Least Squares **Geometric Algorithms** Lecture 23

CAS CS 132

Introduction

Recap Problem $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \\ -2 \\ -1 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$

Find the orthogonal projection of u onto the span of v.

$\hat{\mathbf{u}} = \begin{bmatrix} 0\\5/2\\-5/2\\0\end{bmatrix}$



Objectives

- 1. Introduce the least squares problem as a equations.
- 2. Learn how to solve the least squares problems.
- 3. Connect least squares solutions to projections.

method of approximating solutions to matrix

Keywords

general least squares problem sum of squares error (ℓ_2 -error) least squares solutions orthogonal projections normal equations

Orthogonal Matrices

Orthonormal Matrices

Definition. A matrix is orthonormal if its columns form an orthonormal set.

orthogonal matrix.

The notes call a square orthonormal matrix an

Orthonormal Matrices

Definition. A matrix is orthonormal if its columns form an orthonormal set.

The notes call a square orthonormal matrix an orthogonal matrix.

This is incredibly confusing, but we'll try to be consistent and clear.

Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix U is orthogonal

Verify:

- (square orthonormal) then it is invertible and
 - $U^{-1} = U^T$

Orthonormal Matrices and Inner Products

any vectors x and y in R^n $\langle Ux, U^{2}\rangle$

Verify:

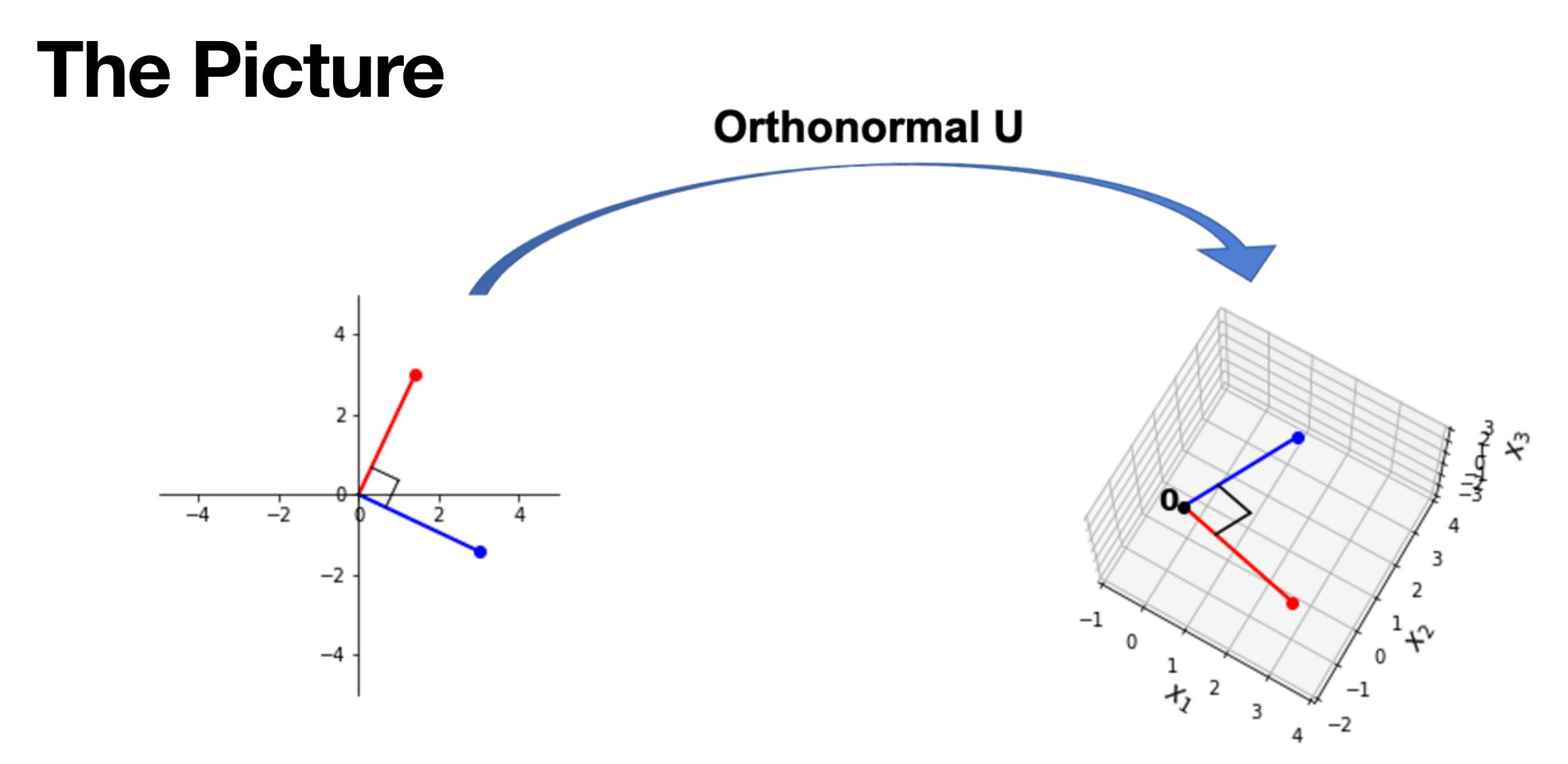
Theorem. For a $m \times n$ orthonormal matrix U, and

