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Introduction



Recap Problem

1 0
0 — 3 v — 1
—2 —1
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Find the orthogonal projection of u onto the
span of v.






Objectives

1. Introduce the least squares problem as a
method of approximating solutions to matrix
equations.

2. Learn how to solve the least squares
problems.

3. Connect least squares solutions to
projections.
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normal equations
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columns form an orthonormal set.
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orthogonal matrix.



Orthonormal Matrices

Definition. A matrix is orthonormal if its
columns form an orthonormal set.

The notes call a square orthonormal matrix an
orthogonal matrix.

This 1s incredibly confusing, but we'll try to be
consistent and clear.



Inverses of Orthogonal Matrices

Theorem. If an nxn matrix U 1s orthogonal
(square orthonormal) then it is invertible and
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Orthonormal Matrices and Inner Products

Theorem. For a mxn orthonormal matrix U, and
any vectors x and y 1n R"

(Ux, Uy) = (x,y)
Orthonormal matrices preserve inner products.
Verify: < Ux, Ay - (M x} (Uﬂ V({V(ﬁ
7



Length, Angle, Orthogonality Preservation

Since lengths and angles are defined 1n terms
of 1nner products, they are also preserved by

orthonormal matrices: _ ) “
T Ul = Rk > e = b
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The Picture

Orthonormal U
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Question (Conceptual)

Suppose A 1s an mxn matrix with orthogonal but
not orthonormal columns. What is A'A?
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Answer

IT A=[a, a | |
. a, ... a] then A'A 1is a |
A=l diagonal matrix
D;; = HaiH2 O
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Motivation
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The story of an enterprising CS132 student

Problem. Solve the equation Ax =b.

Answer. Use np.linalg.solve(A, b).

>>> A = np.array(|

1., 0, 5],
:11 _11 4 ’
0, 2, 2]1)

>>> b = np.array([-1, 2, 3])
>>> np.linalg.solve(A, b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py', line 409, 1in solve
r = gufunc(a, b, signature=signature, extobj=extobj)
File "/opt/homebrew/lib/python3.11/site—-packages/numpy/linalg/linalg.py", line 112, in _raise_linalgerror_singular
raise LinAlgError("Singular matrix")
numpy. linalg.LinAlgError: Singular matrix




The story of an enterprising CS132 student

Problem. Solve the equation Ax =b.

Answer. Use np.linalg.solve(A, b).

>>> A = np.array(

1., 0, 5],
:11 _11 4 ’
0, 2, 2]1)

>>> b = np.array([-1, 2, 3])
>>> np.linalg.solve(A, b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py', line 409, 1in solve
r = gufunc(a, b, signature=signature, extobj=extobj)
File "/opt/homebrew/lib/python3.11/site—-packages/numpy/linalg/linalg.py", line 112, in _raise_linalgerror_singular
raise LinAlgError("Singular matrix")
numpy. linalg.LinAlgError: Singular matrix

This doesn't always work.



Reads the docs...
numpy.linalg.solve

linalg.solve(a, b) [source]

Solve a linear matrix equation, or system of linear scalar equations.
Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

Parameters: a : (... M, M) array _like

Coefficient matrix.

b:{.,M,)(.,M,K)}, array like

Ordinate or “dependent variable” values.

Returns: X : {..,M,) (., M,K)} ndarray

Solution to the system a x = b. Returned shape is identical to b.

Raises: LinAlgError

If a is singular or not square.

© See also

scipy.linalg.solve

F ol DY o T L e L N
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Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

Parameters: a : (... M, M) array _like
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b:{.,M,)(.,M,K)}, array like
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Ordinate or “dependent variable” values.

urns: {(.., M,), (.., M, K)} ndarray
Reads tT‘ d(ws dogfige system a x = b. Returned shape is identical to b.

Raises: LinAlgError

If a is singular or not square.

© See also

scipy.linalg.solve
Similar function in SciPy.

Notes

© New in version 1.8.0.

Broadcasting rules apply, see the numpy. Linalg documentation for details.
The solutions are computed using LAPACK routine _gesv.

a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly
independent; if either is not true, use Lstsq for the least-squares best “solution” of the
system/equation.
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Ordinate or “dependent variable” values.

urns: {(.., M,), (.., M, K)} ndarray
Reads tT‘ d(ws dogfige system a x = b. Returned shape is identical to b.

