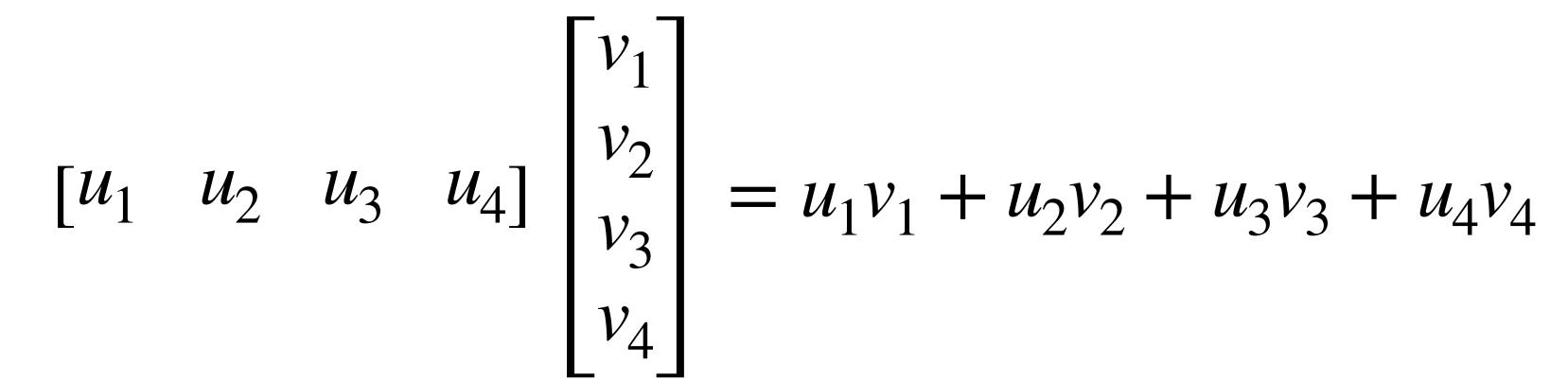


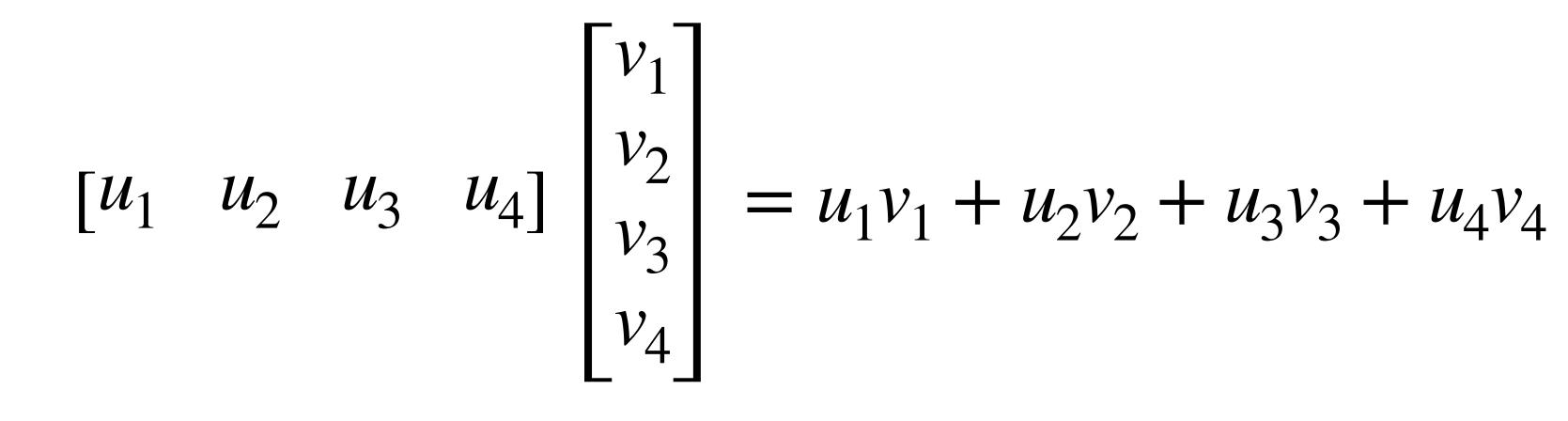
change of basis from span{v, w} to \mathbb{R}^2

A Fundamental Question

been learning?

Doing this change of basis every time we want to do geometry is a lot of work... Can we do it directly using ideas we've

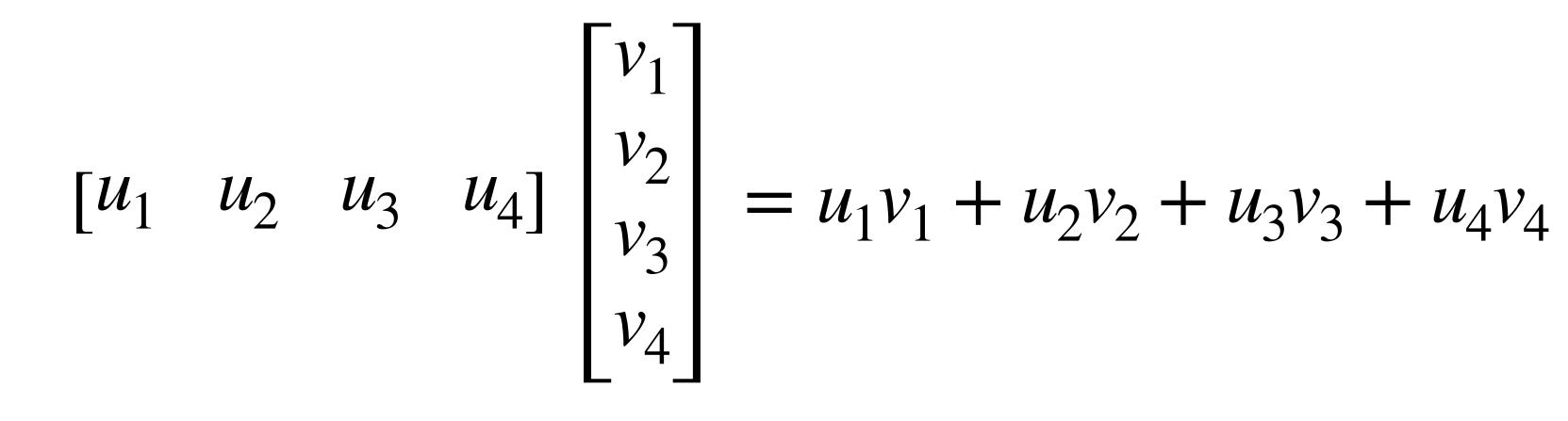




and v in \mathbb{R}^n is

Definition. The inner product of two vectors u

 $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$



Definition. The inner product of two vectors u and v in \mathbb{R}^n is a.k.a. dot product

 $\langle \mathbf{u}, \mathbf{v} \rangle =$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$

All of the basic concepts of analytic geometry can be defined *in terms of inner products*.

can be defined in terms of inner products.

is a vector space with an inner product function.

All of the basic concepts of analytic geometry

Definition (Advanced). An inner product space

- can be defined in terms of inner products.
- is a vector space with an inner product function.
- vou can do analvtic geometry.

All of the basic concepts of analytic geometry

Definition (Advanced). An inner product space

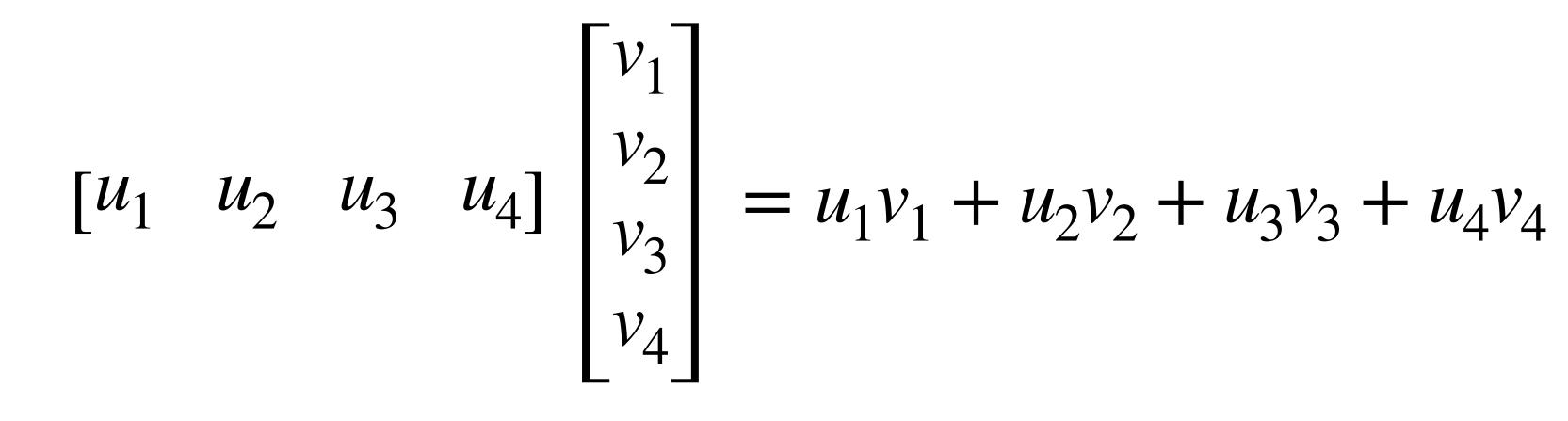
Inner product spaces (like \mathbb{R}^n) are places where

The Fundamental Question

How do we do analytic geometry, given we have an inner product?

Inner Products

Recall: Inner Products (Again)

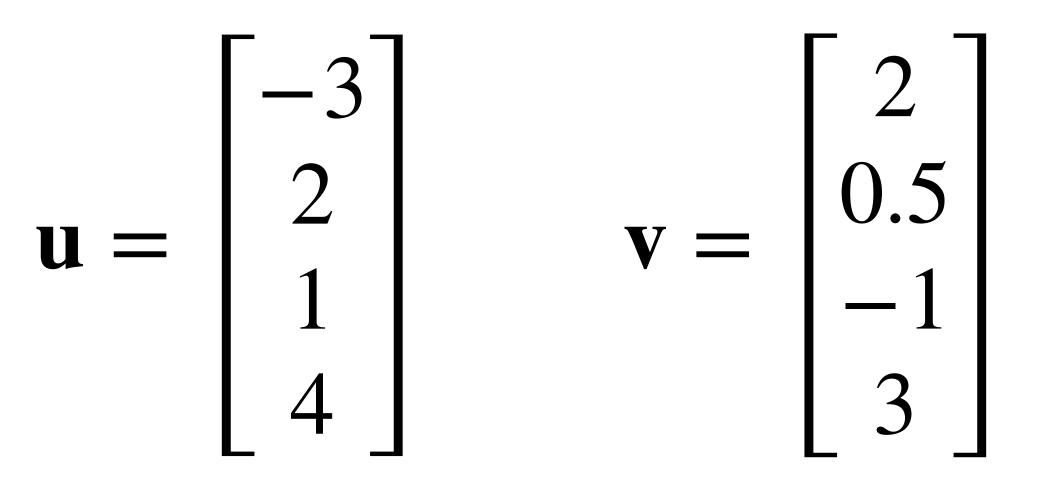


Definition. The inner product of two vectors u and v in \mathbb{R}^n is a.k.a. dot product

 $\langle \mathbf{u}, \mathbf{v} \rangle =$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$

Example



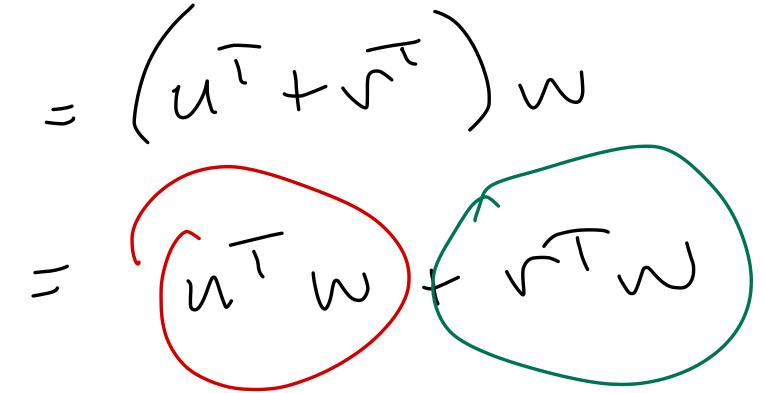
Algebraic Properties of Inner Products

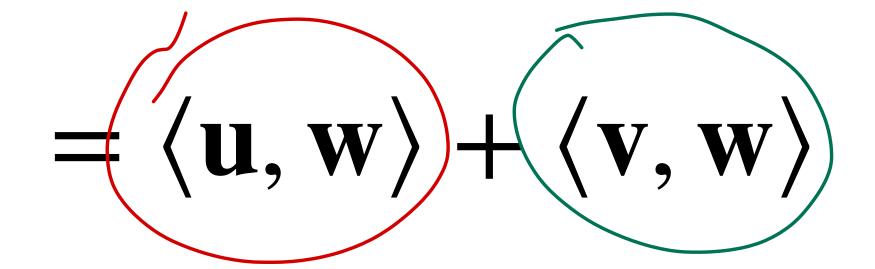
- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (symmetry)

- $\mathbf{u} \cdot \mathbf{u} \ge 0$ (nonnegativity)
- $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = 0$

• $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) + (\mathbf{v} \cdot \mathbf{w})$ • $(\alpha \mathbf{u}) \cdot \mathbf{v} = \alpha(\mathbf{u} \cdot \mathbf{v})$ Iinearity in the first argument

Verifying Additivity $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle =$ $(u+v)^{\top}w = (u^{\top}+v^{\top})w$





Homogeneity in the Right Argument $\langle \mathbf{V}, C\mathbf{u} \rangle = C \langle \mathbf{V}, \mathbf{u} \rangle$

Verify: $\langle v, cu \rangle = \langle cu, v \rangle = c \langle u, v \rangle = \langle v, v \rangle$

An Aside: What is this linear transformation? $\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \mapsto \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$

Let's find the matrix for this transformation:

 $\begin{bmatrix}
3 & 0 & 0 & 1 \\
0 & 5 & 0 & 1 \\
0 & 0 & 7 &
\end{bmatrix}$

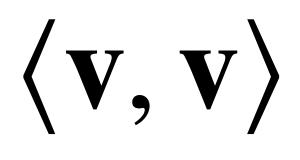
Algebraic Properties of Inner Products

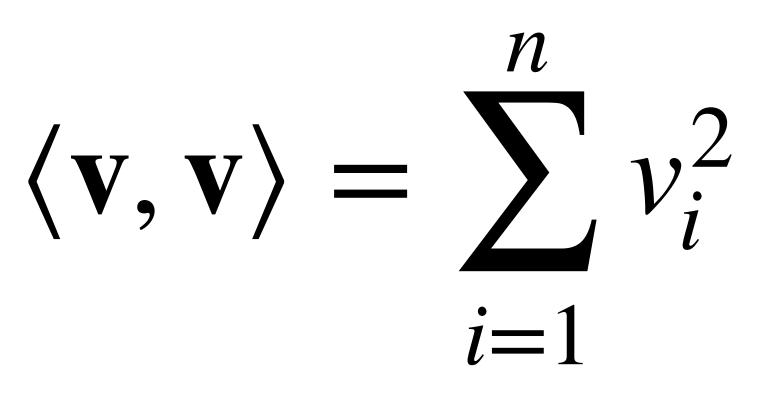
- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (symmetry)

- $\mathbf{u} \cdot \mathbf{u} \ge 0$ (nonnegativity)
- $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = 0$

• $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) + (\mathbf{v} \cdot \mathbf{w})$ • $(\alpha \mathbf{u}) \cdot \mathbf{v} = \alpha(\mathbf{u} \cdot \mathbf{v})$ Iinearity in the first argument

Nonnegativity





Nonnegativity

Squared values are <u>always nonnegative</u>.

$\langle \mathbf{v}, \mathbf{v} \rangle = \sum v_i^2$ i=1

Nonnegativity

Squared values are <u>always nonnegative</u>. Therefore $\langle v, v \rangle$ is always nonnegative.