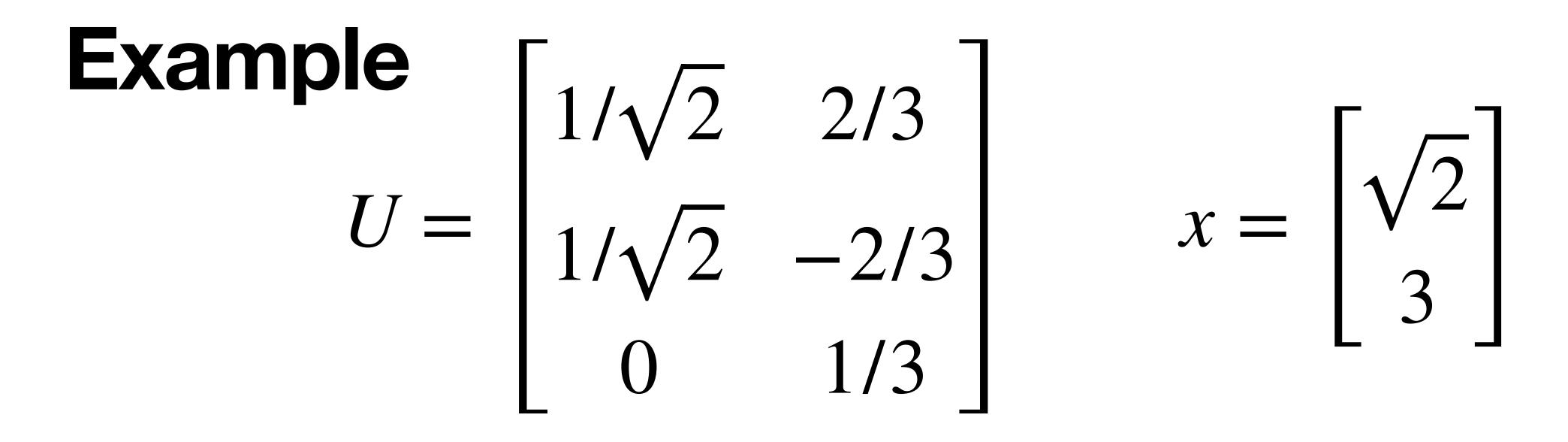
$$\left| y \right\rangle = \left\langle x, y \right\rangle$$

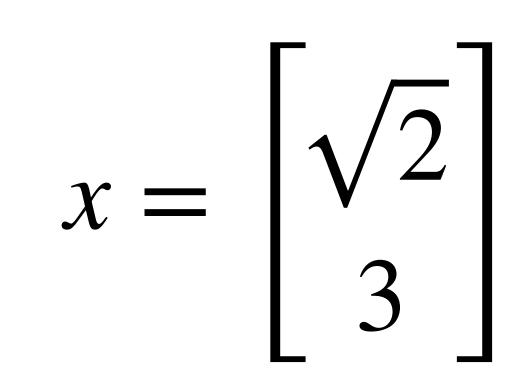
Orthonormal matrices preserve inner products.

Length, Angle, Orthogonality Preservation

Since <u>lengths</u> and <u>angles</u> are defined in terms of inner products, they are also preserved by orthonormal matrices:







Question (Conceptual)

Suppose A is an $m \times n$ matrix with orthogonal but **not** orthonormal columns. What is $A^{T}A$?

If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ then $A^T A$ is a diagonal matrix D where

 $D_{ii} = \|\mathbf{a}_i\|^2$

Motivation

Problem. Solve the equation $A\mathbf{x} = \mathbf{b}$.

Problem. Solve the equation $A\mathbf{x} = \mathbf{b}$. Answer. Use np.linalg.solve(A, b).

Problem. Solve the equation $A\mathbf{x} = \mathbf{b}$.

Answer. Use np.linalg.solve(A, b).

>>> A = np_array([[1., 0, 5], [1, -1, 4], [0, 2, 2]]) . . . $>> b = np_array([-1, 2, 3])$ >>> np.linalg.solve(A, b) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 409, in solve r = gufunc(a, b, signature=signature, extobj=extobj) raise LinAlgError("Singular matrix") numpy.linalg.LinAlgError: Singular matrix

```
File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 112, in _raise_linalgerror_singular
```

Problem. Solve the equation $A\mathbf{x} = \mathbf{b}$.

Answer. Use np.linalg.solve(A, b).

>>> A = np_array([[1., 0, 5], [1, -1, 4], [0, 2, 2]]) . . . $>> b = np_array([-1, 2, 3])$ >>> np.linalg.solve(A, b) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 409, in solve r = gufunc(a, b, signature=signature, extobj=extobj) raise LinAlgError("Singular matrix") numpy.linalg.LinAlgError: Singular matrix

This doesn't always work.

```
File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 112, in _raise_linalgerror_singular
```

Reads the docs... numpy.linalg.solve

linalg.solve(a, b)

Solve a linear matrix equation, or system of linear scalar equations.

Computes the "exact" solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

- Parameters: a : (..., M, M) array_like Coefficient matrix.
 - b : {(..., M,), (..., M, K)}, array_like Ordinate or "dependent variable" values.
- x : {(..., M,), (..., M, K)} ndarray Returns:
- LinAlgError Raises: If *a* is singular or not square.

See also

scipy.linalg.solve

[source]

Solution to the system a x = b. Returned shape is identical to b.

Reads the docs... numpy.linalg.solve

linalg.solve(a, b)

Solve a linear matrix equation, or system of linear scalar equations.