Raises: LinAlgError

If a is singular or not square.

© See also

scipy.linalg.solve
Similar function in SciPy.

Notes

© New in version 1.8.0.

Broadcasting rules apply, see the numpy. Linalg documentation for details.
The solutions are computed using LAPACK routine _gesv.

a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly
independent; if either is not true, use Lstsq for the least-squares best “solution” of the
system/equation.



np.linalg.lstsq

>>> np.linalg. lstsq(A, b)

<stdin>:1: FutureWarning: "rcond parameter will change to the default of machine precision times ~ max(M, N)
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass rcond=None , to keep using the old,
explicitly pass rcond=-1".

(array([-0.11111111, ©0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-171]))

>>> X = np.array([-0.11111111, 0.77777778, 0.22222222])

>>> A @ X

array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])

>>2>




np.linalg.lstsq

>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: "rcond parameter will change to the default of machine precision times ~ max(M, N)
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass rcond=None , to keep using the old,
explicitly pass rcond=-1".

(array([-0.11111111, ©0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-171]))

>>> X = np.array([-0.11111111, 0.77777778, 0.22222222])

>>> A @ X

array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])

>>2>




np.linalg.lstsq

>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: "rcond parameter will change to the default of machine precision times ~ max(M, N)
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass rcond=None , to keep using the old,
explicitly pass rcond=-1".

(array([-0.11111111, 0.77777778, 0.22222222]1), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-171]))

>>> X = np.array([-0.11111111, 0.77777778, 0.22222222])

>>> A @ X

array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])

>>2>




np.linalg.lstsq

>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: "rcond parameter will change to the default of machine precision times ~ max(M, N)
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass rcond=None , to keep using the old,
explicitly pass rcond=-1".

(array([-0.11111111, 0.77777778, 0.22222222]1), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))

>>> X = np.array([-0.11111111, 0.77777778, 0.22222222])

>>> A @ X

array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])

>>2>




np.linalg.lstsq

>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: "rcond parameter will change to the default of machine precision times ~ max(M, N)
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass rcond=None , to keep using the old,
explicitly pass rcond=-1".

(array([-0.11111111, 0.77777778, 0.22222222]1), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))

>>> X = np.array([-0.11111111, 0.77777778, 0.22222222])

>>> A @ X

array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])

>>>




np.linalg.lstsq

>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: "rcond parameter will change to the default of machine precision times ~ max(M, N)
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass rcond=None , to keep using the old,
explicitly pass rcond=-1".

(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))

>>> X = np.array([-0.11111111, 0.77777778, 0.22222222])

>>> A @ X

array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])

>>>

uh...probably numerical errors...

—1/9
Answer: x=1| 7/9
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np.linalg.lstsq

>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: "rcond parameter will change to the default of machine precision times ~ max(M, N)
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass rcond=None , to keep using the old,
explicitly pass rcond=-1".

(array([-0.11111111, 0.77777778, 0.22222222]1), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))

>>> X = np.array([-0.11111111, 0.77777778, 0.22222222])

>>> A @ X

array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])

>>>

uh...probably numerical errors...

—1/9
Answer: x= | 7/9 This 1s not correct

2/9



This System is Inconsistent
1 0 5 -1 1 0 5 -1 1 0 5 -1
[1 -1 4 2]~ O -1 -1 3|~10 -1 -1 3
0O 2 2 3 0o 2 2 3

The "correct" answer: There 1s no solution.



This System is Inconsistent
1 0 5 -1 1 0 5 -1 1 0 5 -1
[1 -1 4 2]~ O -1 -1 3|~10 -1 -1 3
0O 2 2 3 0o 2 2 3

The "correct" answer: There 1s no solution.

What's going on here?



Non-Linearity
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https://textbooks.math.gatech.edu/ila/least—-squares.html



Non-Linearity

Linear algebra 1s very
powerful and very clean, but
the world i1isn't linear. There
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Non-Linearity

Linear algebra 1s very
powerful and very clean, but
the world i1isn't linear. There
are non—-Llinear relationships
and sources of noise.