 $\langle \mathbf{v}, \mathbf{v} \rangle = \sum v_i^2$ i=1

Nonnegativity

Squared values are <u>always nonnegative</u>.

Therefore $\langle v, v \rangle$ is always nonnegative.

Question. What happens when we scale a vector to make it longer?

 $\langle \mathbf{v}, \mathbf{v} \rangle = \sum v_i^2$ i=1

$\langle c\mathbf{v}, c\mathbf{v} \rangle = c^2 \langle \mathbf{v}, \mathbf{v} \rangle = c^2 \sum v_i^2$ i=1

If c > 0 then $\langle cv, cv \rangle > \langle v, v \rangle$.

$\langle c\mathbf{v}, c\mathbf{v} \rangle = c^2 \langle \mathbf{v}, \mathbf{v} \rangle = c^2 \sum v_i^2$ i=1

 $\langle c\mathbf{v}, c\mathbf{v} \rangle = c^2 \langle \mathbf{v}, \mathbf{v} \rangle = c^2 \sum_i v_i^2$ i=1

If c > 0 then $\langle cv, cv \rangle > \langle v, v \rangle$. Increasing the length of a vector increases its inner product with itself.

 $\langle c\mathbf{v}, c\mathbf{v} \rangle = c^2 \langle \mathbf{v}, \mathbf{v} \rangle = c^2 \sum_i v_i^2$ i=1

If c > 0 then $\langle cv, cv \rangle > \langle v, v \rangle$. Increasing the length of a vector increases its inner product with itself. This means $\langle v,v\rangle$ is capturing some notion of magnitude.

The Fundamental Question

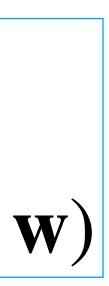
How does this all connect back to distances and angles?

Question

Simplify the expression $\langle \mathbf{u}+\mathbf{v},\mathbf{u}-\mathbf{v}\rangle$ using the properties of inner products.

•
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

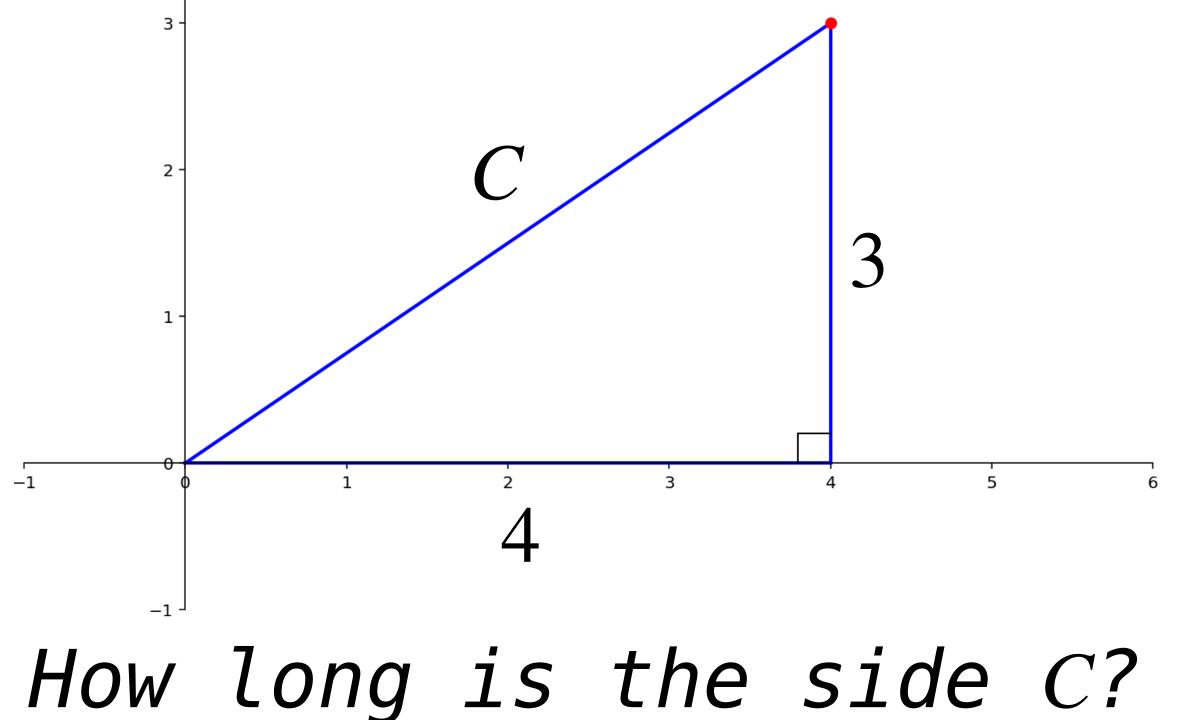
• $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) + (\mathbf{v} \cdot \mathbf{w})$



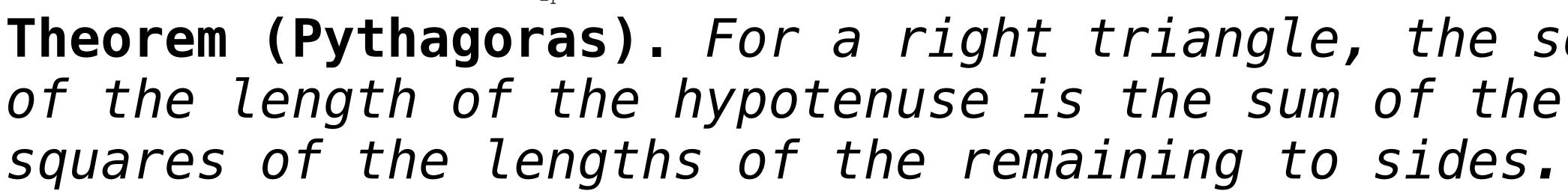
Answer: $\langle u, u \rangle - \langle v, v \rangle$

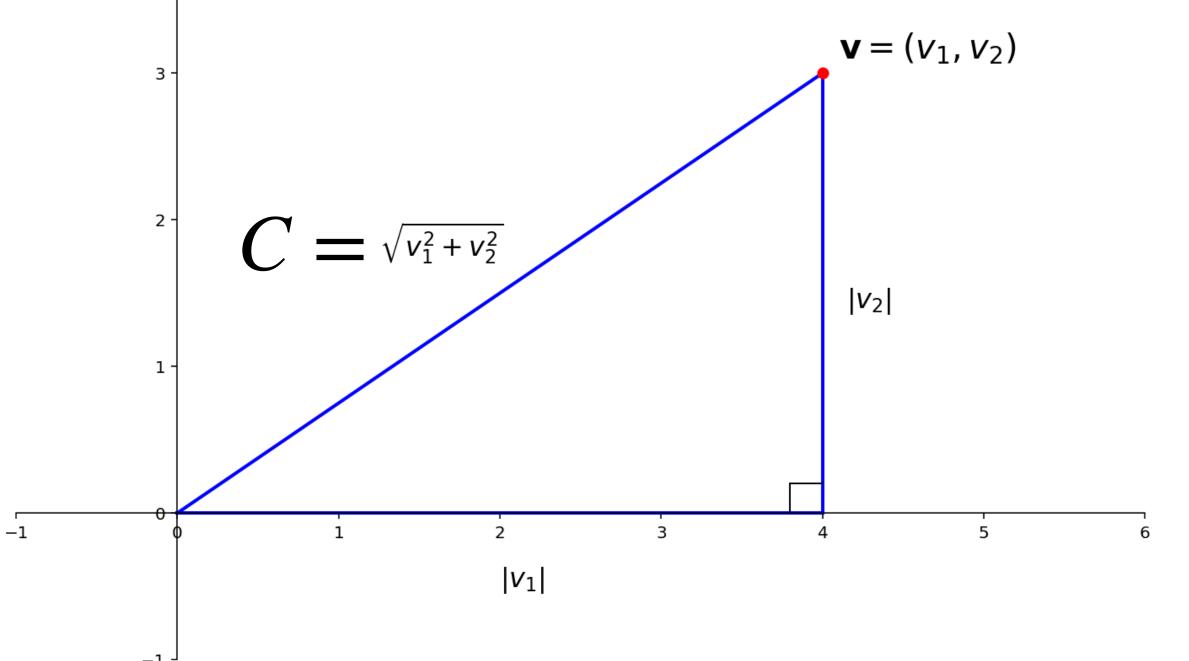
Norms (Lengths/Distances)

Another Potentially Familiar Question



Pythagorean Theorem

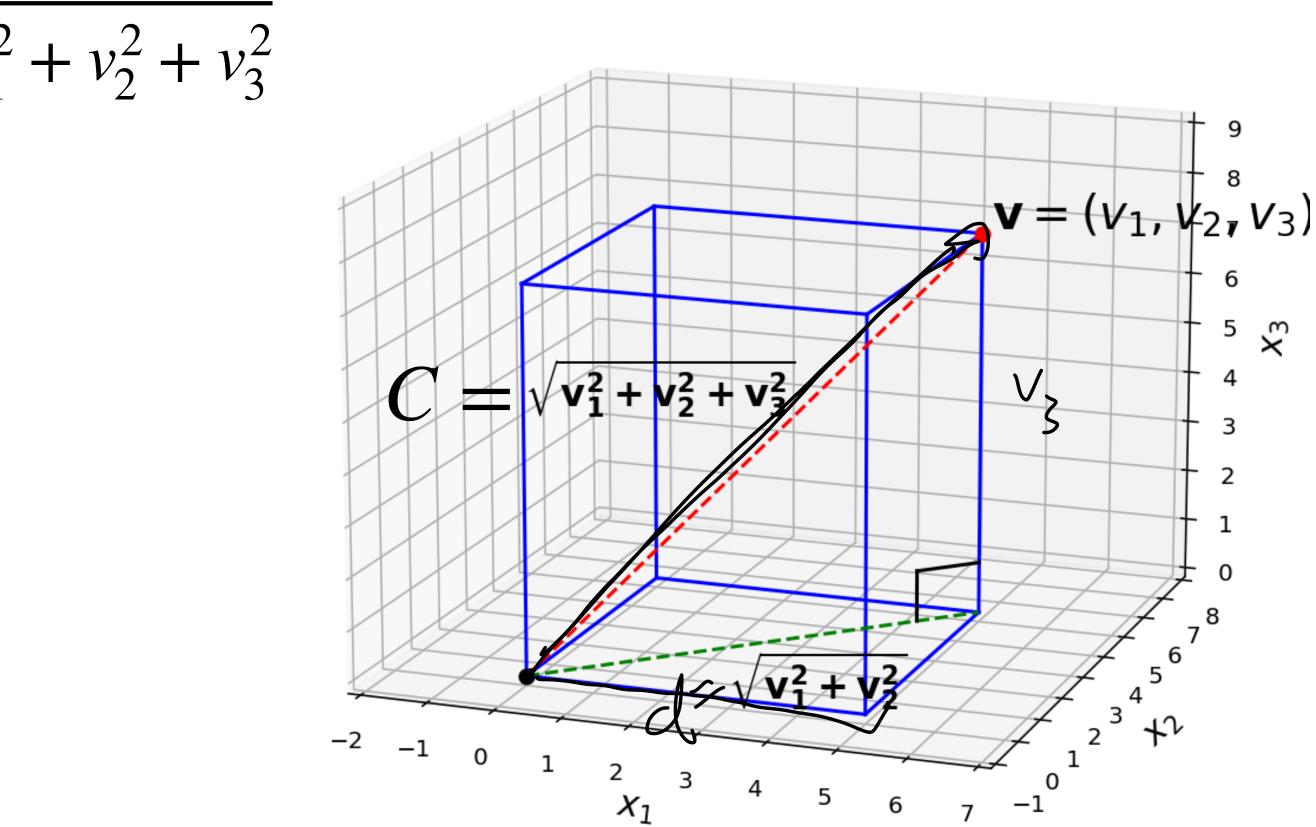




Theorem (Pythagoras). For a right triangle, the square

This still works in \mathbb{R}^3

- Theorem (Pythagoras). $C = \sqrt{v_1^2}$
- Verify: $C = \sqrt{d^2 + \sqrt{2}}$ $d = \left(\sqrt{2} + \sqrt{2} \right)^2$ $\left\| \int_{1}^{2} \frac{1}{\sqrt{2}} + \sqrt{2} + \sqrt{2} \right\|$



$$v_1^2 + v_2^2 + v_3^2$$

Norm

Definition. The (ℓ^2) norm of a vector v in \mathbb{R}^n is $\|\mathbf{v}\| = \left\| \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \right\| = \sqrt{v_1}$

The norm of a vector is the square root of the sum of the squares of its entries.

$$\overline{v_1^2 + v_2^2 + \dots + v_n^2} = \sqrt{\sum_{i=1}^n v_i^2}$$

Norms and Inner Products

The norm of a vector is the square root of the inner product with itself.

Definition. The ℓ^2 norm of a vector v in \mathbb{R}^n is $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

Norms and Inner Products

The norm of a vector is the square root of the inner product with itself.

It's important that $v^T v$ is nonnegative.

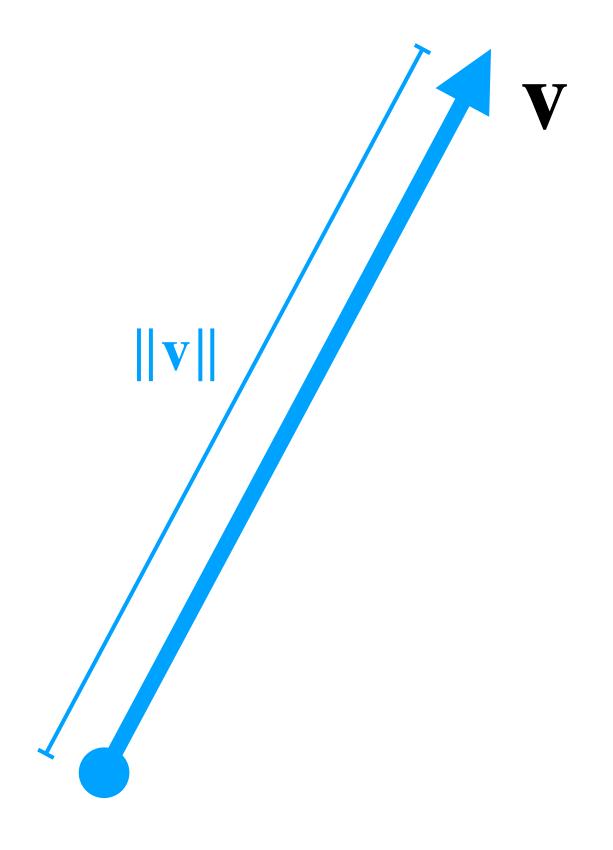
Definition. The ℓ^2 norm of a vector v in \mathbb{R}^n is $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

Norms and Distance

Norms give us a notion of <u>length</u>.

In \mathbb{R}^2 and \mathbb{R}^3 this is our existing notion of length.

ot ur gth.



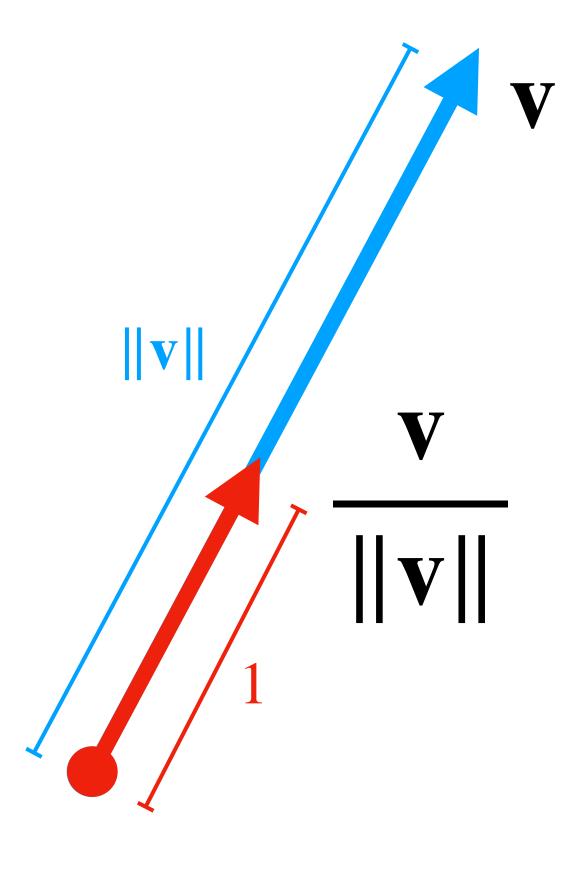
ℓ^2 Normalization

Definition. A unit vector is a vector v such that ||v|| = 1.