- Parameters: a : (..., M, M) array_like Coefficient matrix.
 - b : {(..., M,), (..., M, K)}, array_like Ordinate or "dependent variable" values.
- x : {(..., M,), (..., M, K)} ndarray Returns: Solution to the system a x = b. Returned shape is identical to b.
- LinAlgError Raises: If *a* is singular or not square.

See also

scipy.linalg.solve

[source]

Computes the "exact" solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

 $D : \{(..., NI,), (..., NI, K)\}, UITUY_IIKE$ Ordinate or "dependent variable" values.

Returns: x : {(..., M,), (..., M, K)} ndarray Returned shape is identical to b.

Raises:

LinAlgError

If *a* is singular or not square.

See also

scipy.linalg.solve

Similar function in SciPy.

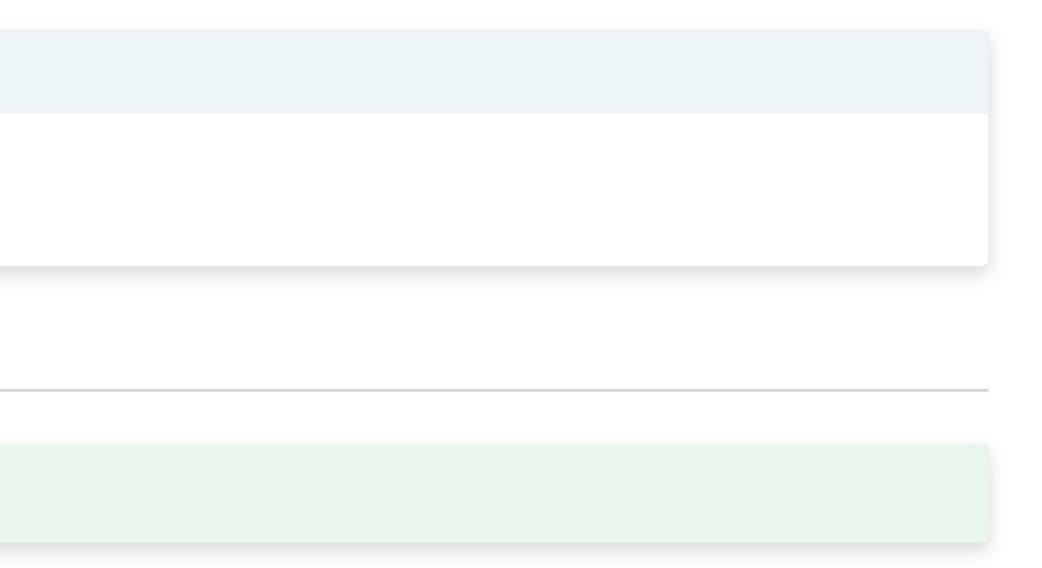
Notes

• New in version 1.8.0.

Broadcasting rules apply, see the **numpy.linalg** documentation for details.

The solutions are computed using LAPACK routine _gesv.

a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use **lstsq** for the least-squares best "solution" of the system/equation.



 $D : \{(..., NI,), (..., NI, K)\}, UITUY_IIKE$ Ordinate or "dependent variable" values.

Returns: x : {(..., M,), (..., M, K)} ndarray Returned shape is identical to b.

Raises:

LinAlgError

If *a* is singular or not square.

See also

scipy.linalg.solve

Similar function in SciPy.

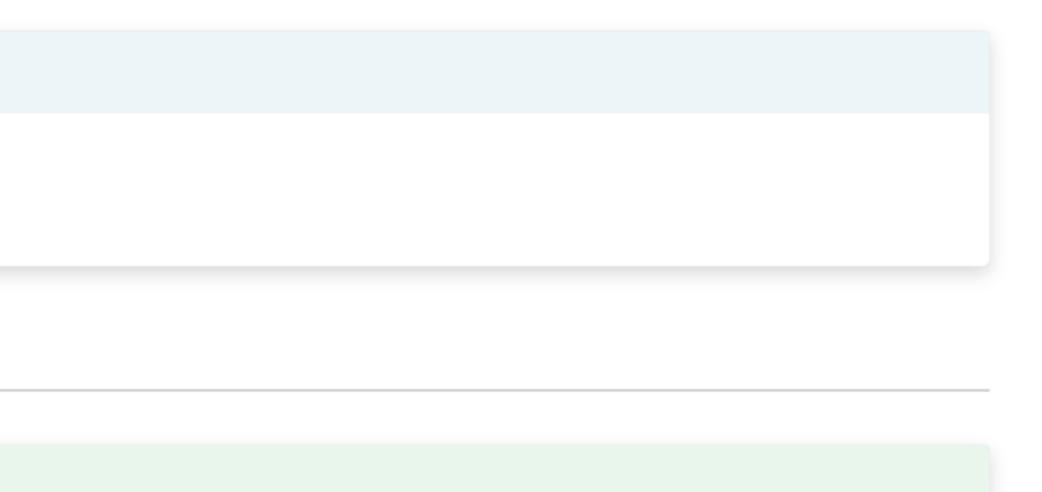
Notes

• New in version 1.8.0.

Broadcasting rules apply, see the **numpy.linalg** documentation for details.

The solutions are computed using LAPACK routine _gesv.

a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use **lstsq** for the least-squares best "solution" of the system/equation.



