Least Squares

Geometric Algorithms
Lecture 23

Least Squares

Geometric Algorithms
Lecture 23

Introduction

Recap Problem

$$
\mathbf{u}=\left[\begin{array}{c}
1 \\
3 \\
-2 \\
-1
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]
$$

Find the orthogonal projection of u onto the span of \mathbf{v}.

Answer

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \\
5 / 2 \\
-5 / 2 \\
0
\end{array}\right] } \hat{\mathbf{u}}=\left[\begin{array}{c}
0 \\
5 / 2 \\
-5 / 2 \\
0
\end{array}\right] \\
& u=\left[\begin{array}{c}
1 \\
3 \\
-2 \\
-1
\end{array}\right] \quad v=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\langle u-\alpha r, v\rangle=0
$$

$$
\begin{aligned}
& u-\alpha r, v\rangle \\
& \langle u, v\rangle-\langle\alpha v, v\rangle=\begin{array}{l}
\langle u, v\rangle=0+3+2+0=5 \\
\langle r, v\rangle=0+1+1+0=2
\end{array}
\end{aligned}
$$

$$
\langle u, v\rangle-\alpha\langle r, v\rangle=0 \quad\|r\|^{2}
$$

Objectives

1. Introduce the least squares problem as a method of approximating solutions to matrix equations.
2. Learn how to solve the least squares problems.
3. Connect least squares solutions to projections.

Keywords

general least squares problem
sum of squares error (ℓ_{2}-error)
least squares solutions
orthogonal projections
normal equations

Orthogonal Matrices

Orthonormal Matrices

$$
m \times n
$$

Definition. A matrix is orthonormal if its columns form an orthonormal set.

The notes call a square orthonormal matrix an orthogonal matrix.

Orthonormal Matrices

Definition. A matrix is orthonormal if its columns form an orthonormal set.

The notes call a square orthonormal matrix an orthogonal matrix.

This is incredibly confusing, but we'll try to be consistent and clear.

Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix U is orthogonal (square orthonormal) then it is invertible and

$$
u=\left[\bar{u}_{1}, \bar{u}_{2}\right] \quad U^{-1}=U^{T}
$$

Verify: $\begin{array}{r}{\left[\begin{array}{l}\vec{u}_{1} \\ \vec{u}_{2}\end{array}\right]\left[\begin{array}{cc}\vec{u}_{1} & \vec{u}_{2}\end{array}\right]=\left[\begin{array}{cc}\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle & \left\langle\vec{u}_{1}, \vec{u}_{2}\right\rangle \\ & =\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \\ \left\langle\vec{u}_{2}, \vec{v}_{2}\right\rangle & \left\langle\vec{u}_{2}, \vec{u}_{2}\right\rangle\end{array}\right]} \\ 0\end{array}$

Orthonormal Matrices and Inner Products

Theorem. For a $m \times n$ orthonormal matrix U, and any vectors x and y in R^{n}

$$
\langle U x, U y\rangle=\langle x, y\rangle
$$

Orthonormal matrices preserve inner products. verify: $\left\langle u_{x}, u_{y}\right\rangle=\left(U_{x}\right)^{\top}\left(U_{y}\right)=x^{\top} u^{\top} X_{y}$

$$
=x^{\top} y=\langle x, y\rangle
$$

Length, Angle, Orthogonality Preservation

Since lengths and angles are defined in terms of inner products, they are also preserved by

$$
\begin{aligned}
& \text { orthonormal matrices: } \\
& \|x\|=\sqrt{\langle x, x\rangle} \quad\left\|u_{x}\right\|=\overline{\left\langle u_{x} u_{x}\right\rangle}=\sqrt{\langle x, x\rangle}=\|x\| \\
& \cos \theta=\left\langle\frac{u}{\|u\|}, \frac{r}{\|v\|}\right\rangle \quad\left\langle\frac{u_{u}}{\left\|u_{u}\right\|}, \frac{u_{r}}{\left\|u_{r}\right\|}\right\rangle=\left\langle\frac{u_{n}}{\|u\|}, \frac{u_{r}}{\|v\|}\right\rangle \\
& =\frac{1}{\|u\| \| v \mid}\left\langle u_{n}, u_{v}\right\rangle=\frac{1}{\|u\|\|v\|}\langle u, v\rangle \\
& =\cos \theta
\end{aligned}
$$