We often *normalize* vectors if we only care about their direction:

$$\mathbf{v} \mapsto \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

or is a 1. ors if



How To: Normalizing Vectors

the same direction as u.

Question. Find the unit vector which points in

Solution. Compute ||u||. The unit vector is then

U

||u||

Example

Find the unit vector in the same direction as $\begin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix}$ $\|\nabla\| = \sqrt{\left| \frac{1^{2} + \left(-2\frac{3}{4} + 2^{2} + 0^{2}\right)^{2}}{1 + \left(-2\frac{3}{4} + 2^{2} + 0^{2}\right)^{2}}} = \sqrt{\frac{9}{2}} = \frac{3}{2}$

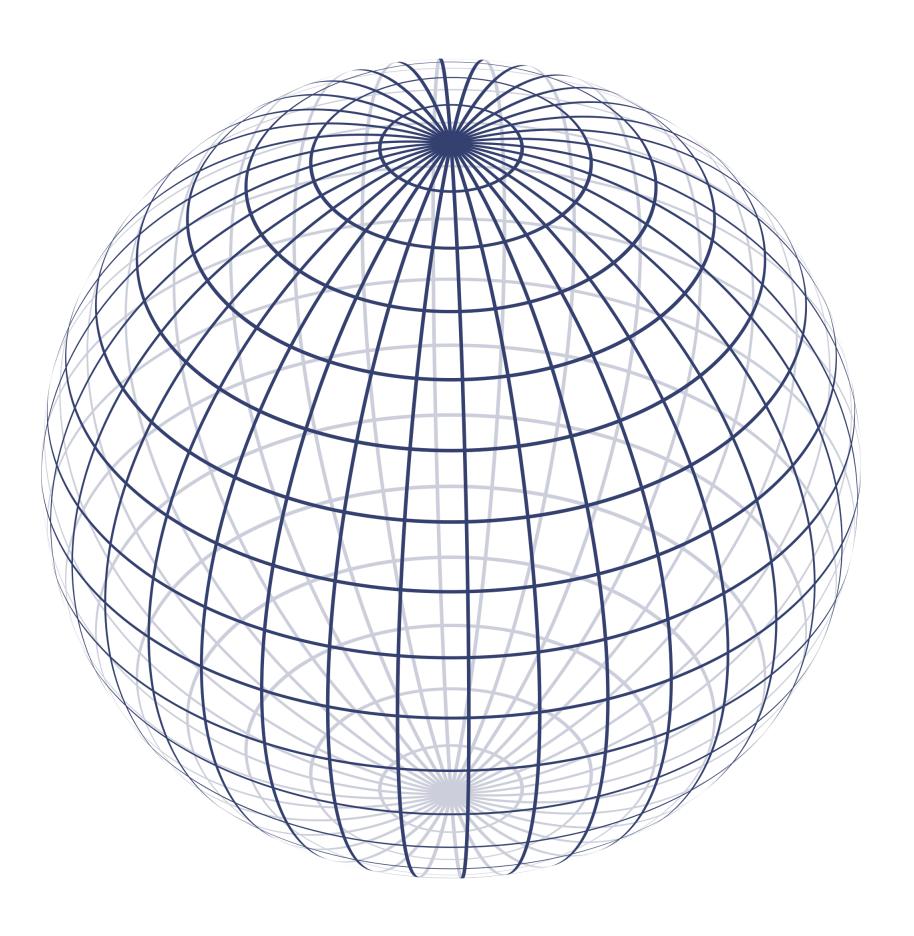
6 J

The Unit Sphere

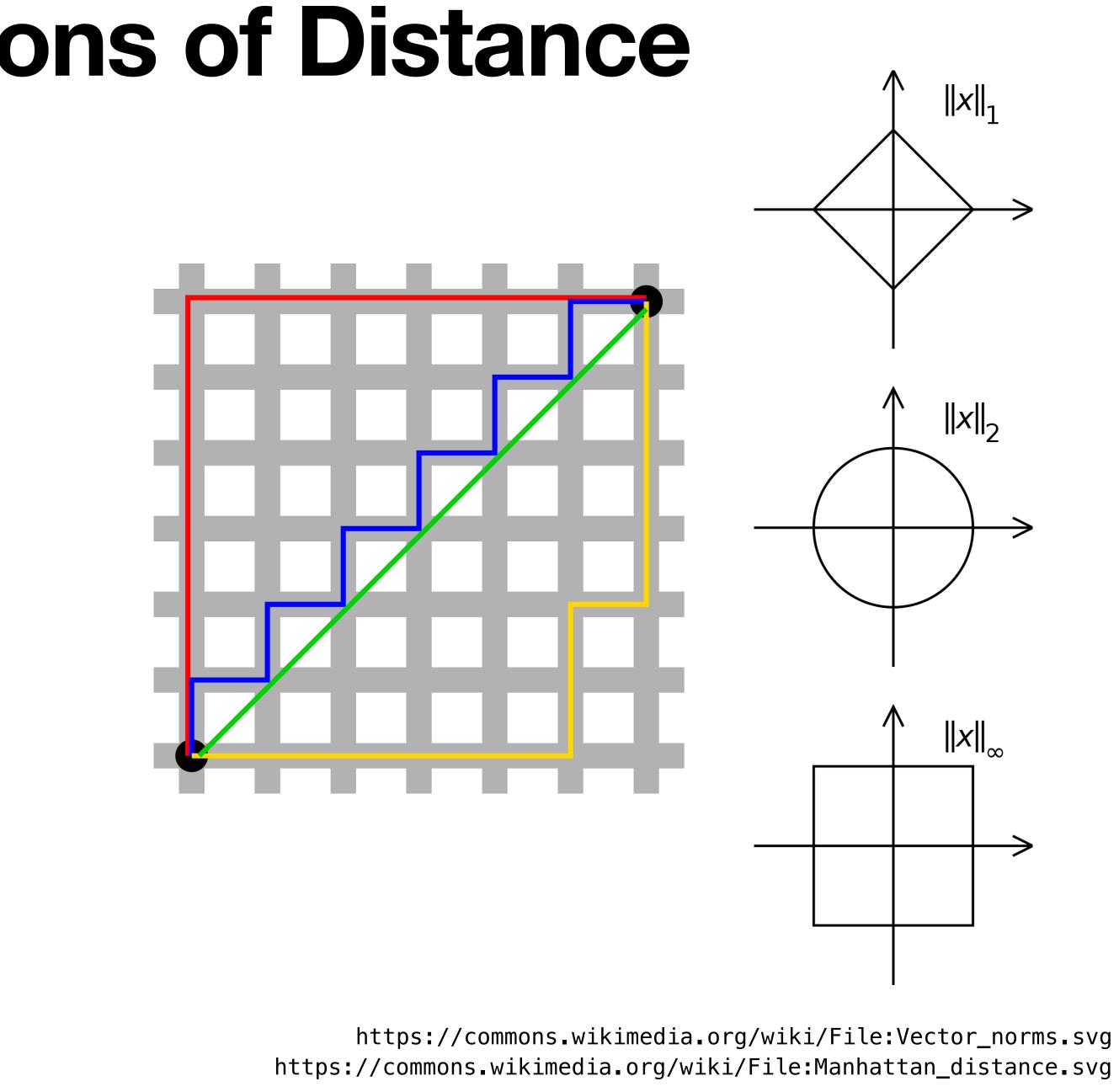
Definition. The unit *n*-sphere is the collection of all unit vectors in \mathbb{R}^n .

Vector norms allow us to talk about spheres in higher dimensions.

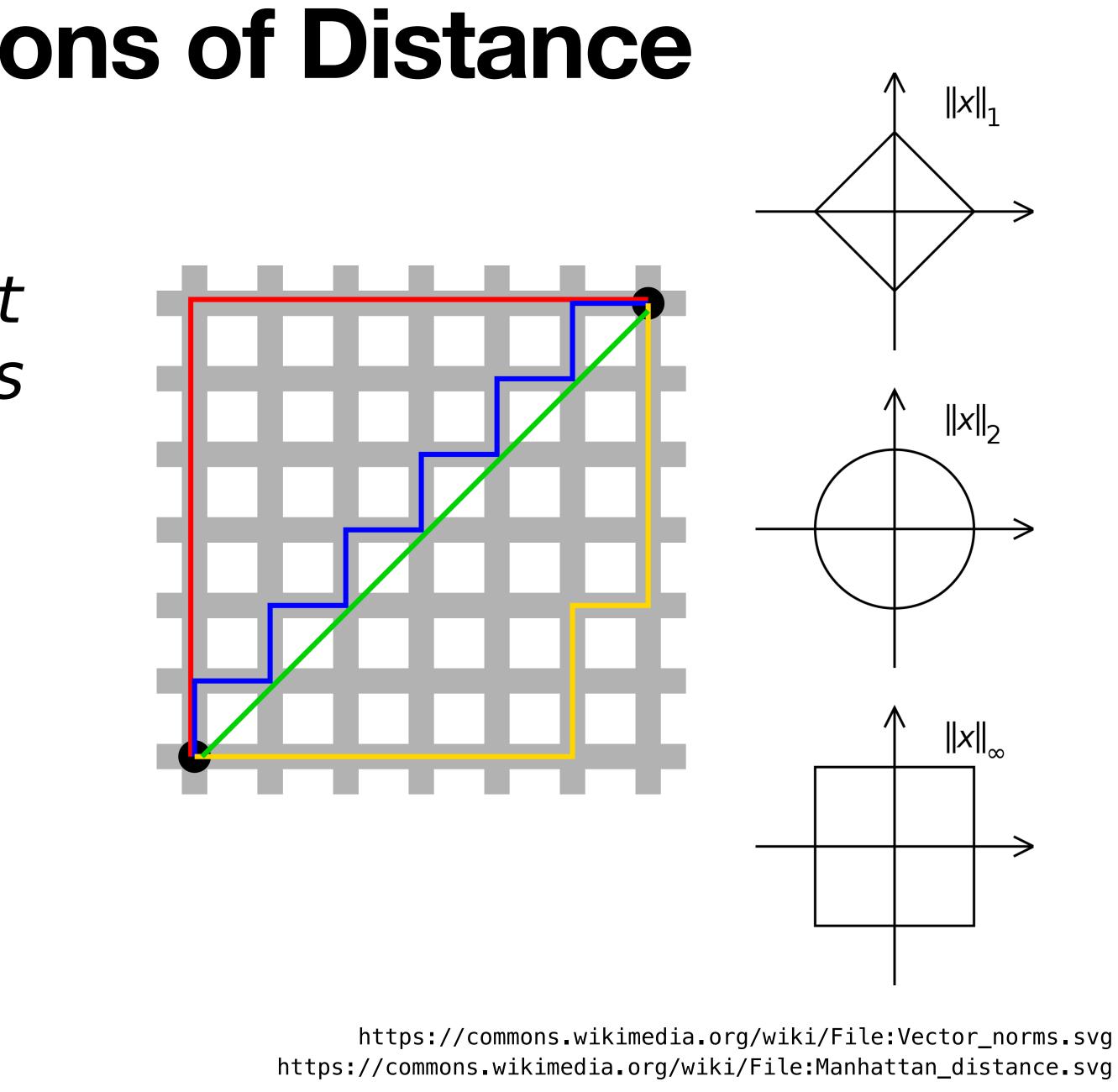
A sphere is a collection of points equidistant from a center point.





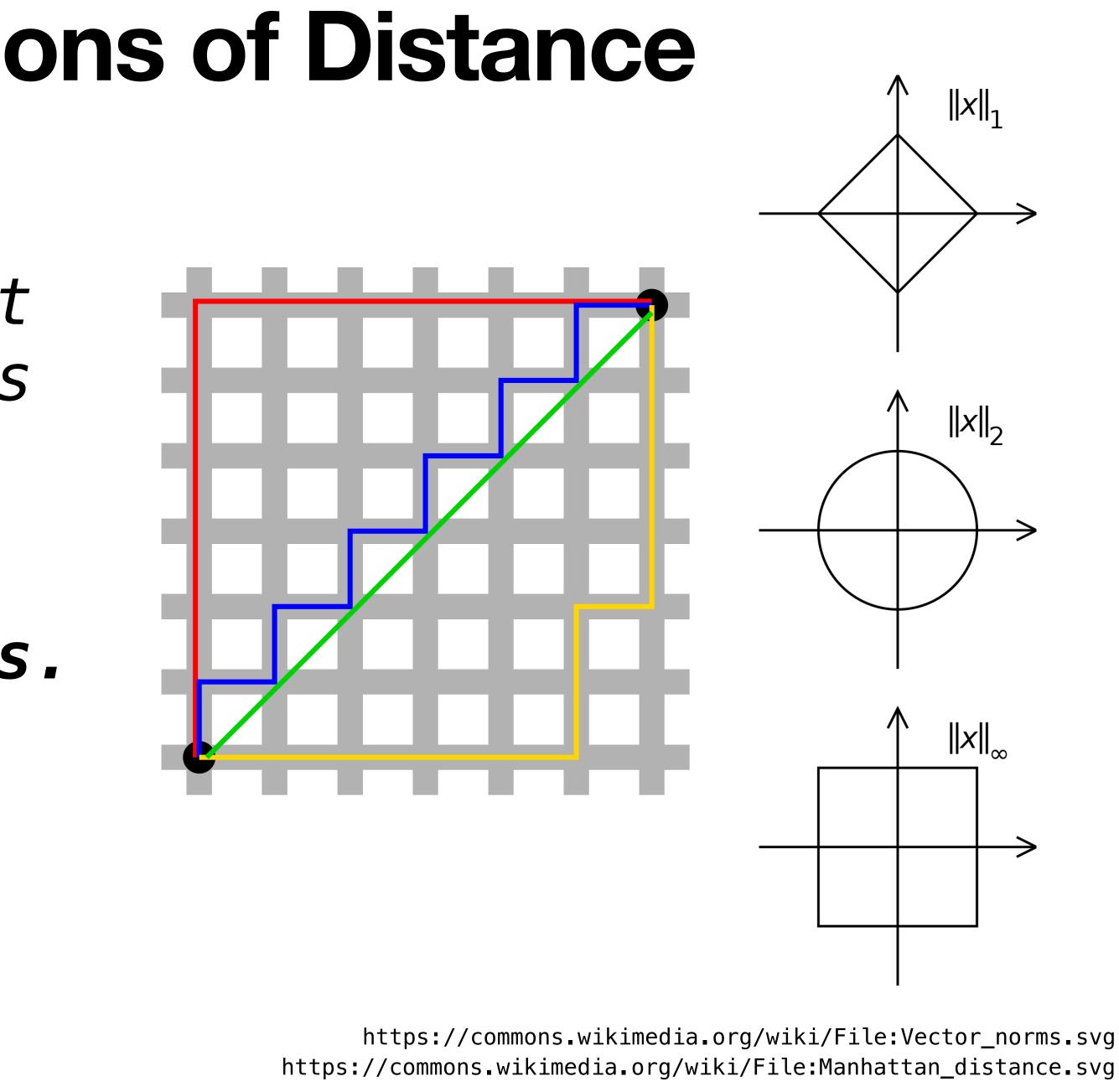


Why are we talking about norms and inner products so generally?



Why are we talking about norms and inner products so generally?