>>> np.linalg.lstsq(A, b) where M and N are the input matrix dimensions. explicitly pass `rcond=-1`. (array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 2.27845297e+00, 6.13801942e-17])) >>> x = np.array([-0.1111111, 0.7777778, 0.22222222]) >>> A @ x array([9.99999990e-01, -9.99999994e-09, 2.00000000e+00]) >>>

```
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
```

>>> np.linalg.lstsq(A, b) where M and N are the input matrix dimensions. explicitly pass `rcond=-1`. (array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 2.27845297e+00, 6.13801942e-17])) >>> x = np.array([-0.1111111, 0.7777778, 0.22222222]) >>> A @ x array([9.99999990e-01, -9.99999994e-09, 2.00000000e+00]) >>>

```
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
```

>>> np.linalg.lstsq(A, b) where M and N are the input matrix dimensions. explicitly pass `rcond=-1`. (array([_0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 2.27845297e+00, 6.13801942e-17])) >> x = np.array([-0.1111111, 0.7777778, 0.22222222])>>> A @ x array([9.99999990e-01, -9.99999994e-09, 2.00000000e+00]) >>>

```
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
```

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.0000000e+00])
>>>
```

>>> np.linalg.lstsq(A, b) where M and N are the input matrix dimensions. explicitly pass `rcond=-1`. (array([_0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 2.27845297e+00, 6.13801942e-17])) >>> x = np.array([-0.1111111, 0.7777778, 0.22222222]) >>> A @ x array([9.99999990e-01, -9.99999994e-09, 2.00000000e+00]) >>>

```
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
```

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.1111111, 0.7777778, 0.2222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```

uh...probably numerical errors...

Answer: $\mathbf{x} = \begin{bmatrix} -1/9 \\ 7/9 \\ 2/9 \end{bmatrix}$

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.1111111, 0.77777778, 0.2222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.1111111, 0.7777778, 0.2222222])
>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.0000000e+00])
>>
```

uh...probably numerical errors...

Answer: $\mathbf{x} = \begin{bmatrix} -1/9 \\ 7/9 \\ 2/9 \end{bmatrix}$

This is not correct

This System is Inconsistent $\begin{bmatrix} 1 & 0 & 5 & -1 \\ 1 & -1 & 4 & 2 \\ 0 & 2 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & -1 & -1 & 3 \\ 0 & 2 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & -1 & -1 & 3 \\ 0 & 0 & 0 & 9 \end{bmatrix}$

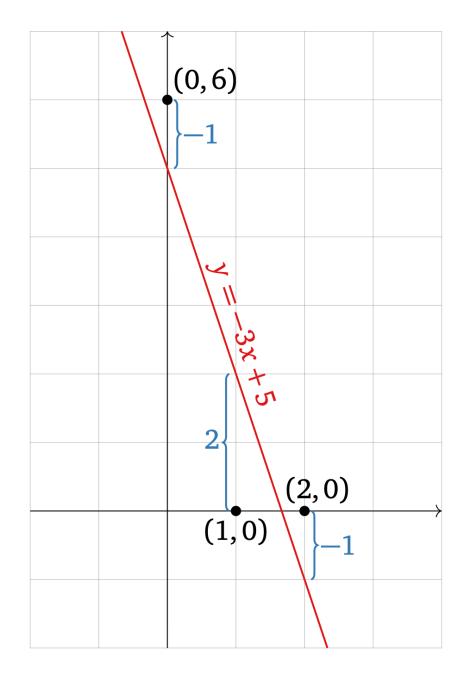
The "correct" answer: There is no solution.

This System is Inconsistent $\begin{bmatrix} 1 & 0 & 5 & -1 \\ 1 & -1 & 4 & 2 \\ 0 & 2 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & -1 & -1 & 3 \\ 0 & 2 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & -1 & -1 & 3 \\ 0 & 0 & 0 & 9 \end{bmatrix}$

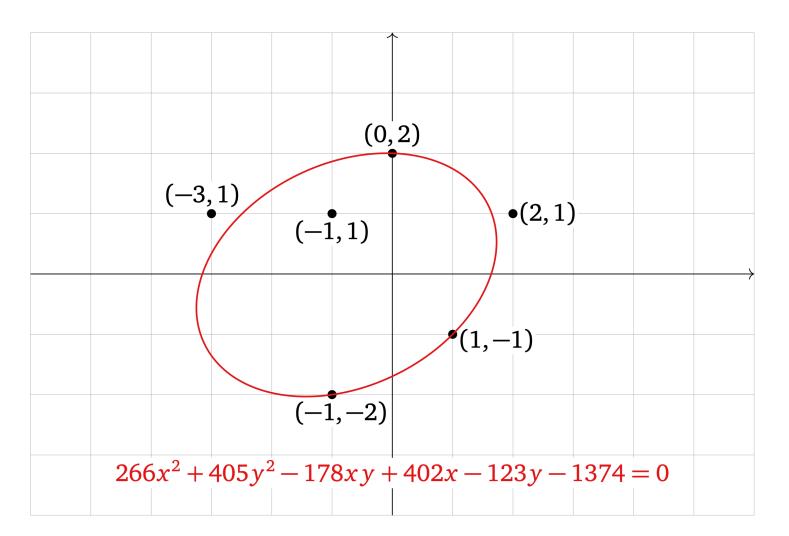
The "correct" answer: There is no solution.

What's going on here?