The Picture

Orthonormal U

Example

$$
\left[\begin{array}{cc}
1 / \sqrt{2} & 2 / 3 \\
1 / \sqrt{2} & -2 / 3 \\
0 & 1 / 3
\end{array}\right]
$$

$$
U=\left[\begin{array}{cc}
1 / \sqrt{2} & 2 / 3 \\
1 / \sqrt{2} & -2 / 3 \\
0 & 1 / 3
\end{array}\right]
$$

$$
\mathcal{A}=
$$

$$
U_{x}=\left[\begin{array}{c}
1 / x / 2+2 / y \cdot h \\
1 / 2 A 2 \\
0+1 / 4 / 3 \cdot \beta
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right]
$$

$$
\left\|u_{x}\right\|=\sqrt{9+1+1}
$$

$$
\phi
$$

Question (Conceptual)

Suppose A is an $m \times n$ matrix with orthogonal but not orthonormal columns. What is $A^{T} A$?

Remember: for orthonormal matrix

$$
A^{\top} A=I
$$

Answer

If $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ then $A^{T} A$ is a diagonal matrix D where

$$
\begin{gathered}
D_{i i}=\left\|\mathbf{a}_{i}\right\|^{2} \\
{\left[\begin{array}{l}
\vec{u}_{1} \\
\vec{u}_{2}
\end{array}\right]\left[\begin{array}{cc}
\left\|u_{1}\right\|^{2} & 0 \\
\vec{u}_{1} & \vec{u}_{1}
\end{array}\right]=\left[\begin{array}{cc}
u_{1}^{\prime \prime} \cdot u_{1} & u_{1}^{\prime \prime} \cdot u_{2} \\
u_{2} \cdot u_{1} & u_{2} \cdot u_{2} \\
\ddot{0} & \left\|u_{2}\right\|^{\prime \prime}
\end{array}\right]}
\end{gathered}
$$

Motivation

The story of an enterprising CS132 student

The story of an enterprising CS132 student

Problem. Solve the equation $A \mathbf{x}=\mathbf{b}$.

The story of an enterprising CS132 student

Problem. Solve the equation $A \mathbf{x}=\mathbf{b}$.
Answer. Use np.linalg.solve(A, b).

The story of an enterprising CS132 student

Problem. Solve the equation $A \mathbf{x}=\mathbf{b}$.

Answer. Use np.linalg.solve(A, b).

```
>>> A = np.array([
# [1., 0, 5],
#.. [1,, -1, 4],
\because[0, 2, 2]])
>>> b = np.array([-1, 2, 3])
>>> np.linalg.solve(A, b)
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 409, in solve
        r = gufunc(a, b, signature=signature, extobj=extobj)
    File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 112, in _raise_linalgerror_singular
        raise LinAlgError("Singular matrix")
numpy.linalg.LinAlgError: Singular matrix
```


The story of an enterprising CS132 student

Problem. Solve the equation $A \mathbf{x}=\mathbf{b}$.

Answer. Use np.linalg.solve(A, b).

```
>>> A = np.array([
# [1., 0, 5],
#.. [1, -1, 4],
\because[0, 2, 2]])
>> b = np.array([-1, 2, 3])
>>> np.linalg.solve(A, b)
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 409, in solve
        r = gufunc(a, b, signature=signature, extobj=extobj)
    File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 112, in _raise_linalgerror_singular
        raise LinAlgError("Singular matrix")
numpy.linalg.LinAlgError: Singular matrix
```

This doesn't always work.

Reads the docs...
 numpy.linalg.solve

linalg. solve (a, b)
Solve a linear matrix equation, or system of linear scalar equations.
Computes the "exact" solution, x, of the well-determined, i.e., full rank, linear matrix equation $a x=b$.
Parameters: a : (..., M, M) array_like
Coefficient matrix.
$\mathrm{b}:\{(\ldots, M),,(\ldots, M, K)\}$, array_like
Ordinate or "dependent variable" values.
Returns: $\quad \mathrm{x}:\{(\ldots, M),,(\ldots, M, K)\}$ ndarray
Solution to the system $\mathrm{ax}=\mathrm{b}$. Returned shape is identical to b.
Raises: LinAlgError
If a is singular or not square.See also
scipy.linalg.solve