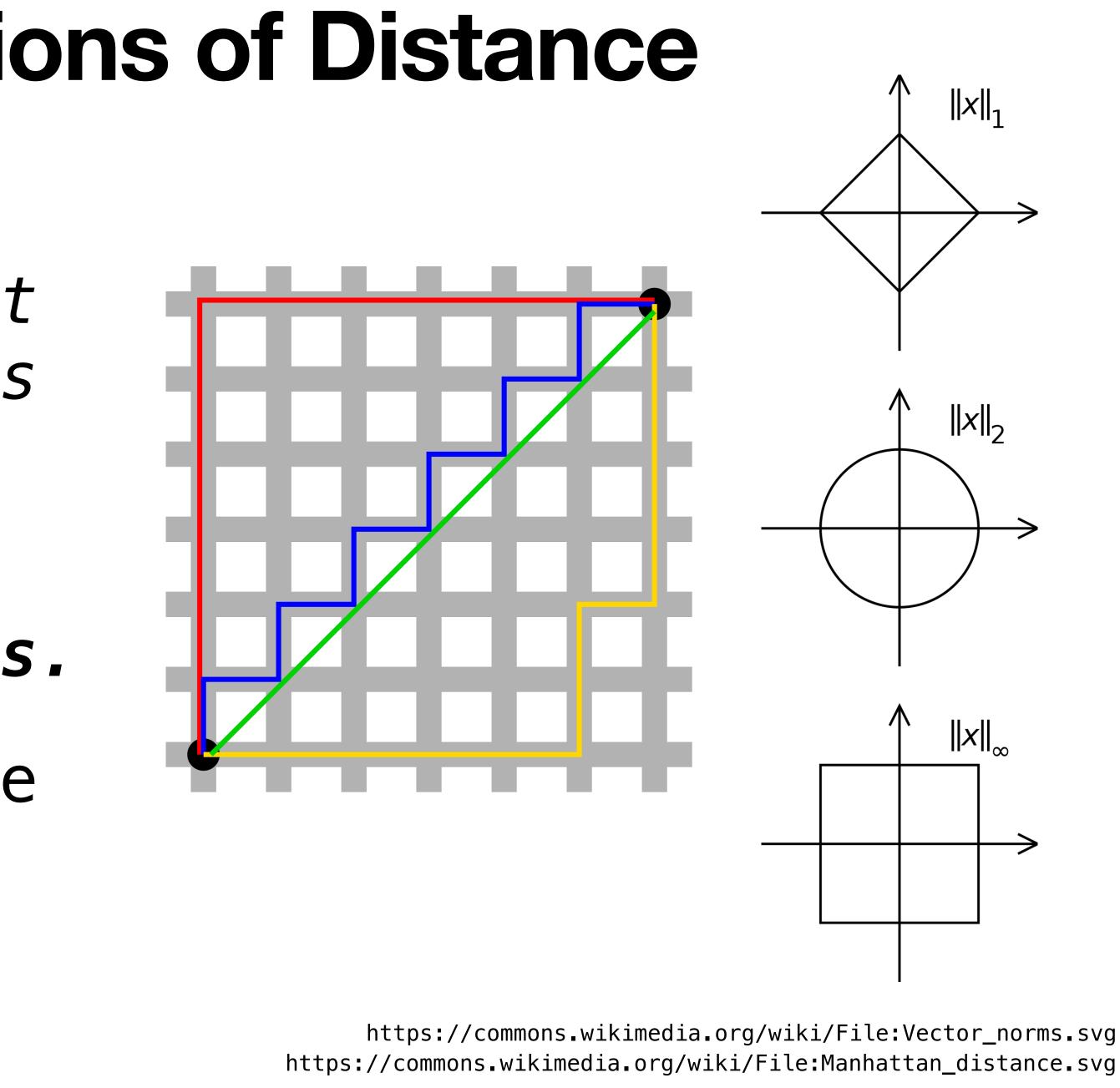
Because there are other inner products and norms.



Why are we talking about norms and inner products so generally?

Because there are other inner products and norms.

e.g., Manhattan distance

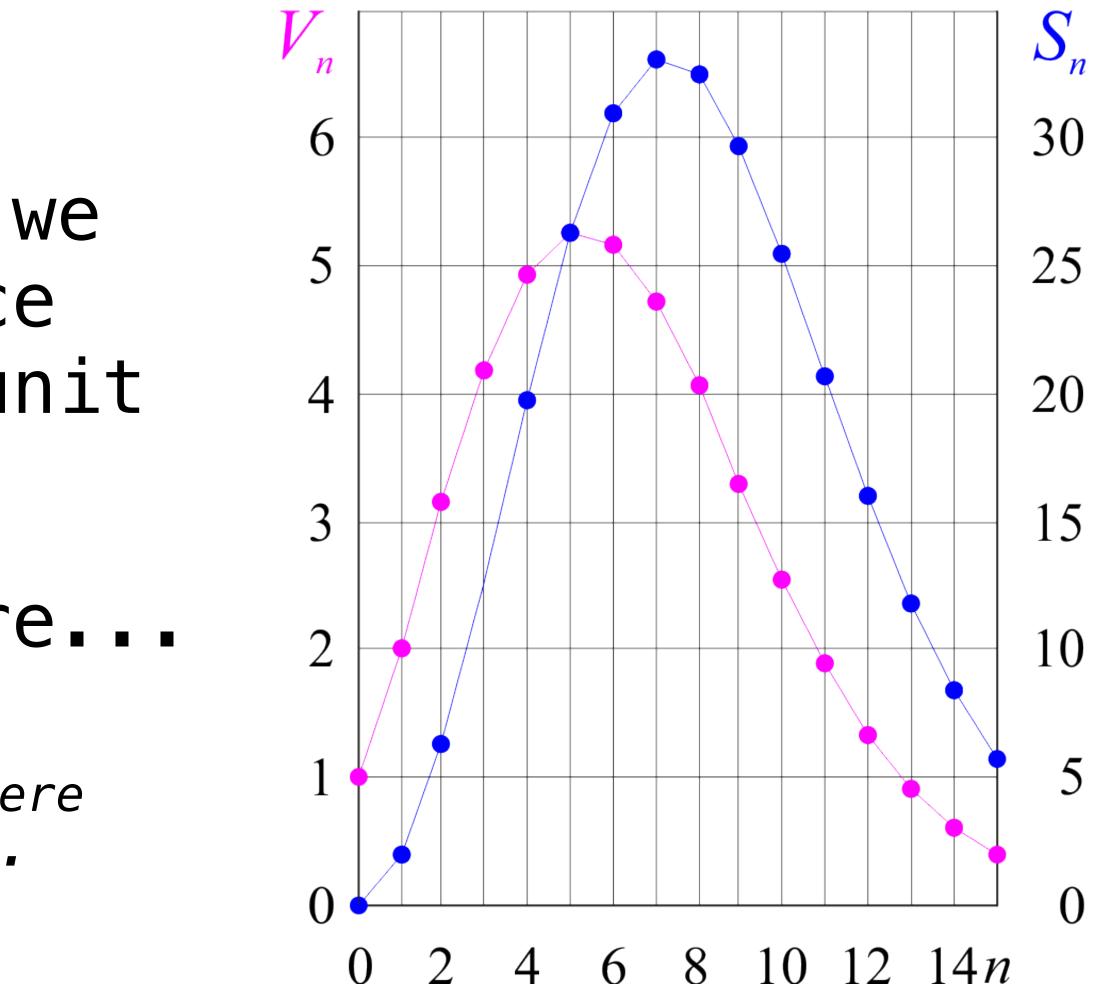


Another Aside: Surface Area and Volume

With a bit of calculus, we can calculate the surface area and volume of the unit *n*-sphere.

And the result is bizarre...

the infinite dimensional unit sphere has no volume or surface area...



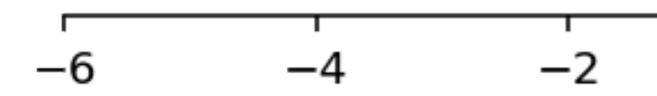
https://commons.wikimedia.org/wiki/File:Graphs_of_volumes_(V)_and_surface_areas_(S)_of_n-balls_of_radius_1.png

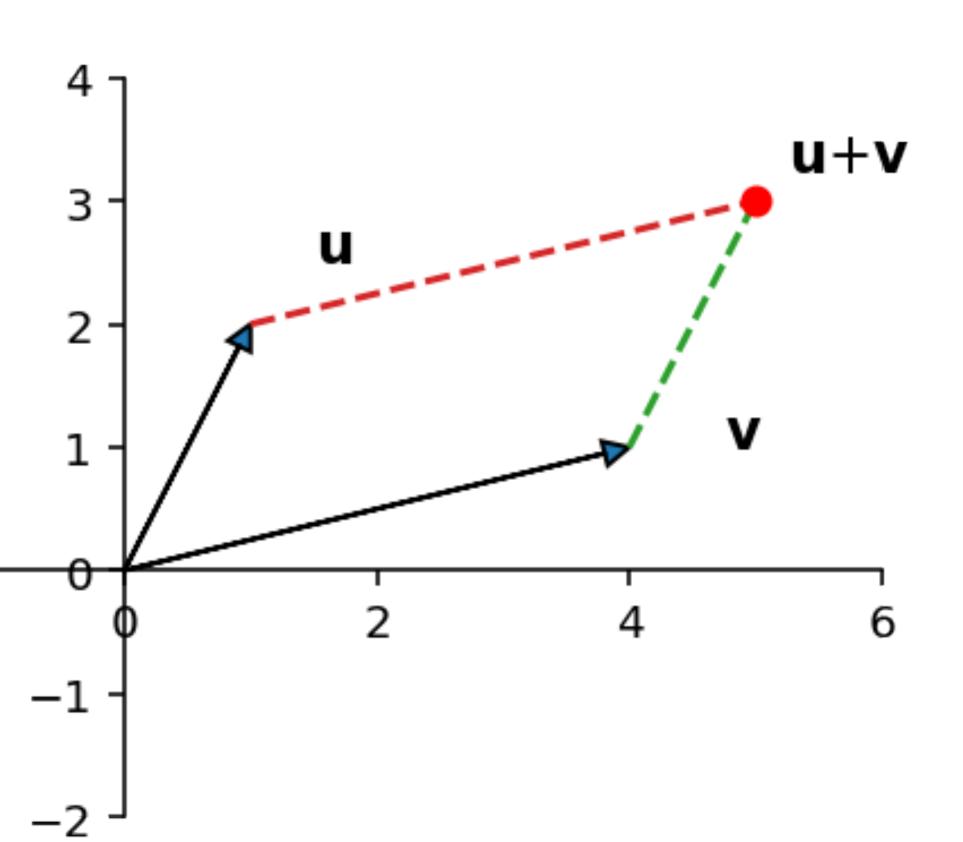
moving on...

Distance

If we know how to calculate lengths of vectors, we know how to calculate distances.

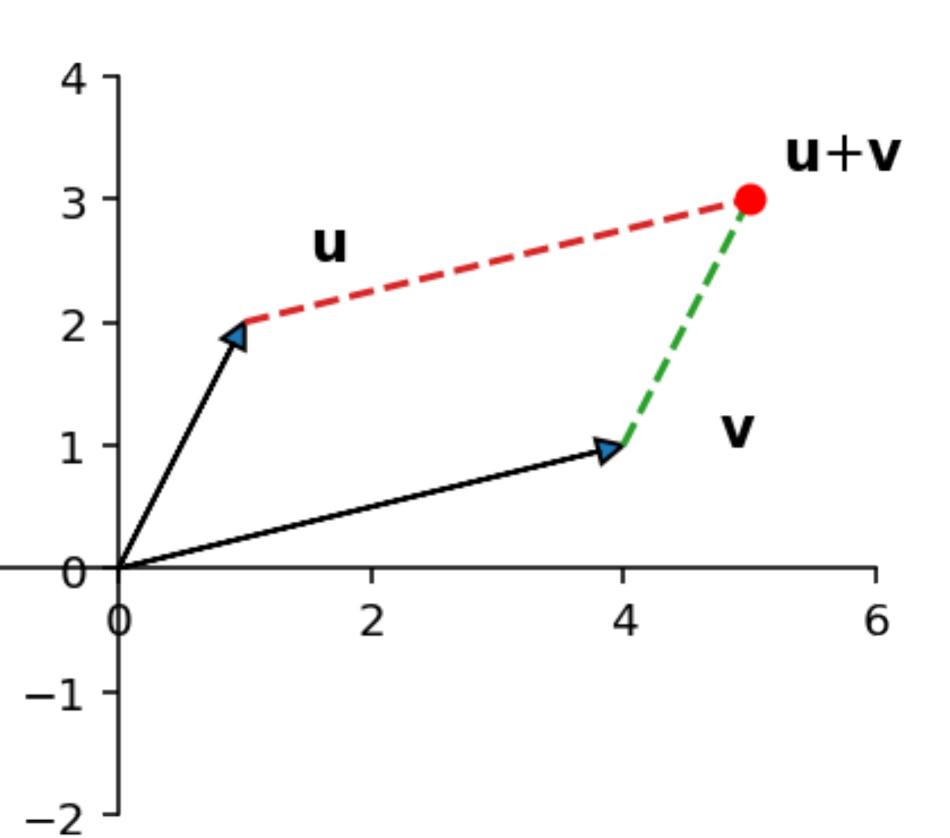
tip-to-tail rule:





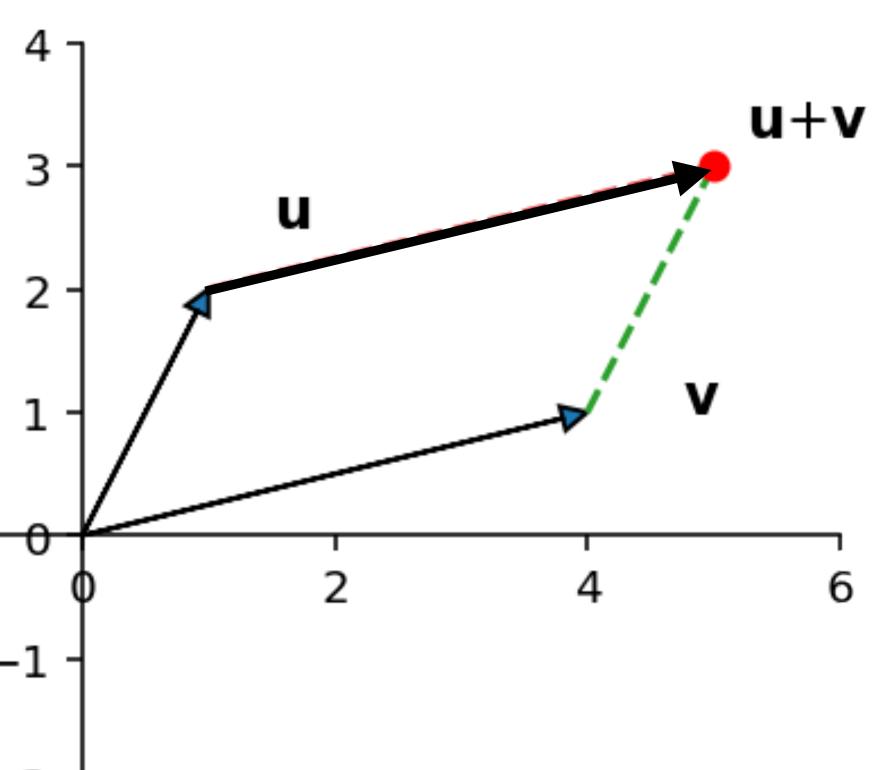
tip-to-tail rule:

u + v result of putting the tail of v to the tip of u (or vice versa)



tip-to-tail rule:

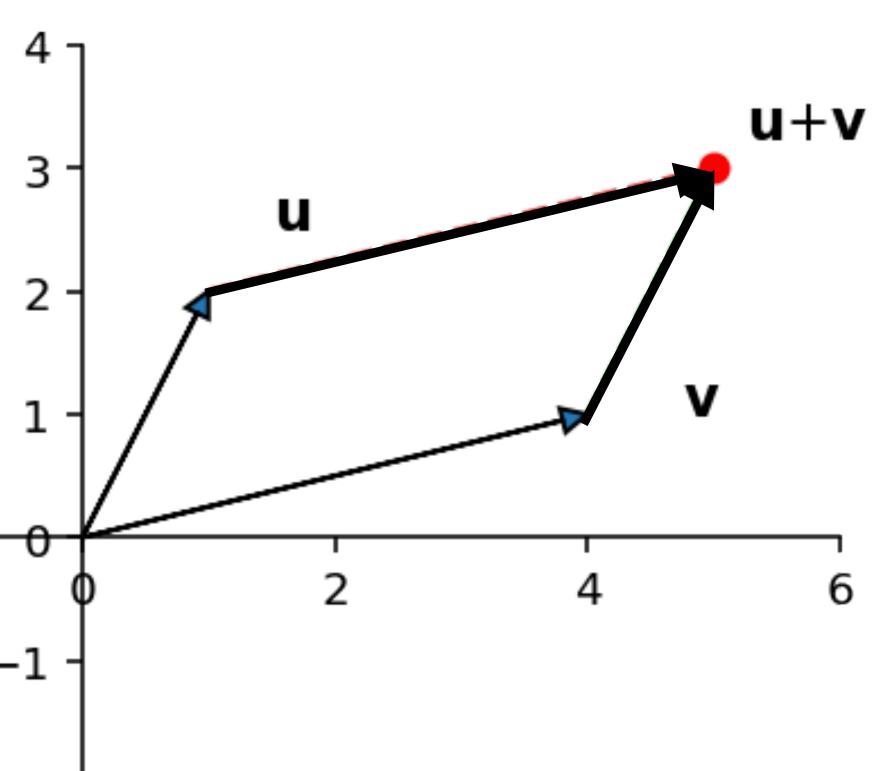
u + v result of putting the tail of v to the tip of u (or vice versa)



-2 .

tip-to-tail rule:

u + v result of putting the tail of v to the tip of u (or vice versa)

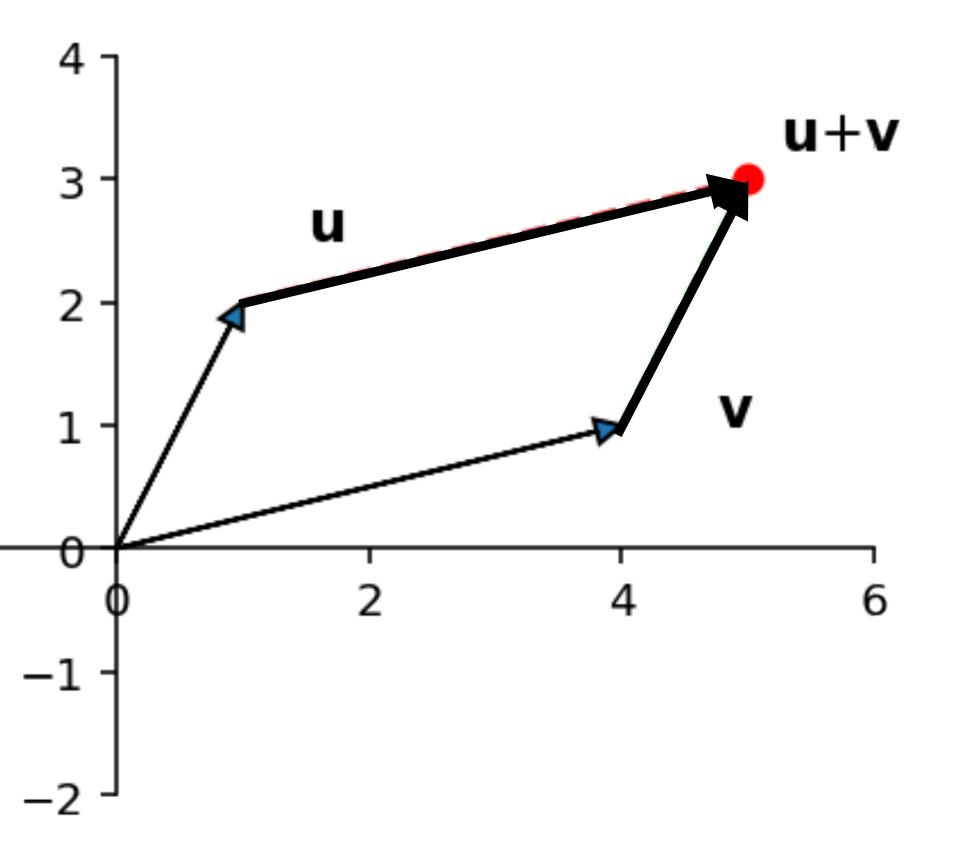


-2 .

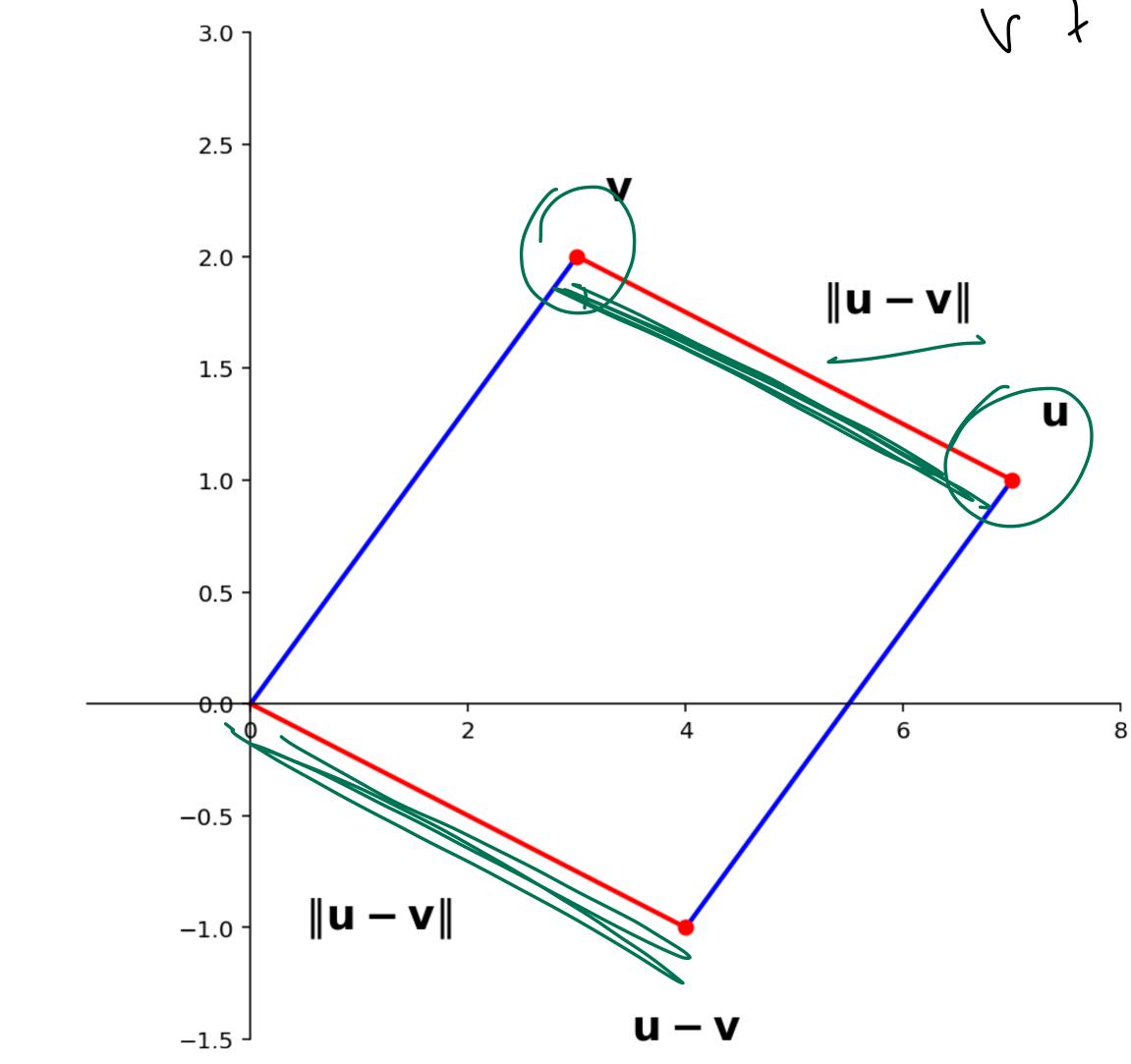
tip-to-tail rule:

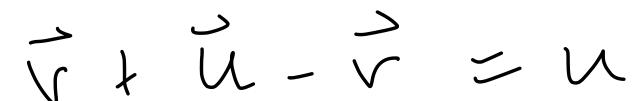
u + v result of putting the tail of v to the tip of u (or vice versa)

The distance between u and u+v is the length of v



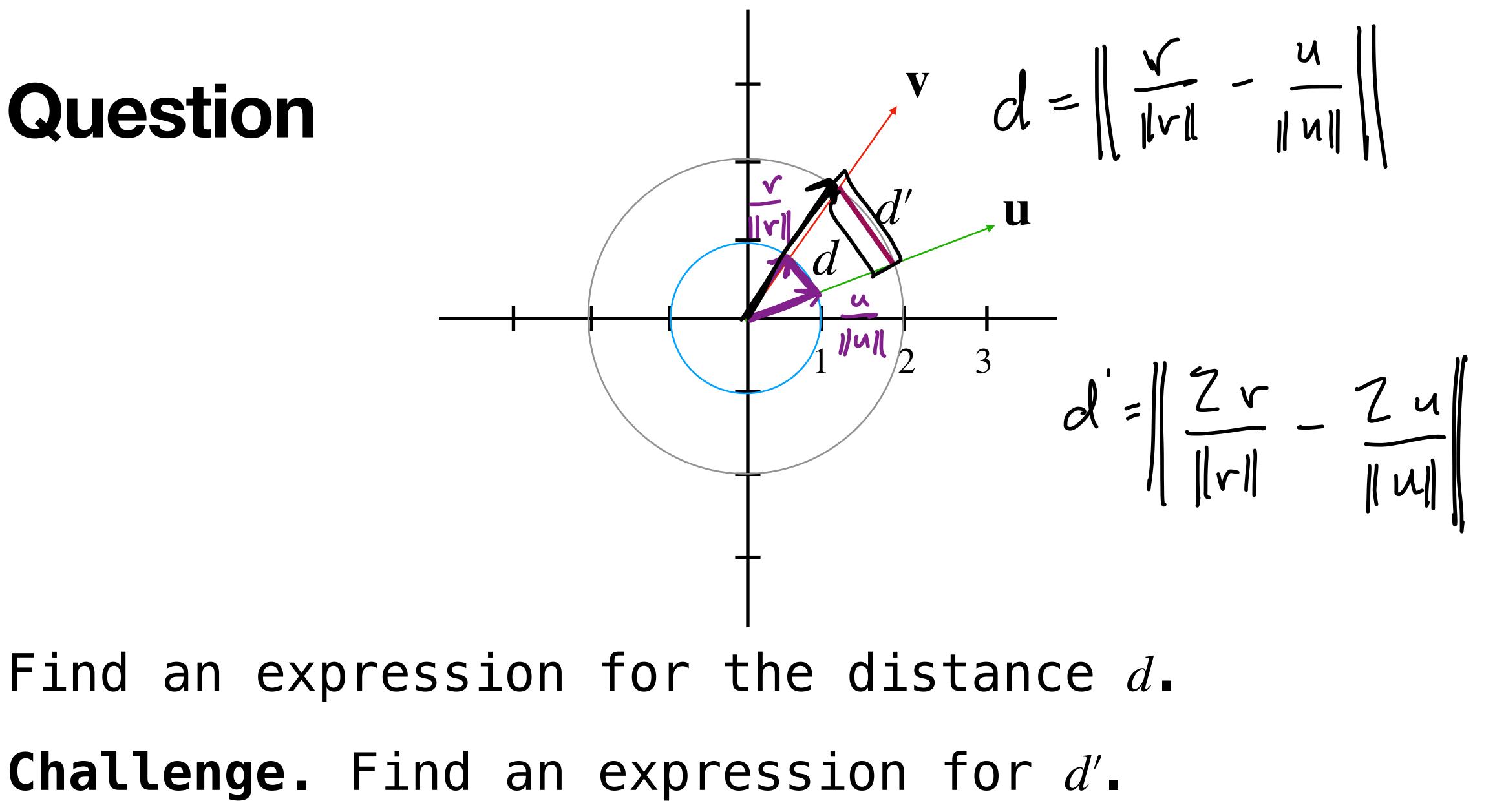
Distance (Pictorially)





Distance (Algebraically)

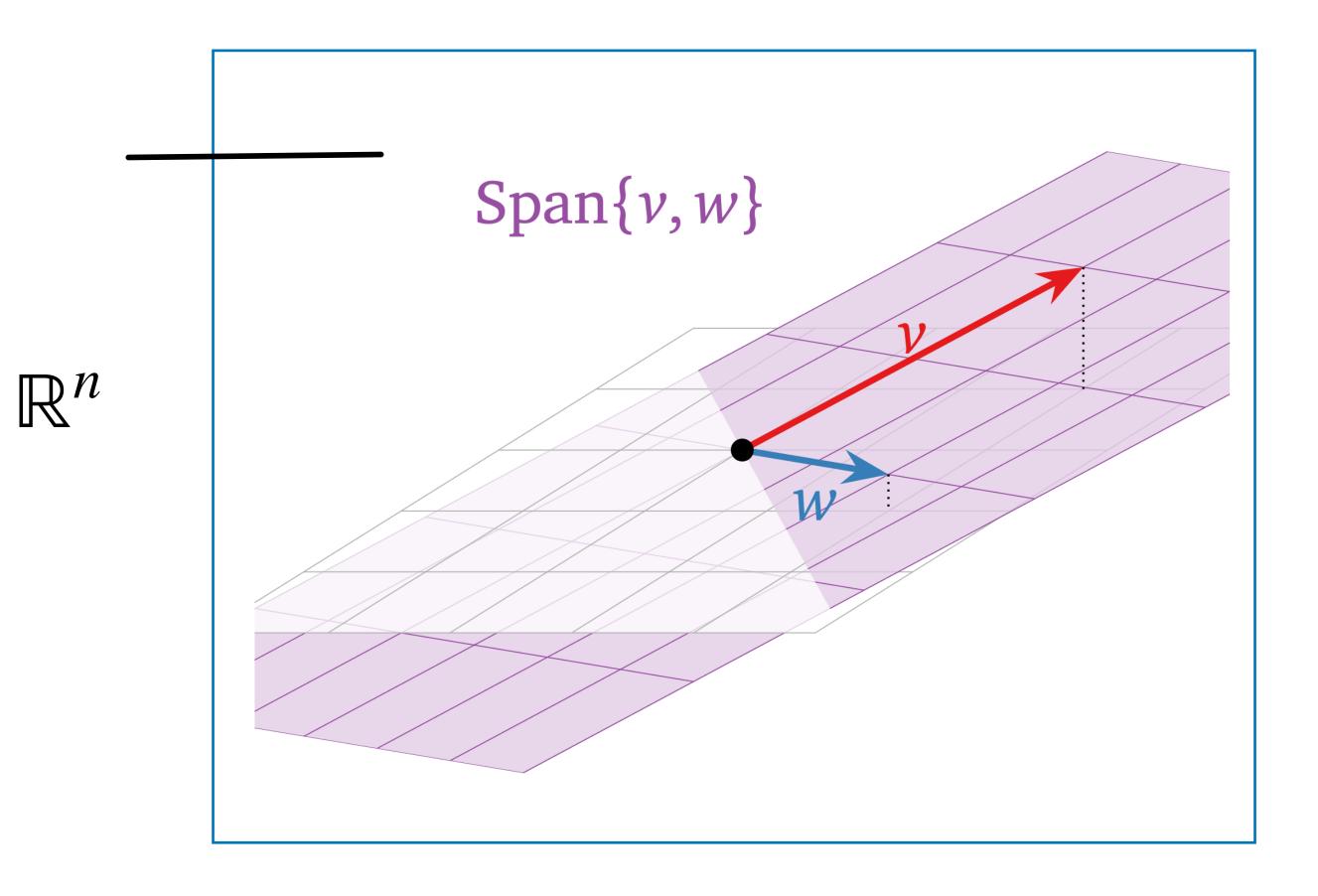
Definition. The distance between two vectors **u** and v in \mathbb{R}^n is given by $dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$ e.g., $\mathbf{u} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$



Angles

Again, Angles still make sense

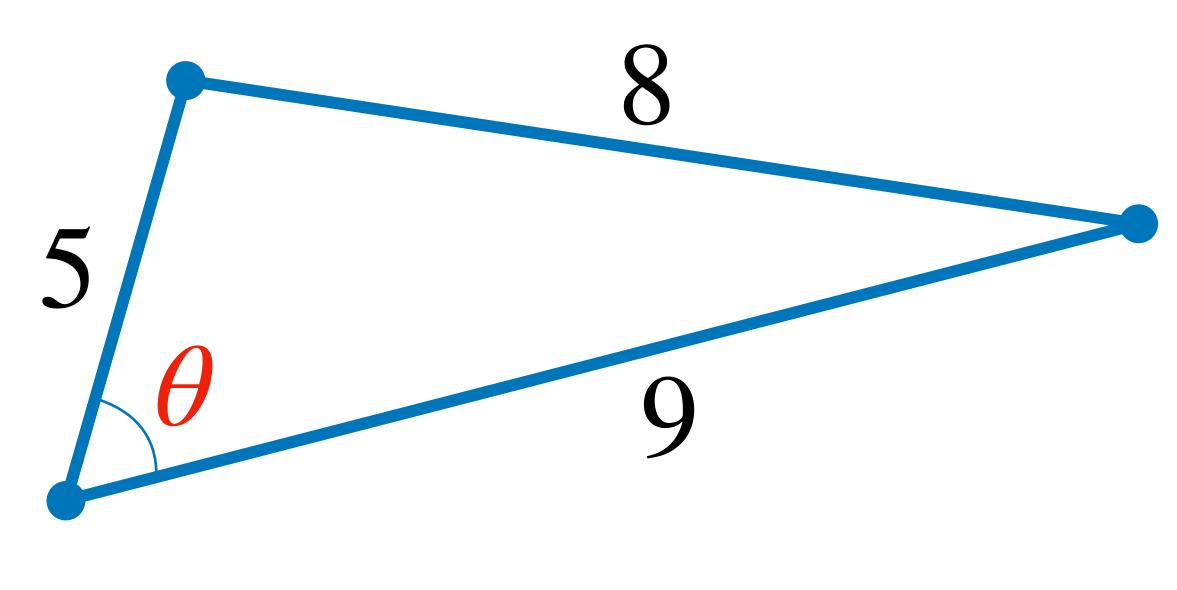
Any pair of vectors in \mathbb{R}^n span a (2D) plane.