Non-Linearity



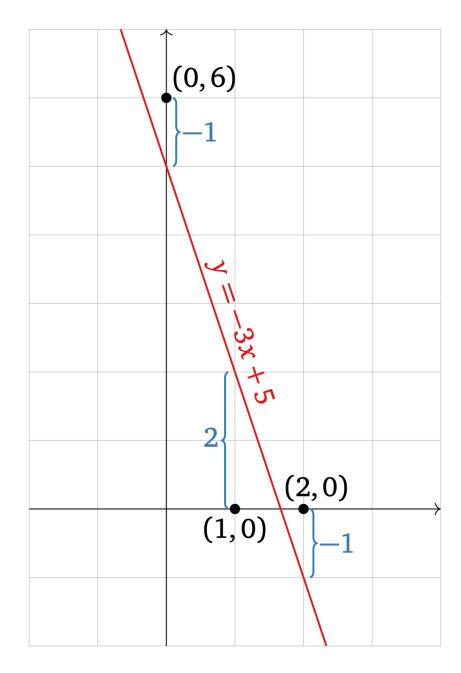
$$b - A\widehat{x} = \begin{pmatrix} 6\\0\\0 \end{pmatrix} - A\begin{pmatrix} -3\\5 \end{pmatrix} = \begin{pmatrix} -1\\2\\-1 \end{pmatrix}$$

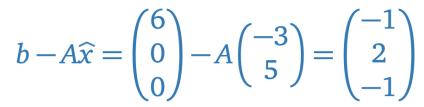


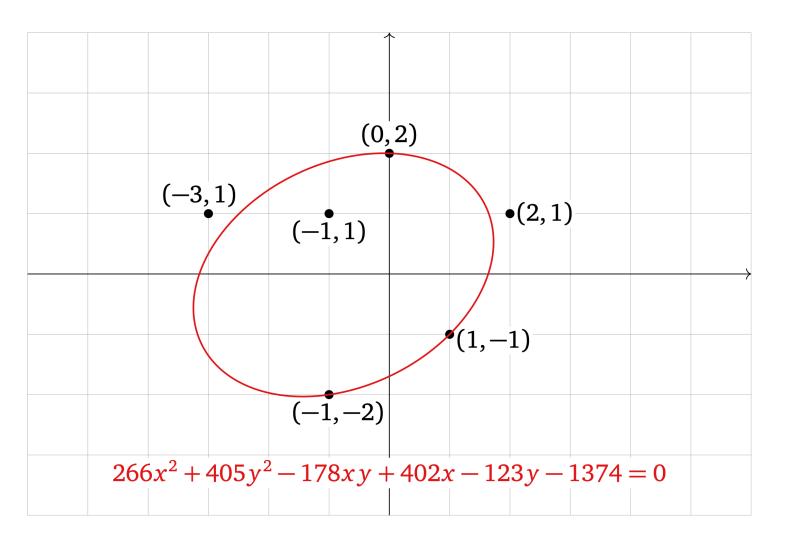
https://textbooks.math.gatech.edu/ila/least-squares.html

Non-Linearity

Linear algebra is very powerful and very clean, but the world isn't linear. There are non-linear relationships and sources of noise.





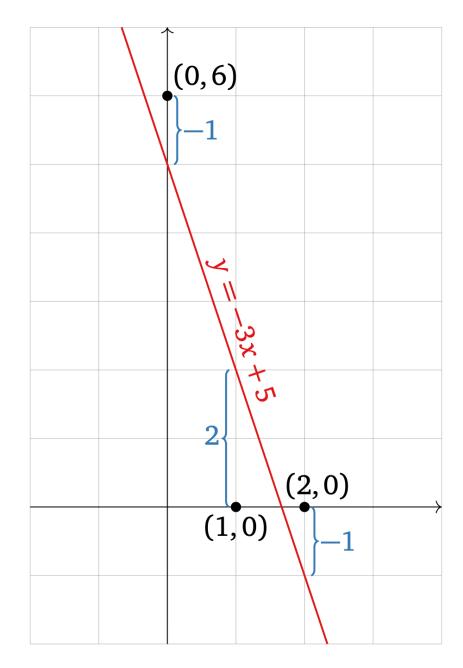


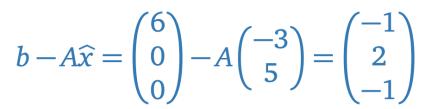
https://textbooks.math.gatech.edu/ila/least-squares.html

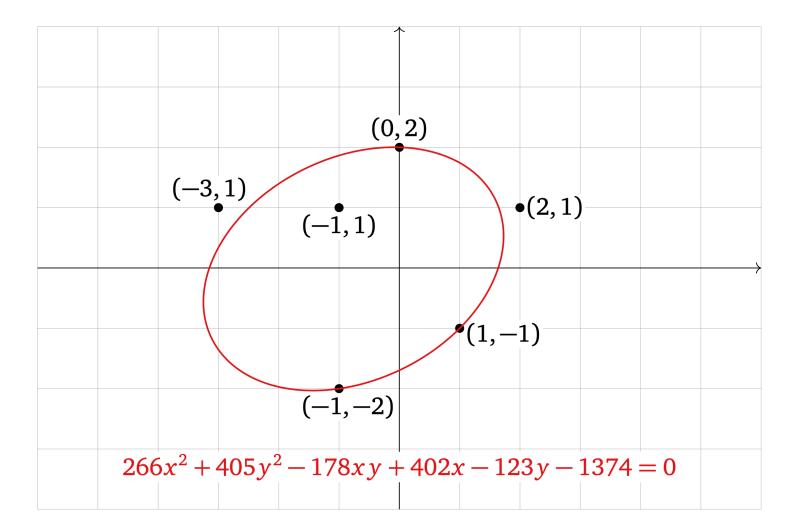
Non-Linearity

Linear algebra is very powerful and very clean, but the world isn't linear. There are non-linear relationships and sources of noise.

We can't force the world to be linear.