Reads the docs...
 numpy.linalg.solve

linalg. solve (a, b)
Solve a linear matrix equation, or system of linear scalar equations.

```
Computes the "exact" solution, x, of the well-determined, i.e., full rank, linear matrix equation }ax=b\mathrm{ .
Parameters: a : (..., M, M) array_like
            Coefficient matrix.
    b : {(..., M,), (..., M, K)}, array_like
        Ordinate or "dependent variable" values.
    Returns: x : {(..., M,), (..., M, K)} ndarray
        Solution to the system a x = b}\mathrm{ . Returned shape is identical to b}\mathrm{ .
Raises: LinAlgError
        If a is singular or not square.
(i) See also
    scipy.linalg.solve
```


Reads then doxim. Min) berey

Raises: LinAlgError

If a is singular or not square.
(i) See also
scipy.linalg.solve
Similar function in SciPy.

Notes
(1) New in version 1.8.0.

Broadcasting rules apply, see the numpy. linalg documentation for details.
The solutions are computed using LAPACK routine _gesv.
a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use lstsq for the least-squares best "solution" of the system/equation.

Reads then doxim. Min) berey

Raises: LinAlgError
If a is singular or not square.
(i) See also
scipy.linalg.solve
Similar function in SciPy.

Notes
(1) New in version 1.8.0.

Broadcasting rules apply, see the numpy. linalg documentation for details.
The solutions are computed using LAPACK routine _gesv.
a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use lstsq for the least-squares best "solution" of the system/equation.

np.linalg.lstsq

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass 'rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```


np.linalg.lstsq

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```


np.linalg.lstsq

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```


np.linalg.lstsq

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass 'rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```


np.linalg.lstsq

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass 'rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```


np.linalg.Istsq

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```

uh...probably numerical errors...
Answer: $\mathbf{x}=\left[\begin{array}{c}-1 / 9 \\ 7 / 9 \\ 2 / 9\end{array}\right]$

np.linalg.Istsq

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```

uh...probably numerical errors...
Answer: $\mathbf{x}=\left[\begin{array}{c}-1 / 9 \\ 7 / 9 \\ 2 / 9\end{array}\right]$

This is not correct

This System is Inconsistent

$$
\left[\begin{array}{cccc}
1 & 0 & 5 & -1 \\
1 & -1 & 4 & 2 \\
0 & 2 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 5 & -1 \\
0 & -1 & -1 & 3 \\
0 & 2 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 5 & -1 \\
0 & -1 & -1 & 3 \\
0 & 0 & 0 & 9
\end{array}\right]
$$

The "correct" answer: There is no solution.

This System is Inconsistent

$$
\left[\begin{array}{cccc}
1 & 0 & 5 & -1 \\
1 & -1 & 4 & 2 \\
0 & 2 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 5 & -1 \\
0 & -1 & -1 & 3 \\
0 & 2 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 5 & -1 \\
0 & -1 & -1 & 3 \\
0 & 0 & 0 & 9
\end{array}\right]
$$

The "correct" answer: There is no solution.

What's going on here?

Non-Linearity

$$
b-A \widehat{x}=\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)-A\binom{-3}{5}=\left(\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right)
$$

Non-Linearity

Linear algebra is very powerful and very clean, but the world isn't linear. There are non-linear relationships and sources of noise.

Non-Linearity

Linear algebra is very powerful and very clean, but the world isn't linear. There are non-linear relationships and sources of noise.

We can't force the world to be linear.

Non-Linearity

Linear algebra is very powerful and very clean, but the world isn't linear. There are non-linear relationships and sources of noise.

We can't force the world to be linear.

But we can try...

The Idea

The Idea

Least Squares is a method for finding approximate solutions to systems of linear equations.

The Idea

Least Squares is a method for finding approximate solutions to systems of linear equations.

This is a lot more useful in practice than exact solutions.

The Idea

Least Squares is a method for finding approximate solutions to systems of linear equations.

This is a lot more useful in practice than exact solutions.

It can be used to do linear regression from stats
 class.