Fundamental Question

How do we determine the angle between any two vectors?

Recall: A Potentially Familiar Example



What is the value of θ ?

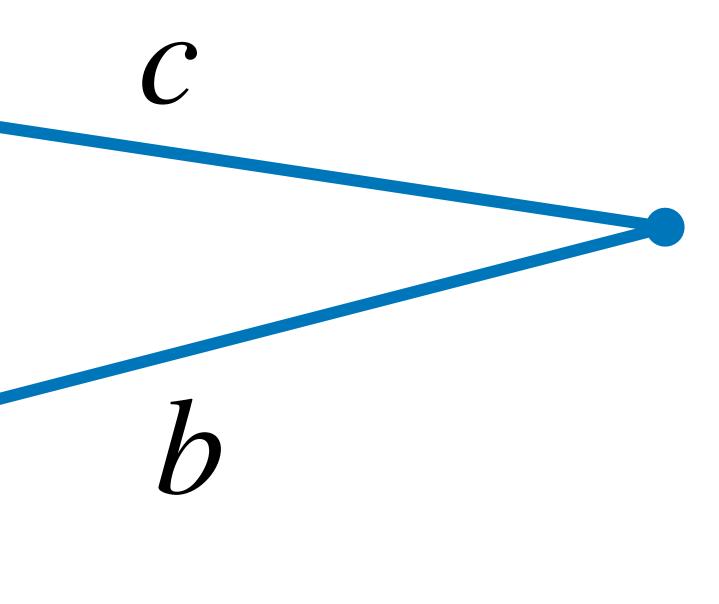
https://www.mathsisfun.com/algebra/trig-cosine-law.html

Law of Cosines

 \mathcal{A}

Theorem.

Ĥ



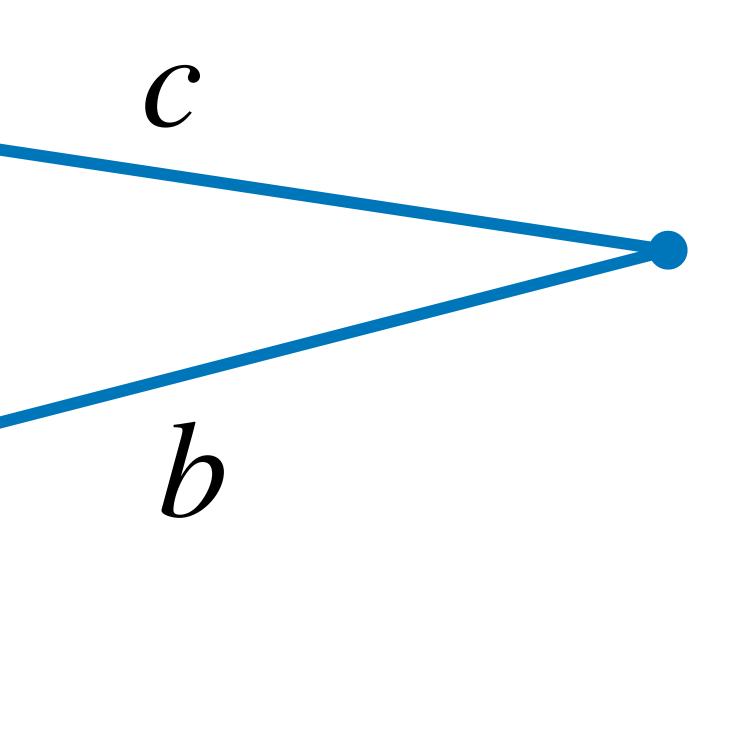
$c^2 = a^2 + b^2 - 2ab\cos\theta$

Law of Cosines

0

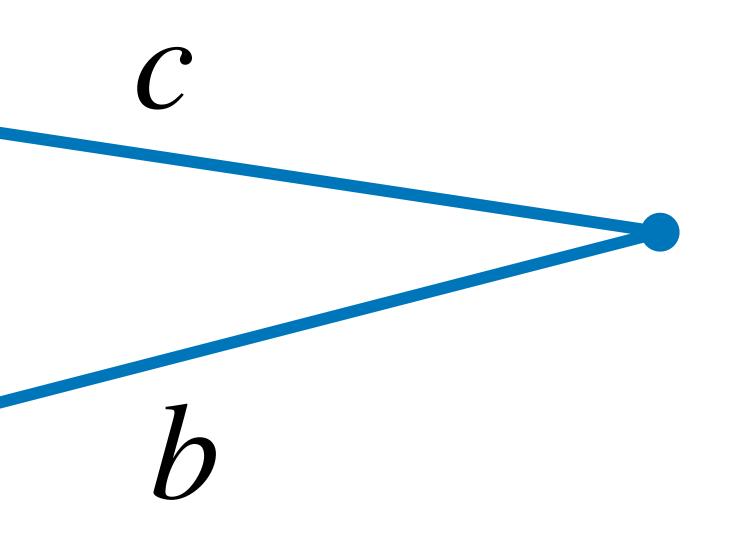
Theorem.

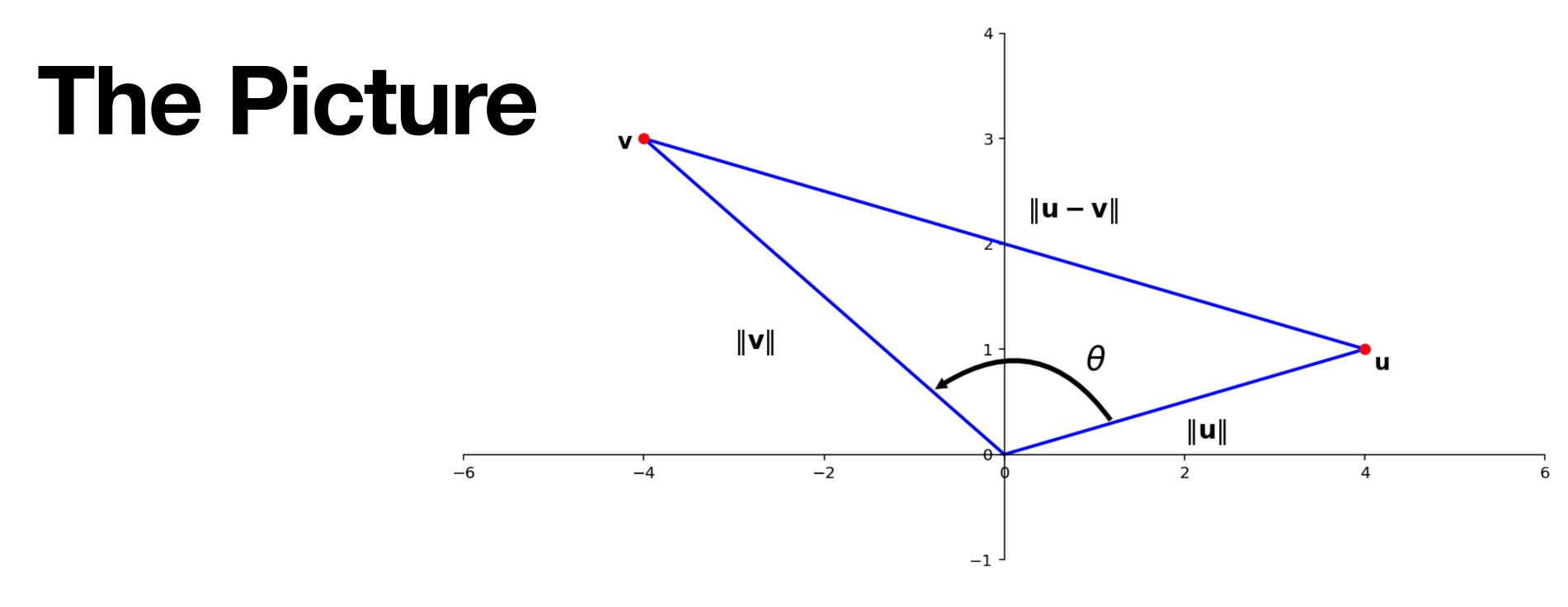
$c^2 = a^2 + b^2 - 2ab\cos\theta$ Generalized the Pythagorean Theorem



Law of Cosines

Theorem. **0** exactly when $\theta = 90^{\circ}$ $c^2 = a^2 + b^2 - 2ab\cos\theta$ Generalized the Pythagorean Theorem

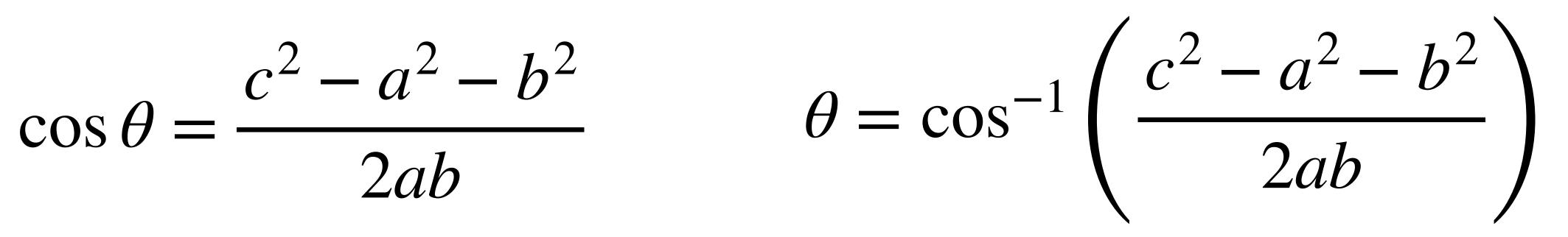


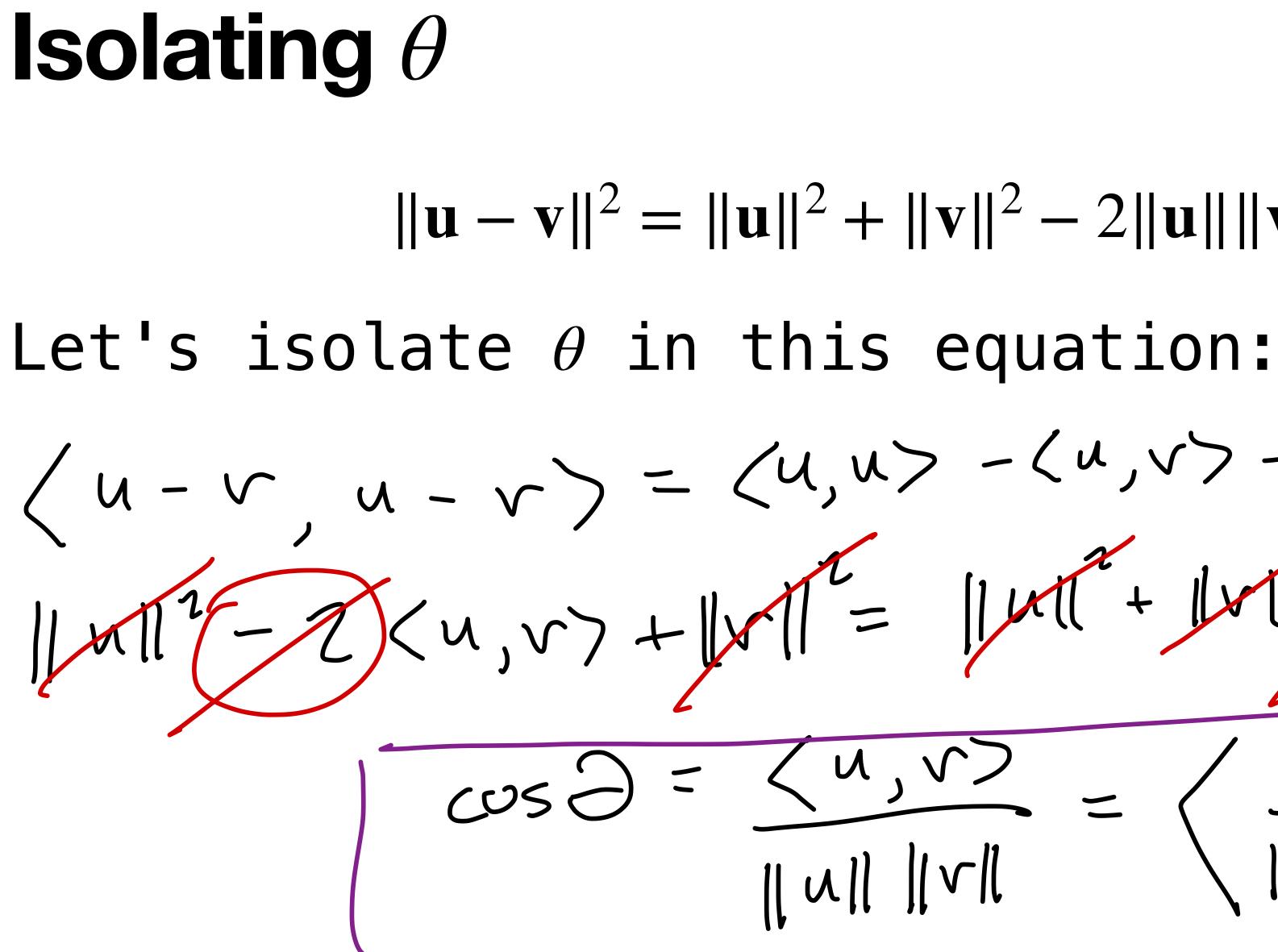


In more "vector"-y terms: $\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta$

Isolating θ

We might remember these equations...





- $\|\mathbf{u} \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta$

 $\langle u - v, u - v \rangle = \langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle$ $\|u \|^{2} - 2 \langle u, v \rangle + \|v \|^{2} = \|u \|^{2} + \|v \|^{2} - 2 \|u \| \|v \| \cos \theta$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\|u\|$

Cosines and Unit Vectors

Theorem. For vectors u and v in \mathbb{R}^n with an angle θ between them,

$\cos \theta = \left\langle \frac{\mathbf{u}}{\|\mathbf{u}\|}, \frac{\mathbf{v}}{\|\mathbf{v}\|} \right\rangle$

The cosine of the angle between two vectors is the inner product of their ℓ^2 normalizations.