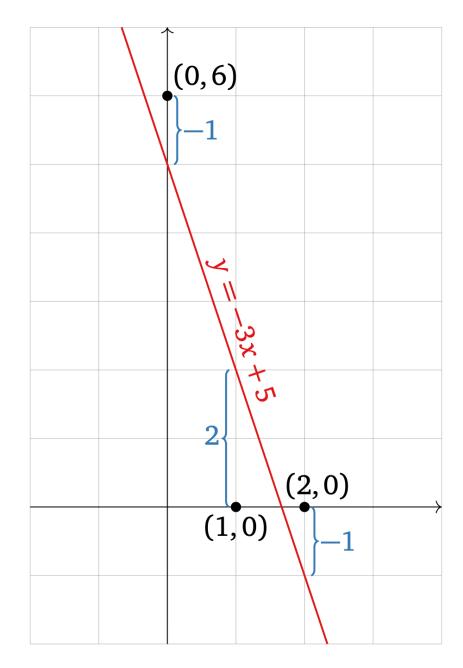
https://textbooks.math.gatech.edu/ila/least-squares.html

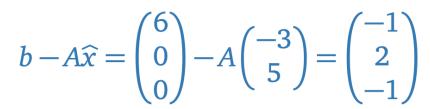
Non-Linearity

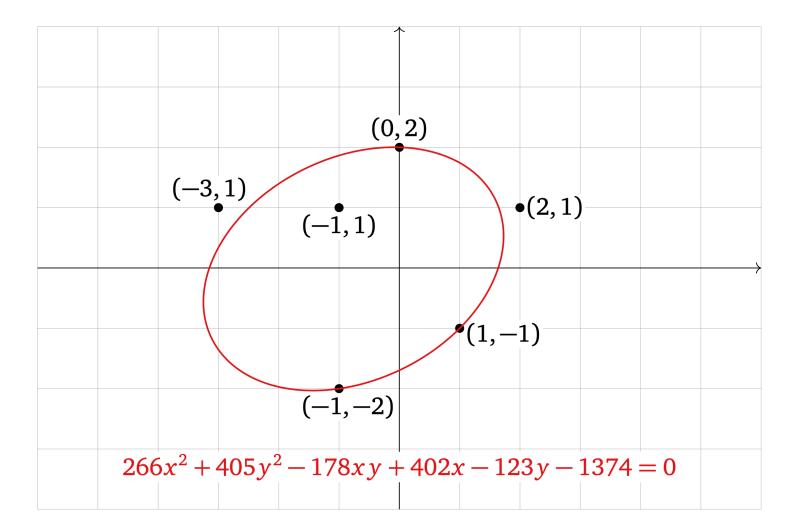
Linear algebra is very powerful and very clean, but the world isn't linear. There are non-linear relationships and sources of noise.

We can't force the world to be linear.

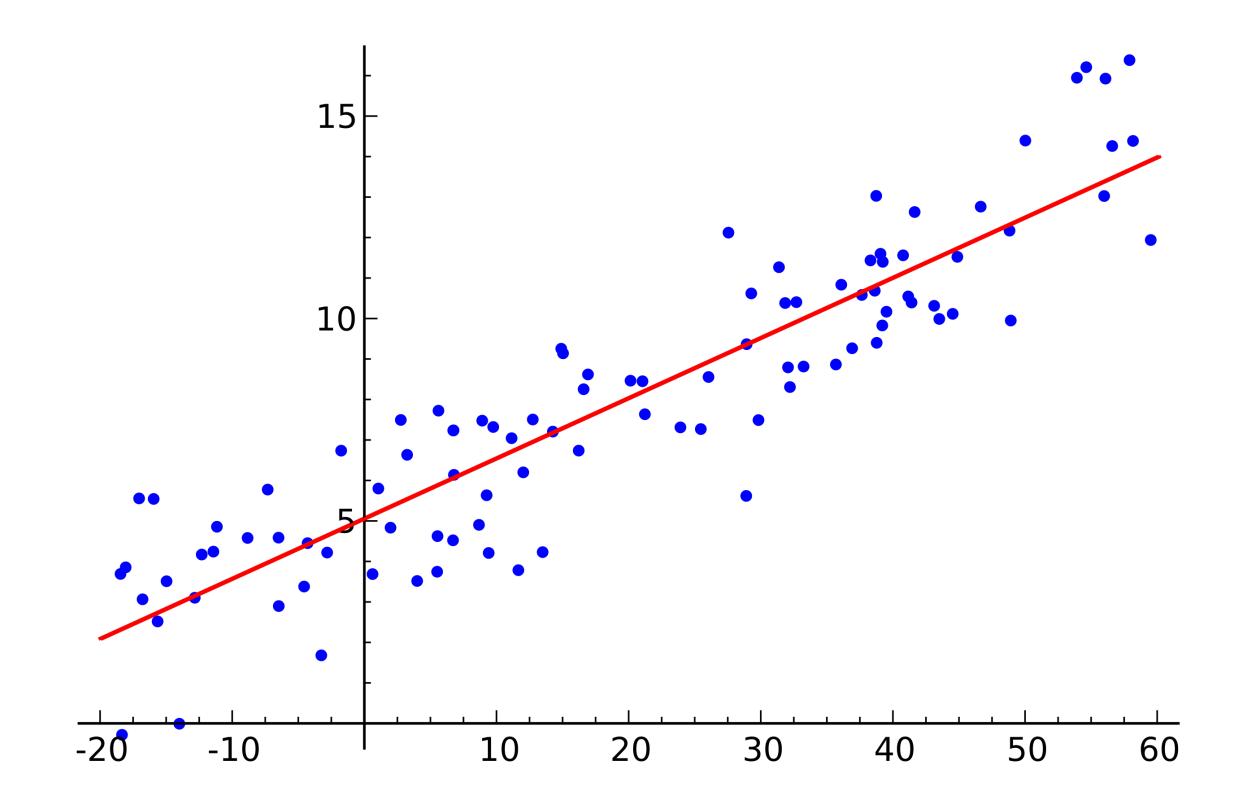
But we can try...