We can't force the world to
be linear.

But we can try...

(=3,1)
mm)

k—/ (1,-1)

(—1,-2)

266x?% +405y% —178xy +402x — 123y — 1374 =0

https://textbooks.math.gatech.edu/ila/least—-squares.html
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The ldea

Least Squares 1s a method | oo
for finding approximate
solutions to systems of
linear equations.

This 1s a Lot more useful
1n practice than exact
solutions.
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The ldea

Least Squares 1s a method | oo
for finding approximate
solutions to systems of
linear equations.

This 1s a Lot more useful
1n practice than exact
solutions.

It can be used to do linear

regression from stats 20 " 10 10 20 30 40 50 60
c lass.

https://commons.wikimedia.org/wiki/File:Linear_regression.sv(



General Least Squares Problem
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Question. Given vectors
y and u 1n R*, find

vectors y and z such
that

» z 1S orthogonal to u
(i.e., z-u=0)

» y € span{u}

> y:y—|—z

Recall: Orthogonal Projection

4 -
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X
Recall: The Picture = ¢

S~ G
Yy
\ ' fD\I/)\’

> " — Span{u}

4 2 g 2 4 6 : 10 12
The transformation y—§ 1s
21 1linear and represents the
projection onto span{u)




Recall: y and Distance

Theorem. ||y —y||= min |[w-—Yy]|

wespan{u}

A\

y 1s the closest vector 1n
span{u} TO y.

"Proof" by 1nspection:

= Span{u}
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The Equational Perspective

We know the equation xu=y may have no solution.

Question. Find a value a such that au 1is as
close as possible to vy.

That 1s, the distance dist(y,au) = ||y —au|| 1S as
small as possible.

We need to generalize this to arbitrary matrix
equations.
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Problem. Given a mxn
matrix A and a vector b
from R™, find a vector

@n R"” which minimizes

dist(AX,b) = ||Ax — b||




The General Least Squares Problem

Figure 22.8

b is closest pointin ColAtob

Problem. Given a mxn

matrix A and a vector b
from R™, find a vector
x 1N R” which minimilzes

dist(AX,b) = ||Ax — b||

Find a vector x which
makes ||[Ax—Db]|| as small
as possible.



Figure 22.8

The Picture b is closest point inlSCoI Atob
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There.iS no But there's a
solution to solution that's

AX =D. pretty close.
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Sum of Squares

JAx — bl = ) ((Ax),— b))’
=1

It is equivalent to minimize ||Ax —b||?, which can
be viewed as a sum of squares.

These things come up everywhere.

(Advanced.) This error isn everywhere

differentiable, whereas }E\Qbof—bﬂ is not.
=1



Least Squares Solution

Definition. Given a mxn matrix A and a vector
b in R™, a least squares solution of Ax=b is a
vector x from R” such that

|[AX — b|| < |[|Ax — bl|

for any x 1n R”.

Agalin, ||Ax—Db| 1s as small as possible.



Figure 22.8

The Picture (Again) 15 e

10

-5 s b % COZ(A)
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thls distance
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b
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Argmin
X = arg min ||AX — b||
xeR"
Another way of framing this 1s vila argmin.

Defintion. argminf(x) =% where AX) = minf(x)
xeX xeX

A\

£ 1s the argument that minimizes f.

This 1s now an optimization problem.




Solving the General Least
Squares Problems




Recall: The Picture (Again) y

\ = Span{u}

4 2 g 2 4 6 : 10 12
The transformation y—§ 1s
21 1linear and represents the
projection onto span{u)




Projects onto other Spans

The transformation
b—b is the
projection of b
onto span{a;,a,}




The High Level Approach.

Question. Find a least squares solutions to
Ax=Db
Solution.

1. Find the closest point b 1n Col(A) to b.

2. Solve the equation Ax=b instead.



Orthogonal Decomposition Theorem

Theorem. Let W be a
subspace of R". Every
vector y 1n R” can be
written uniquely as

VyV=V+7Z

where ye W and z 1S
orthogonal to every
vector in Ww.