How To: Angles

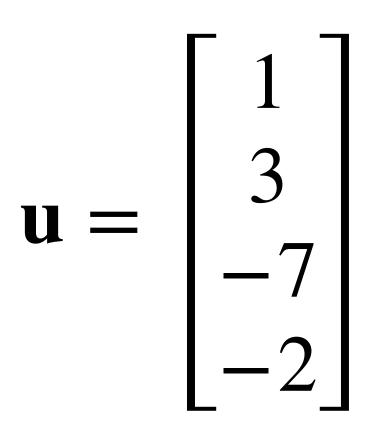
Question. Find the angle between the two vectors u and v.

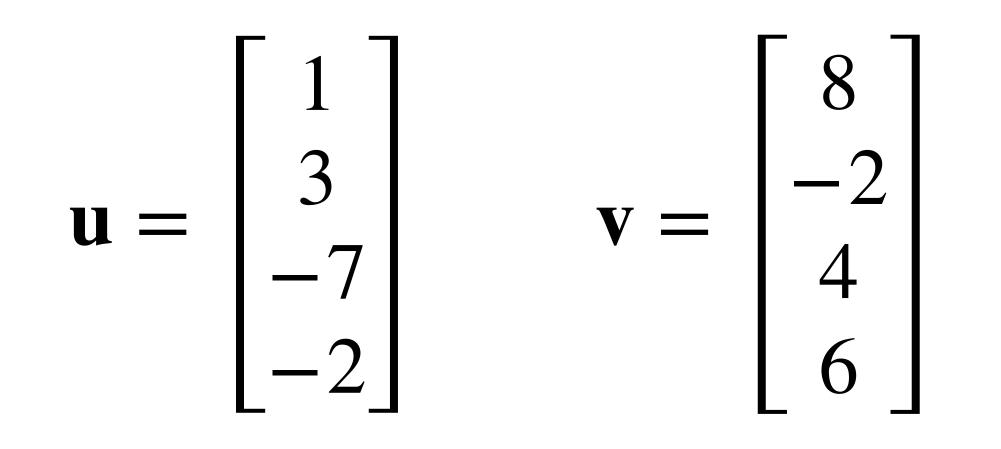
calculator).

Solution. Compute $\cos^{-1}\left(\frac{\mathbf{u}}{\|\mathbf{u}\|}\cdot\frac{\mathbf{v}}{\|\mathbf{v}\|}\right)$ (with a

Example

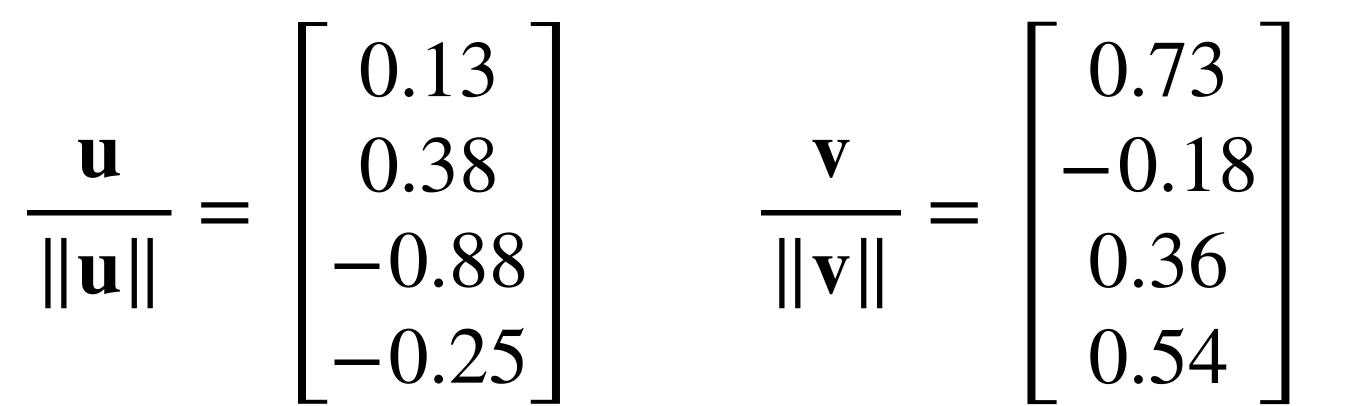
Find the angle between the vectors





Compute $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$. $\|\mathbf{u}\| = \sqrt{1^2 + 3^2 + (-7)^2 + (-2)^2} = 7.93$ $\|\mathbf{v}\| = \sqrt{8^2 + (-2)^2 + 4^2 + 6^2} = 10.95$

Normalize the vectors.



Find their inner product. $\left\langle \frac{\mathbf{u}}{\|\mathbf{u}\|}, \frac{\mathbf{v}}{\|\mathbf{v}\|} \right\rangle = (0.13 \cdot 0.73) + (0.38 \cdot -0.18) + (-0.88 \cdot 0.36) + (-0.25 \cdot 0.54)$ = -0.44

Compute the angle.

$\theta = \cos^{-1}(-0.44) = 116^{\circ}$

A Conceptual Question

Why cosine? Why not sine? **Because** $\cos 90^\circ = 0$. This means its an indicator of perpendicularity.

Orthogonality (Perpendicularity)

A Simpler Fundamental Question

How do we determine if angle between any two vectors is 90°?

Definition (Informal). Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal if then angle between them is 90°.

Definition (Informal). Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** if then angle between them is 90°.

This isn't actually that informal, it's perfectly reasonable for the purposes of this course.

Definition (Informal). Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** if then angle between them is 90°.

This isn't actually that informal, it's perfectly reasonable for the purposes of this course.

Orthogonal and perpendicular are the same thing.

Definition (Informal). Two vectors u and v in \mathbb{R}^n are orthogonal if then angle between them is 90°.

This isn't actually that informal, it's perfectly reasonable for the purposes of this course.

Orthogonal and perpendicular are the same thing. But it doesn't connect back to inner products.

Definition (Informal). Two vectors u and v in \mathbb{R}^n are orthogonal if then angle between them is 90°.

This isn't actually that informal, it's perfectly reasonable for the purposes of this course.

(and it's difficult to compute with)

Orthogonal and perpendicular are the same thing. But it doesn't connect back to inner products.

Recall: Cosines and Unit Vectors

θ between them,

Theorem. For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n with an angle

$\cos \theta = \left\langle \frac{\mathbf{u}}{\|\mathbf{u}\|}, \frac{\mathbf{v}}{\|\mathbf{v}\|} \right\rangle$

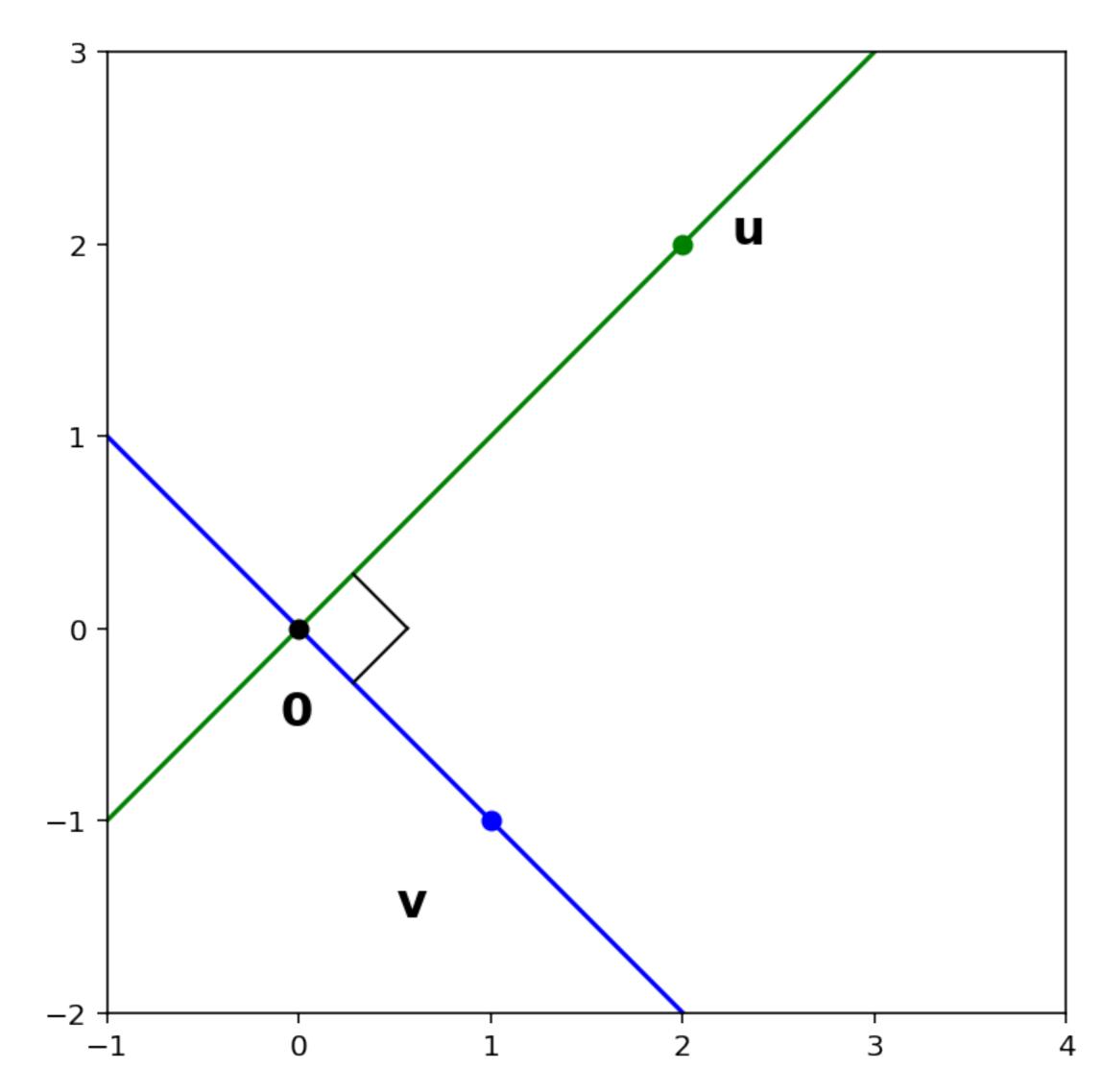
The cosine of the angle between two vectors is the inner product of their ℓ^2 normalizations.

Definition (Actual). Vectors **u** and **v** are **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

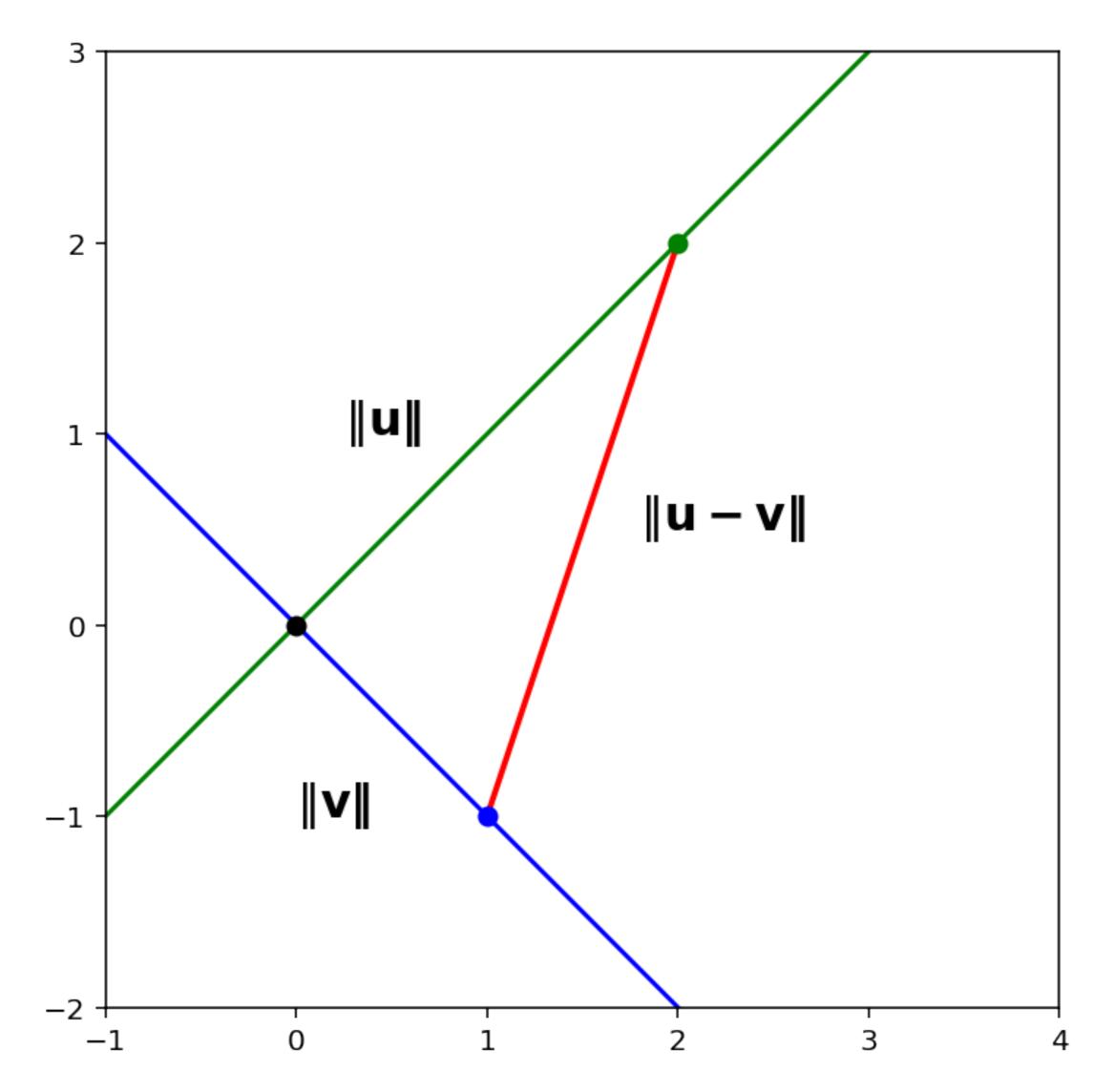
This definition gives an easy computational way to determine orthogonality.

Example.