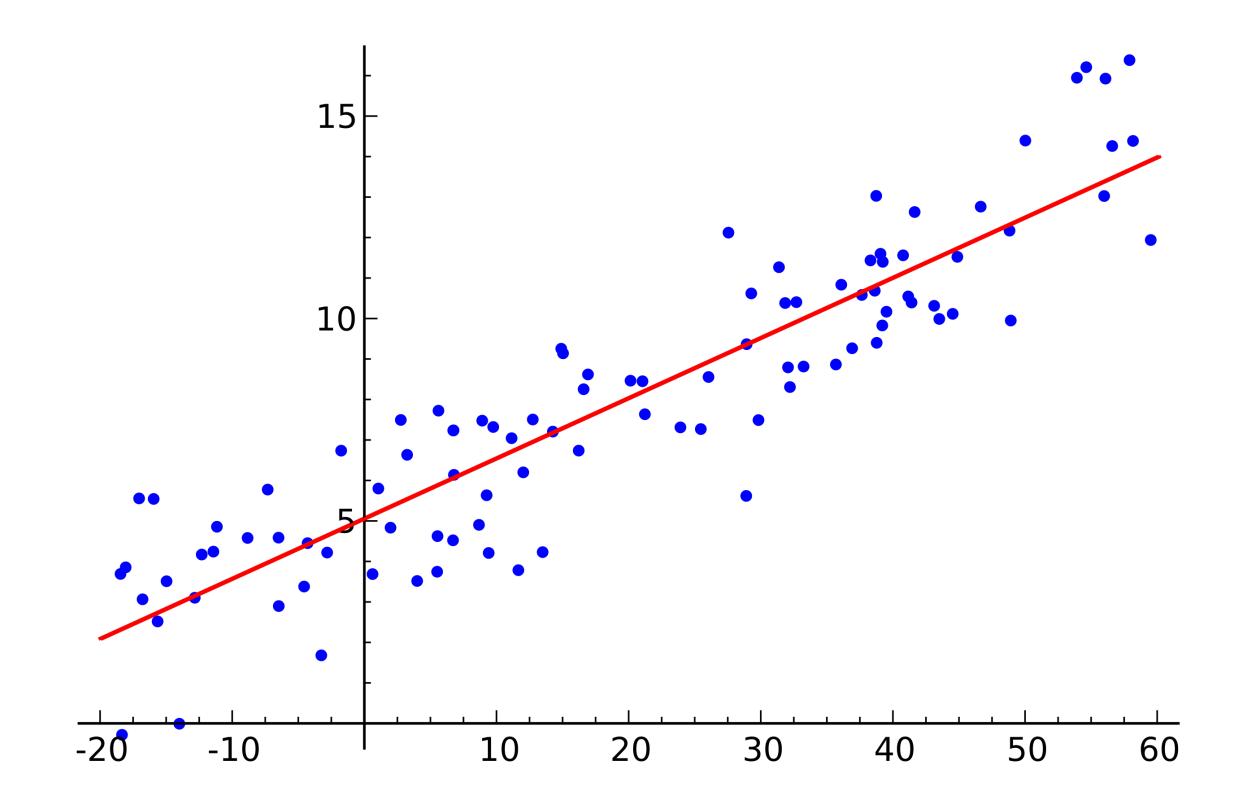


https://textbooks.math.gatech.edu/ila/least-squares.html



https://commons.wikimedia.org/wiki/File:Linear_regression.svg

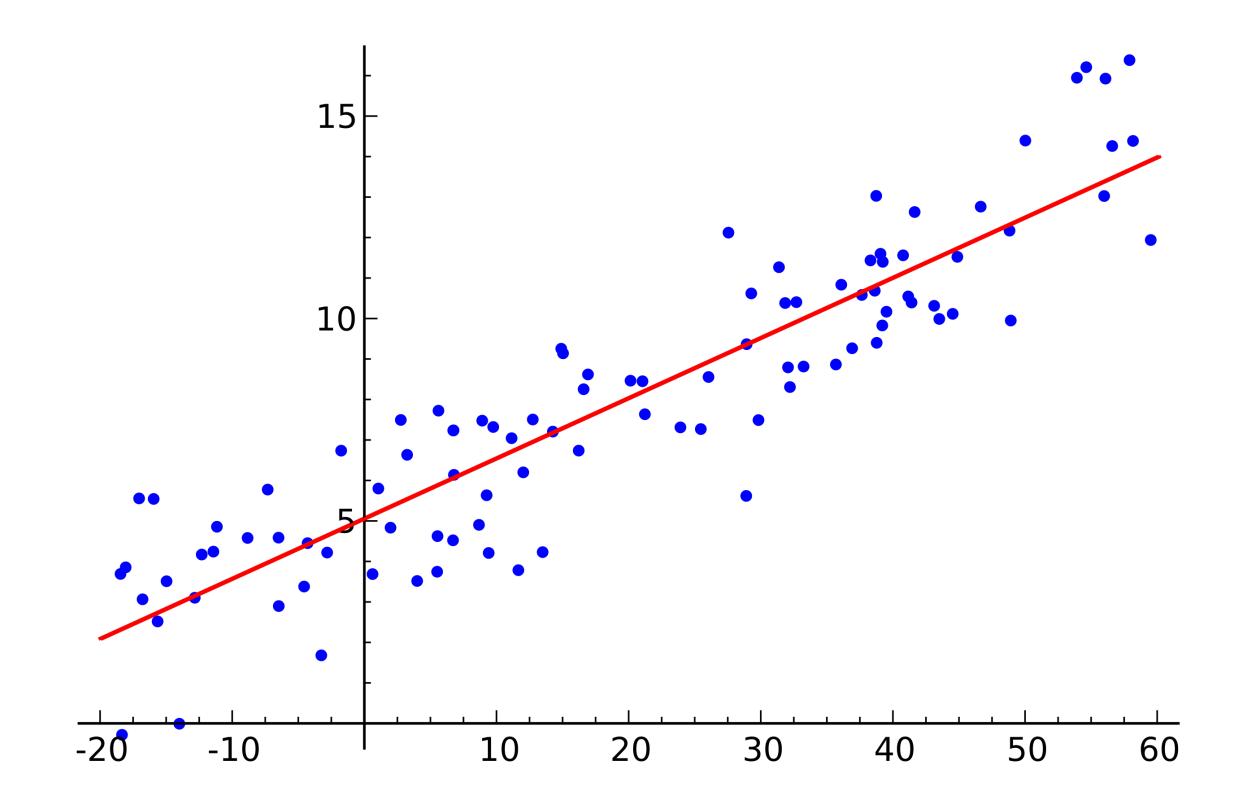
Least Squares is a method for finding *approximate* solutions to systems of linear equations.



https://commons.wikimedia.org/wiki/File:Linear_regression.svg