Linear Algebra and its Applications, Lay, Lay, McDonald



Projection via Orthogonal Bases

We can determine y by ¥ . X
projecting onto an /ﬁ//é(
orthogonal basis. V%

5, /7
Every SUbSpace has an 2'/,/\\ . y-u, s y-u, . L

. S D A u u, =

orthogonal basis (we R PR
won't prove this) — 7

T

Linear Algebra and its Applications, Lay, Lay, McDonald



The Best-Approximation Theorem

Theorem. Let W be a
subspace of R”, and let ¥
be the orthogonal
projection of y onto W.
Then

ly =¥l < lly — wl|

for any vector w 1n W.

A\

y 1s the closest point in W to vy

Linear Algebra and its Applications, Lay, Lay, McDonald



Proof by Inspection




Proof by Algebra
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The Point

b is in Col(A) so Ax=b
has a solution.

At this point, we could
call 1t a day:

Question. Find a least
squares solution to Ax=b

Solution. Find b, then
solve Ax=Db




Question

Find the least square solution for the equation

A, 1

IEPAR . | 4
. -1 3|x=]1
0 O 4
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A Couple Observations

A\

Suppose that x 1s a Lleast A
squares solution to A, so Ax=b

e b-b is orthogonal to Col(A)
e AXx—b 1s orthogonal to Col(A)

e If A=[a, a, ... a] then Ax-b
1s orthogonal to each “

a,a,,...,a

¢ a/(Ax—b)=0
e AlAX-b)=0



A bit more magic

Let's simplify A’(AX —b):
<7 _ 0
ATAL- AN b C
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The Normal Equations

Theorem. The set of least-squares solutions of
Ax=Db 1s the same as the set of solutions to

ATAx =A'b
In particular, this set of solutions 1s nonempty.

We just showed that 1f x 1s a least squares
solution then A’Ax =A'b.



The Normal Equations

In the other direction, suppose A'Ax=A'b:
>

>..
~
?
1 &
|
D
\
O

A% - 7"
— > AT e
ni- b (AE " —
R A
b



4 0 p)
Example A — O 2 b — O
1 1 11
Let's find the normal equations for Ax=b:



Example 171 A _ |19
1 5] [*2 11

Let's solve the normal equations for Ax =b:



Question

Find the normal equations for the equation

il



Answer

1 2
-1 3
0 O

|

A
|
A

|



Unique Least Squares Solutions



Question (Conceptual)

Is a least squares solution unique?



Answer: No

Remember that if b e Col(A) then b=b and then
we're asking 1f Ax=b has a unique solution for
any choice of A.



When is there a unique solution?

The least squares method gives us to find an
approximate solution when there 1s no exact
solution.

But it doesn't help us choose a solution 1in the
case that there are many.



Practically Speaking
numpy.linalg.Istsqg

linalg.lstsq(a, b, rcond='warn') [source]

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equationa @ x = b. The equation may be

under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than,
equal to, or greater than its number of linearly independent columns). If a is square and of full rank,
then x (but for round-off error) is the “exact” solution of the equation. Else, x minimizes the Euclidean
2-norm ||b — ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||z|| is
returned.

Parameters: a : (M, N) array like

“Coefficient” matrix.

b : {(M,), (M, K)} array_like

Ordinate or “dependent variable” values. If b is two-dimensional, the least-squares
solution is calculated for each of the K columns of b.

rcond : float. ontional
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Unique Least Squares Solutions

Theorem. For a mxn matrix A the following are
equivalent:

» AX=b has a unique least squares solution for
any choice of b

» The columns of A are linearly independent.

» ATA 1s invertible.




Unique Least Squares Solutions

x=ATA)"'ATb

IT A has linearly 1independent columns, then 1ts
unique Lleast squares solution 1s defined as
above:




Projecting onto a subspace

b=A% = AATA) 1ATD

IfT the columns of A are linearly 1ndependent,
then they form a basis.

Said another way: 1f % 1s a basis, then we can
construct a matrix A whose columns are the

vectors 1n £.

This means we can find arbitrary projections.



Summary

Not all matrix equations have solutions, but
every equation has a least squares solution

The least squares solution 1s an approximate
solution, so 1t 1s close to an "actual"
solution.

The normal equations give us a convenlient way
to compute least squares solutions.