General Least Squares Problem

Figure 22.8
The Picture
$\hat{\mathbf{b}}$ is closest point in $\operatorname{Col} A$ to \mathbf{b} $A_{x}^{\prime}=b_{b}^{b} \quad$ has \quad solution

Recall: Orthogonal Projection

Recall: Orthogonal Projection

Question. Given vectors \mathbf{y} and \mathbf{u} in R^{n}, find vectors $\hat{\mathbf{y}}$ and \mathbf{z} such that

Recall: Orthogonal Projection

Question. Given vectors \mathbf{y} and \mathbf{u} in R^{n}, find vectors $\hat{\mathbf{y}}$ and \mathbf{z} such that
» z is orthogonal to u
(i.e., z•u=0)

Recall: Orthogonal Projection

Question. Given vectors \mathbf{y} and \mathbf{u} in R^{n}, find vectors $\hat{\mathbf{y}}$ and \mathbf{z} such that
» z is orthogonal to u
(i.e., z•u=0)
» $\hat{\mathbf{y}} \in \operatorname{span}\{\mathbf{u}\}$

Recall: Orthogonal Projection

Question. Given vectors \mathbf{y} and \mathbf{u} in R^{n}, find vectors $\hat{\mathbf{y}}$ and \mathbf{z} such that
» \mathbf{z} is orthogonal to u
(i.e., z.u=0)
$>\hat{\mathbf{y}} \in \operatorname{span}\{\mathbf{u}\}$
> $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$

Recall: The Picture

Recall: $\hat{\mathbf{y}}$ and Distance

Theorem. $\|\hat{\mathbf{y}}-\mathbf{y}\|=\min _{\mathbf{w} \in \operatorname{span}\{\mathbf{u}\}}\|\mathbf{w}-\mathbf{y}\|$
$\hat{\mathbf{y}}$ is the closest vector in
$\operatorname{span}\{\mathbf{u}\}$ to \mathbf{y}.
"Proof" by inspection:

The Equational Perspective

The Equational Perspective

We know the equation $x \mathbf{u}=\mathbf{y}$ may have no solution.

The Equational Perspective

We know the equation $x \mathbf{u}=\mathbf{y}$ may have no solution. Question. Find a value α such that $\alpha \mathbf{u}$ is as close as possible to \mathbf{y}.

The Equational Perspective

We know the equation $x \mathbf{u}=\mathbf{y}$ may have no solution. Question. Find a value α such that $\alpha \mathbf{u}$ is as close as possible to \mathbf{y}.

That is, the distance $\operatorname{dist}(\mathbf{y}, \alpha \mathbf{u})=\|\mathbf{y}-\alpha \mathbf{u}\|$ is as small as possible.

The Equational Perspective

We know the equation $x \mathbf{u}=\mathbf{y}$ may have no solution. Question. Find a value α such that $\alpha \mathbf{u}$ is as close as possible to \mathbf{y}.

That is, the distance $\operatorname{dist}(\mathbf{y}, \alpha \mathbf{u})=\|\mathbf{y}-\alpha \mathbf{u}\|$ is as small as possible.

We need to generalize this to arbitrary matrix equations.

The General Least Squares Problem

Figure 22.8
$\hat{\mathbf{b}}$ is closest point in $\operatorname{Col} A$ to \mathbf{b}

The General Least Squares Problem

$$
A \vec{x}=\vec{b}
$$

Problem. Given a $m \times n$ matrix A and a vector b from \mathbb{R}^{m}, find a vector \mathbf{x} in \mathbb{R}^{n} which minimizes

$$
\operatorname{dist}(A \mathbf{x}, \mathbf{b})=\|A \mathbf{x}-\mathbf{b}\|
$$

The General Least Squares Problem

Figure 22.8

Problem. Given a $m \times n$ matrix A and a vector b from \mathbb{R}^{m}, find a vector \mathbf{x} in \mathbb{R}^{n} which minimizes

$$
\operatorname{dist}(A \mathbf{x}, \mathbf{b})=\|A \mathbf{x}-\mathbf{b}\|
$$

Find a vector \mathbf{x} which makes $\|A \mathbf{x}-\mathbf{b}\|$ as small as possible.
$\hat{\mathbf{b}}$ is closest point in $\operatorname{Col} \boldsymbol{A}$ to \mathbf{b}

There is no solution to $A \mathbf{x}=\mathbf{b}$.

But there's a
solution that's
pretty close.

Sum of Squares

$$
\|A \mathbf{x}-\mathbf{b}\|^{2}=\sum_{i=1}^{n}\left((A \mathbf{x})_{i}-\mathbf{b}_{i}\right)^{2}
$$

Sum of Squares

$$
\|A \mathbf{x}-\mathbf{b}\|^{2}=\sum_{i=1}^{n}\left((A \mathbf{x})_{i}-\mathbf{b}_{i}\right)^{2}
$$

It is equivalent to minimize $\|A \mathbf{x}-\mathbf{b}\|^{2}$, which can be viewed as a sum of squares.