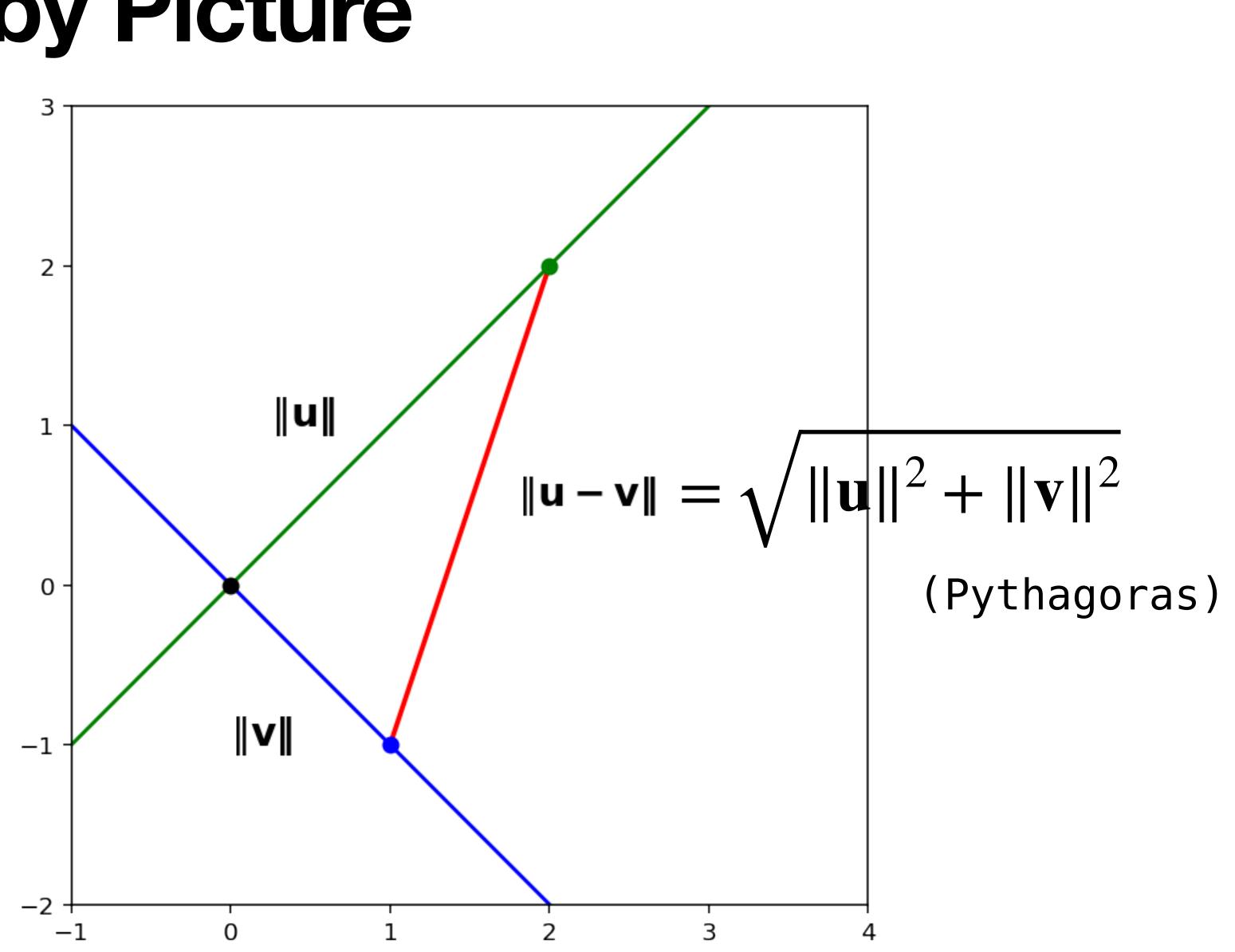
Derivation by Picture



Derivation by Picture



Derivation by Picture



Derivation by Algebra

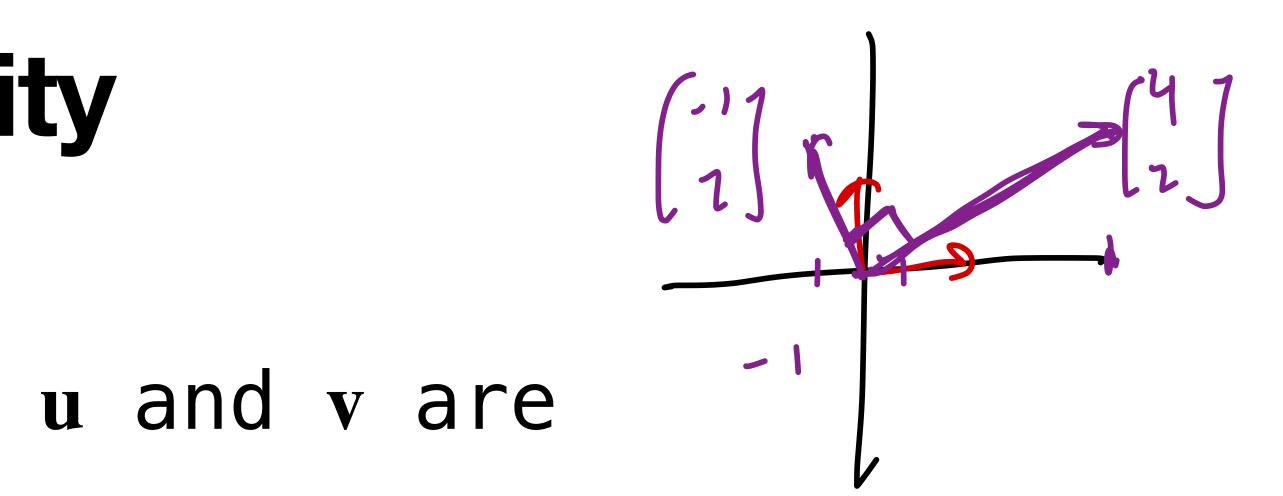
u and v are orthogonal exactly when

$\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} - \mathbf{v}\|^2$ Let's simplify this a bit: $\|v\|^2 + \|v\|^2 = \|v\|^2 - 2 < v_{y} + \|v\|^2$

How To: Orthogonality

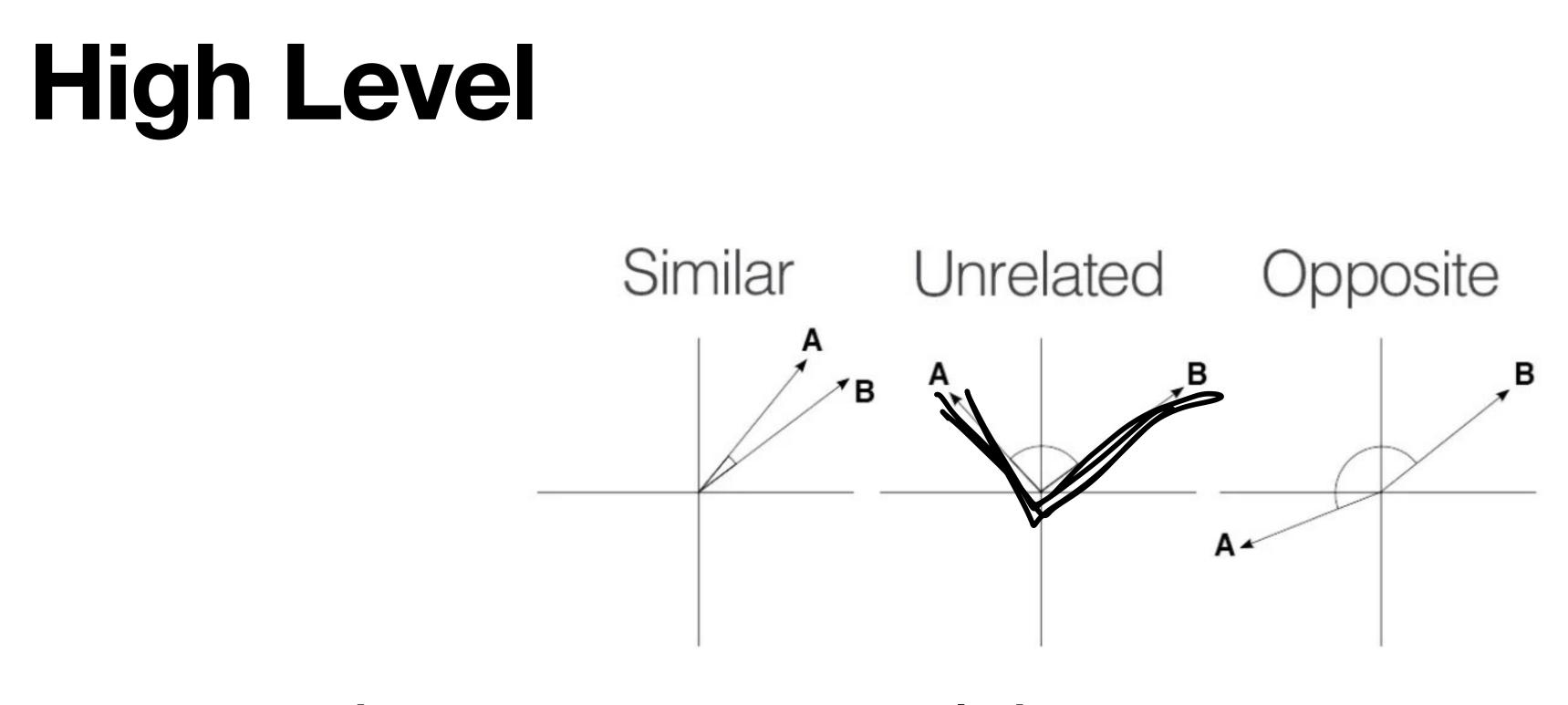
Question. Determine if u and v are perpendicular.

Solution. Determine if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. If yes, then they are perpendicular. If no, then they are not.



$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1(0) + 0(1) = 0$ $\begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = -1(4) + 2(2) = 0$

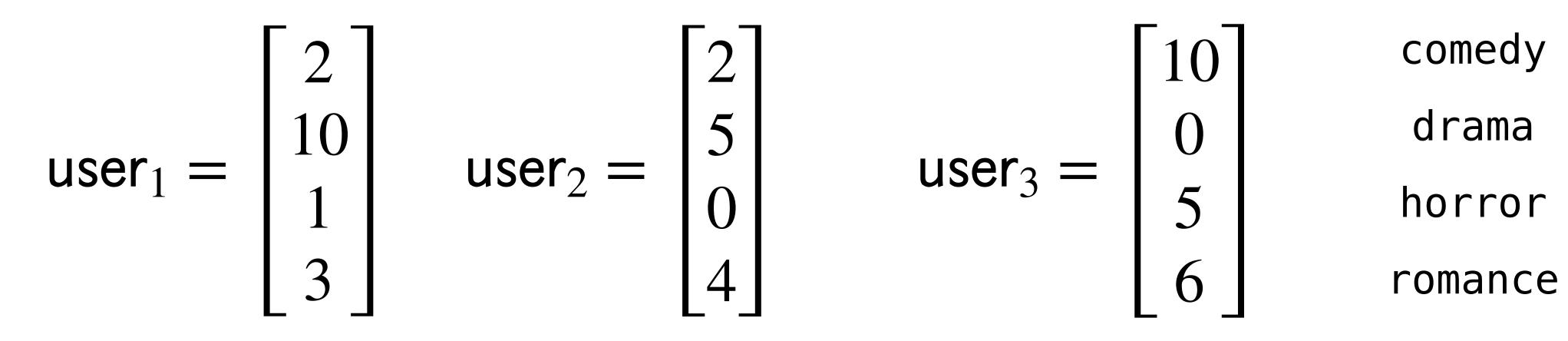
Application: Cosine Similarity



Data points are <u>very big vectors</u>. Similar vectors "point in nearly the same direction."

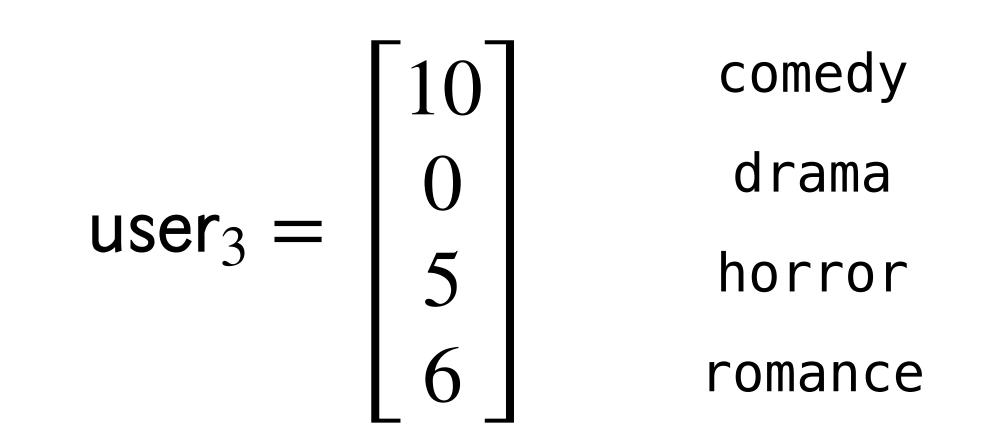
https://medium.com/@milana.shxanukova15/cosine-distance-and-cosine-similarity-a5da0e4d9ded

Example: Netflix Users



A Netflix user might be represented as a vectors whose *i*th entry is the number of movies they've watched in a particular genre.

Who are more likely to share similar interests in movies?



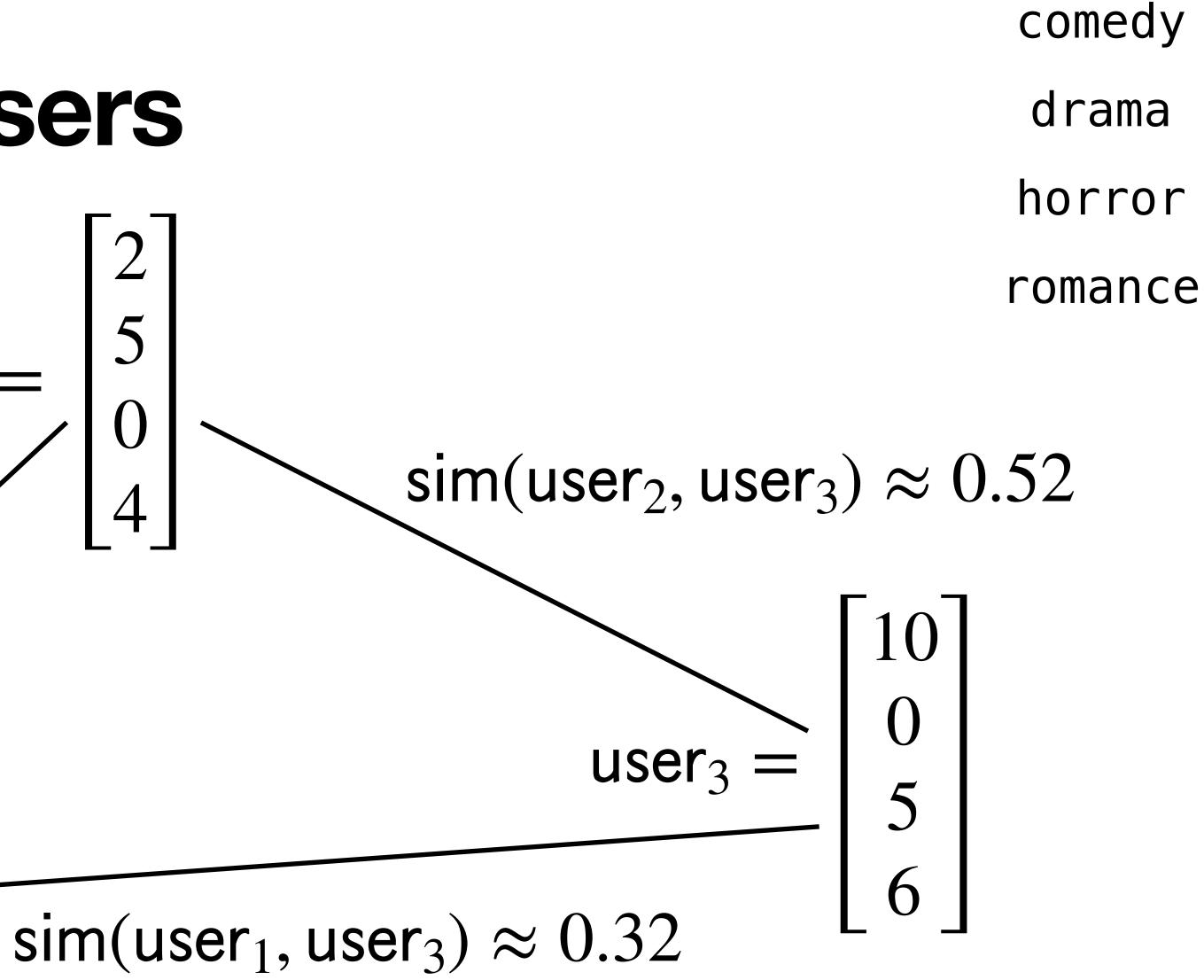
Cosine Similarity

Definition. The cosine similarity of two vectors is the cosine of the angle between them.

If its close to 0, then two Netflix users watch very different movies.

If its close to 1, then two Netflix users watch verv similar movies.

Example: Netflix Users user₂ $sim(user_1, user_2) \approx 0.92$ 10 user₁ 3





Other Examples

- Document similarity
 - Documents \mapsto word count vectors
- Word2Vec
 - Words \mapsto vector somehow
 - This underlies modern natural language processing (NLP)

Similar documents should use similar words

Summary

We can talk about <u>distances</u> and <u>angles</u> in \mathbb{R}^n . products.

can talk about <u>similarity</u>.

Every basic geometric concept connects to <u>inner</u> Once we can talk about distances and angles we