Sum of Squares

$$
\|A \mathbf{x}-\mathbf{b}\|^{2}=\sum_{i=1}^{n}\left((A \mathbf{x})_{i}-\mathbf{b}_{i}\right)^{2}
$$

It is equivalent to minimize $\|A \mathbf{x}-\mathbf{b}\|^{2}$, which can be viewed as a sum of squares.

These things come up everywhere.

Sum of Squares

$$
\|A \mathbf{x}-\mathbf{b}\|^{2}=\sum_{i=1}^{n}\left((A \mathbf{x})_{i}-\mathbf{b}_{i}\right)^{2}
$$

It is equivalent to minimize $\|A \mathbf{x}-\mathbf{b}\|^{2}$, which can be viewed as a sum of squares.

These things come up everywhere.
(Advanced.) This error is everywhere differentiable, whereas $\sum_{i=1}^{n}\left|(A \mathbf{x})_{i}-b_{i}\right|$ is not.

Least Squares Solution

Definition. Given a $m \times n$ matrix A and a vector b in \mathbb{R}^{m}, a least squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}}$ from \mathbb{R}^{n} such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for any \mathbf{x} in \mathbb{R}^{n}.
Again, $\|A \hat{\mathbf{x}}-\mathbf{b}\|$ is as small as possible.

Figure 22.8

The Picture (Again)

Argmin

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|
$$

Argmin

$\hat{\mathbf{x}}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|$

Another way of framing this is via argmin.

Argmin

$\hat{\mathbf{x}}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|$

Another way of framing this is via argmin. Defintion. $\arg \min _{x \in X} f(x)=\hat{x}$ where $f(\hat{x})=\min _{x \in X} f(x)$

$$
x \in X \quad x \in X
$$

Argmin

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|
$$

Another way of framing this is via arg min. Defintion. $\arg \min _{x \in X} f(x)=\hat{x}$ where $f(\hat{x})=\min _{x \in X} f(x)$
\hat{x} is the argument that minimizes f.

Argmin

$\hat{\mathbf{x}}=\arg \min \|A \mathbf{x}-\mathbf{b}\|$ $\mathbf{x} \in \mathbb{R}^{n}$

Another way of framing this is via arg min. Defintion. $\arg \min _{x \in X} f(x)=\hat{x}$ where $f(\hat{x})=\min _{x \in X} f(x)$
\hat{x} is the argument that minimizes f.
This is now an optimization problem.

Solving the General Least Squares Problems

Recall: The Picture (Again)

Projects onto other Spans

The transformation $\mathbf{b} \mapsto \hat{\mathbf{b}}$ is the projection of \mathbf{b} onto $\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$

The High Level Approach.

Question. Find a least squares solutions to $A \mathrm{x}=\mathbf{b}$

Solution.

1. Find the closest point $\hat{\mathbf{b}}$ in $\operatorname{Col}(A)$ to \mathbf{b}.
2. Solve the equation $A \mathbf{x}=\hat{\mathbf{b}}$ instead.

Orthogonal Decomposition Theorem

Theorem. Let W be a subspace of \mathbb{R}^{n}. Every vector y in \mathbb{R}^{n} can be written uniquely as

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}} \in W$ and \mathbf{z} is orthogonal to every vector in W.

Projection via Orthogonal Bases

We can determine $\hat{\mathbf{y}}$ by projecting onto an orthogonal basis.

Every subspace has an orthogonal basis (we won't prove this)

The Best-Approximation Theorem

Theorem. Let W be a subspace of \mathbb{R}^{n}, and let $\hat{\mathbf{y}}$ be the orthogonal projection of y onto W. Then

$$
\|\mathbf{y}-\hat{\mathbf{y}}\| \leq\|\mathbf{y}-\mathbf{w}\|
$$

for any vector \mathbf{w} in W.

$\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y}

Proof by Inspection

Proof by Algebra

$$
\begin{aligned}
& \text { Verify: } \\
& \|\hat{y}-v\|^{2}+\left\|y-\hat{y}^{\prime}\right\|^{2}=\|y-v\|^{2}
\end{aligned}
$$ by P_{y} thagorian theorem.

$$
\|\hat{y}-\vec{r}\|^{2}>0
$$

(no negation distances)

$$
\begin{aligned}
& \text { negative distances) } \\
& \|y-\hat{y}\|^{2} \leq\|y-v\|^{2} \Rightarrow\|y-\hat{y}\| \leq\|y-v\|
\end{aligned}
$$

The Point

The Point

$\hat{\mathbf{b}}$ is in $\operatorname{Col}(A)$ so $A \mathbf{x}=\hat{\mathbf{b}}$ has a solution.

The Point

$\hat{\mathbf{b}}$ is in $\operatorname{Col}(A)$ so $A \mathbf{x}=\hat{\mathbf{b}}$ has a solution.

At this point, we could call it a day:

The Point

$\hat{\mathbf{b}}$ is in $\operatorname{Col}(A)$ so $A \mathbf{x}=\hat{\mathbf{b}}$ has a solution.

At this point, we could call it a day:

Question. Find a least squares solution to $A \mathbf{x}=\mathbf{b}$

The Point

$\hat{\mathbf{b}}$ is in $\operatorname{Col}(A)$ so $A \mathbf{x}=\hat{\mathbf{b}}$ has a solution.

At this point, we could call it a day:
Question. Find a least squares solution to $A \mathbf{x}=\mathbf{b}$
Solution. Find \hat{b}, then

Question

Find the least square solution for the equation

$$
\left[\begin{array}{cc}
1 & a_{2} \\
-1 & 3 \\
0 & 0
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
4 \\
1 \\
4
\end{array}\right]
$$

$\operatorname{Col}(A)=? x y$-plane
projection of $\left[\begin{array}{l}4 \\ 1 \\ 4\end{array}\right]$ onto $x y$-plane $=?\left[\begin{array}{l}4 \\ 1 \\ 0\end{array}\right]$

Answer

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 2 \\
-1 & 3 \\
0 & 0
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
4 \\
1 \\
4
\end{array}\right]} \\
& {\left[\begin{array}{rr}
1 & 2 \\
-1 & 3 \\
0 & 0
\end{array}\right] x=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 4 \\
-1 & 3 & 1 \\
0 & 0 & 0
\end{array}\right]} \\
& 2\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right] \\
& \hat{x}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

The Normal Equations

A Couple Observations

A Couple Observations

Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$

A Couple Observations

Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$

- $\hat{\mathbf{b}}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$

A Couple Observations

Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$

- $\hat{\mathbf{b}}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$
- $A \hat{\mathbf{x}}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$

A Couple Observations

Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A \hat{\mathbf{x}}=\hat{\mathbf{b}} \quad \hat{\mathrm{y}}-b$

- $\hat{\mathbf{b}}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$
- $A \hat{\mathbf{x}}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$
- If $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ then $A \hat{\mathbf{x}}-\mathbf{b}$ is orthogonal to each $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$

A Couple Observations

Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$

- $\hat{\mathbf{b}}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$
- $A \hat{\mathbf{x}}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$
- If $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ then $A \hat{\mathbf{x}}-\mathbf{b}$ is orthogonal to each $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$
- $\mathbf{a}_{i}^{T}(A \hat{\mathbf{x}}-\mathbf{b})=0$

A Couple Observations

Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$

- $\hat{\mathbf{b}}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$
- $A \hat{\mathbf{x}}-\mathbf{b}$ is orthogonal to $\operatorname{Col}(A)$
- If $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$ then $A \hat{\mathbf{x}}-\mathbf{b}$ is orthogonal to each $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$
- $\mathbf{a}_{i}^{T}(A \hat{\mathbf{x}}-\mathbf{b})=0$
- $A^{T}(A \hat{\mathbf{x}}-\mathbf{b})=\mathbf{0}$

A bit more magic

Let's simplify $A^{T}(A \hat{\mathbf{x}}-\mathbf{b})$:

$$
\begin{aligned}
& A^{\top} A \hat{y}-A^{\top} \vec{b}=\overrightarrow{0} \\
& A^{\top} A \hat{x}=A^{\top} \vec{b}
\end{aligned}
$$

The Normal Equations

The Normal Equations

Theorem. The set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ is the same as the set of solutions to

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

The Normal Equations

Theorem. The set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ is the same as the set of solutions to

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

In particular, this set of solutions is nonempty.

The Normal Equations

Theorem. The set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ is the same as the set of solutions to

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

In particular, this set of solutions is nonempty.
We just showed that if $\hat{\mathbf{x}}$ is a least squares solution then $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.

The Normal Equations

In the other direction, suppose $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$:

$$
A^{\top}(A x-b)=\overrightarrow{0}
$$

$A \vec{x}=b$

$$
\begin{aligned}
& =\hat{b} A \vec{x}-\vec{b} \text { is perpo } \\
& A \vec{x}=\vec{b}+(A \vec{x}-\vec{b}) \\
& \vec{b}=A \vec{x}-(A \vec{x}-\vec{b})
\end{aligned}
$$

univ

Example $\quad A=\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]$

Let's find the normal equations for $A \mathbf{x}=\mathbf{b}$:

Example
 $$
\left[\begin{array}{cc} 17 & 1 \\ 1 & 5 \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]=\left[\begin{array}{l} 19 \\ 11 \end{array}\right]
$$

Let's solve the normal equations for $A \mathbf{x}=\mathbf{b}$:

Question

Find the normal equations for the equation

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 3 \\
0 & 0
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
4 \\
1 \\
4
\end{array}\right]
$$

Answer

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 3 \\
0 & 0
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
4 \\
1 \\
4
\end{array}\right]
$$

Unique Least Squares Solutions

Question (Conceptual)

Is a least squares solution unique?

Answer: No

Remember that if $\mathbf{b} \in \operatorname{Col}(A)$ then $\hat{\mathbf{b}}=\mathbf{b}$ and then we're asking if $A \mathbf{x}=\mathbf{b}$ has a unique solution for any choice of A.

When is there a unique solution?

The least squares method gives us to find an approximate solution when there is no exact solution.

But it doesn't help us choose a solution in the case that there are many.

Practically Speaking

numpy.linalg.lstsq

linalg.lstsq(a, b, rcond='warn')
Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation a $@ x=b$. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the "exact" solution of the equation. Else, x minimizes the Euclidean 2-norm $\|b-a x\|$. If there are multiple minimizing solutions, the one with the smallest 2-norm $\|x\|$ is returned.

Parameters: a : (M, N) array_like

"Coefficient" matrix.
b : $\{(M),,(M, K)\}$ array_like
Ordinate or "dependent variable" values. If b is two-dimensional, the least-squares solution is calculated for each of the K columns of b.
rcond : float. obtional

Practically Speaking

numpy.linalg.lstsq

linalg.lstsq(a, b, rcond='warn')

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation a $@ x=b$. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the "exact" solution of the equation. Else, x minimizes the Euclidean 2-norm $\|b-a x\|$. If there are multiple minimizing solutions, the one with the smallest 2-norm $\|x\|$ is returned.

NumPy chooses the shortest vector

Parameters: a : (M, N) array_like
"Coefficient" matrix.
b : \{(M,), (M, K)\} array_like
Ordinate or "dependent variable" values. If b is two-dimensional, the least-squares solution is calculated for each of the K columns of b.
rcond : float. obtional

Practically Speaking

numpy.linalg.lstsq

linalg.lstsq(a, b, rcond='warn')

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation a $@ x=b$. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the "exact" solution of the equation. Else, x minimizes the Euclidean 2-norm $\|b-a x\|$. If there are multiple minimizing solutions, the one with the smallest 2-norm $\|x\|$ is returned.

NumPy chooses the shortest vector
Parameters: a : (M, N) array_like
"Coefficient" matrix.
b : $\{(M),,(M, K)\}$ array_like
Ordinate or "dependent variable" values. If b is two-dimensional, the least-squares solution is calculated for each of the K columns of b.
rcond : float. obtional

Unique Least Squares Solutions

Theorem. For a $m \times n$ matrix A the following are equivalent:
$» A \mathbf{x}=\mathbf{b}$ has a unique least squares solution for any choice of \mathbf{b}
» The columns of A are linearly independent.
» $A^{T} A$ is invertible.

Unique Least Squares Solutions

$$
\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

If A has linearly independent columns, then its unique least squares solution is defined as above:

Projecting onto a subspace

$$
\hat{\mathbf{b}}=A \hat{\mathbf{x}}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

If the columns of A are linearly independent, then they form a basis.

Said another way: if \mathscr{B} is a basis, then we can construct a matrix A whose columns are the vectors in \mathscr{B}.

This means we can find arbitrary projections.

Summary

Not all matrix equations have solutions, but every equation has a least squares solution

The least squares solution is an approximate solution, so it is close to an "actual" solution.

The normal equations give us a convenient way to compute least squares solutions.