Least Squares is a method for finding *approximate* solutions to systems of linear equations.

This is a lot more useful in practice than exact solutions.

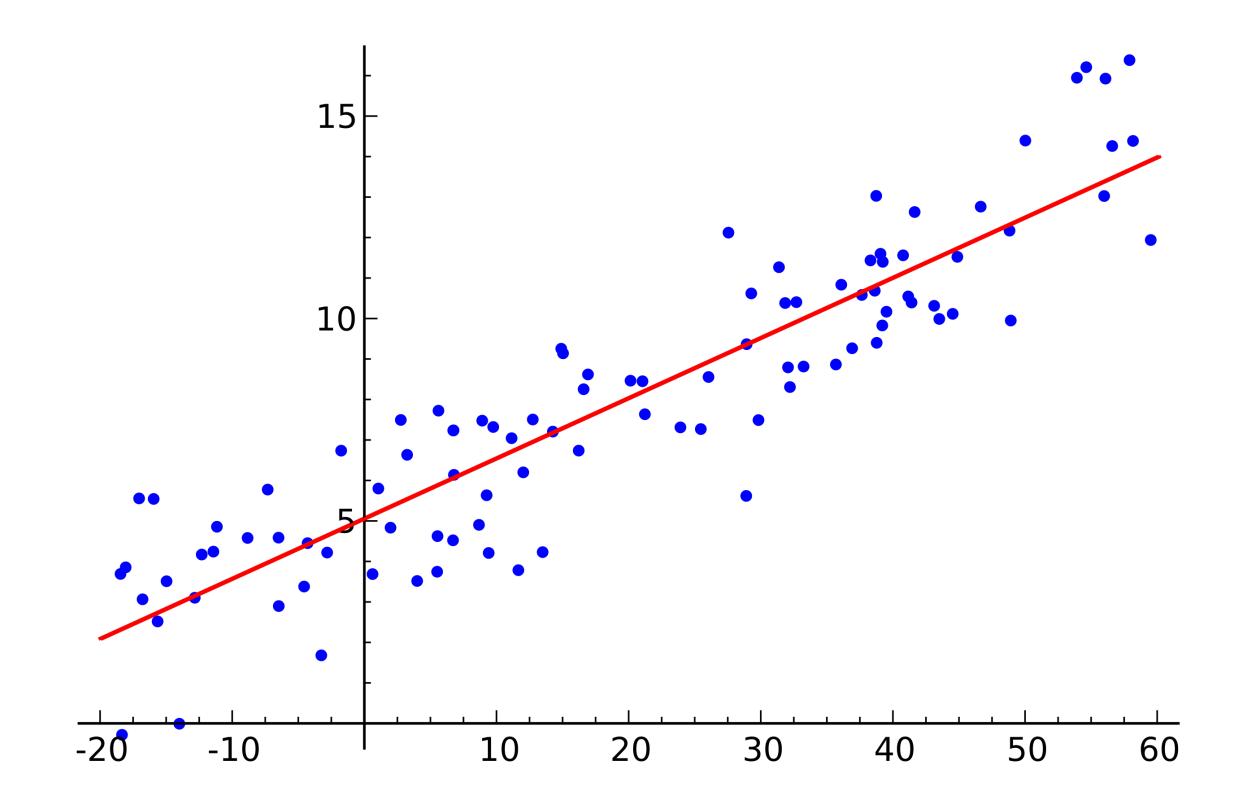


https://commons.wikimedia.org/wiki/File:Linear_regression.svg

Least Squares is a method for finding *approximate* solutions to systems of linear equations.

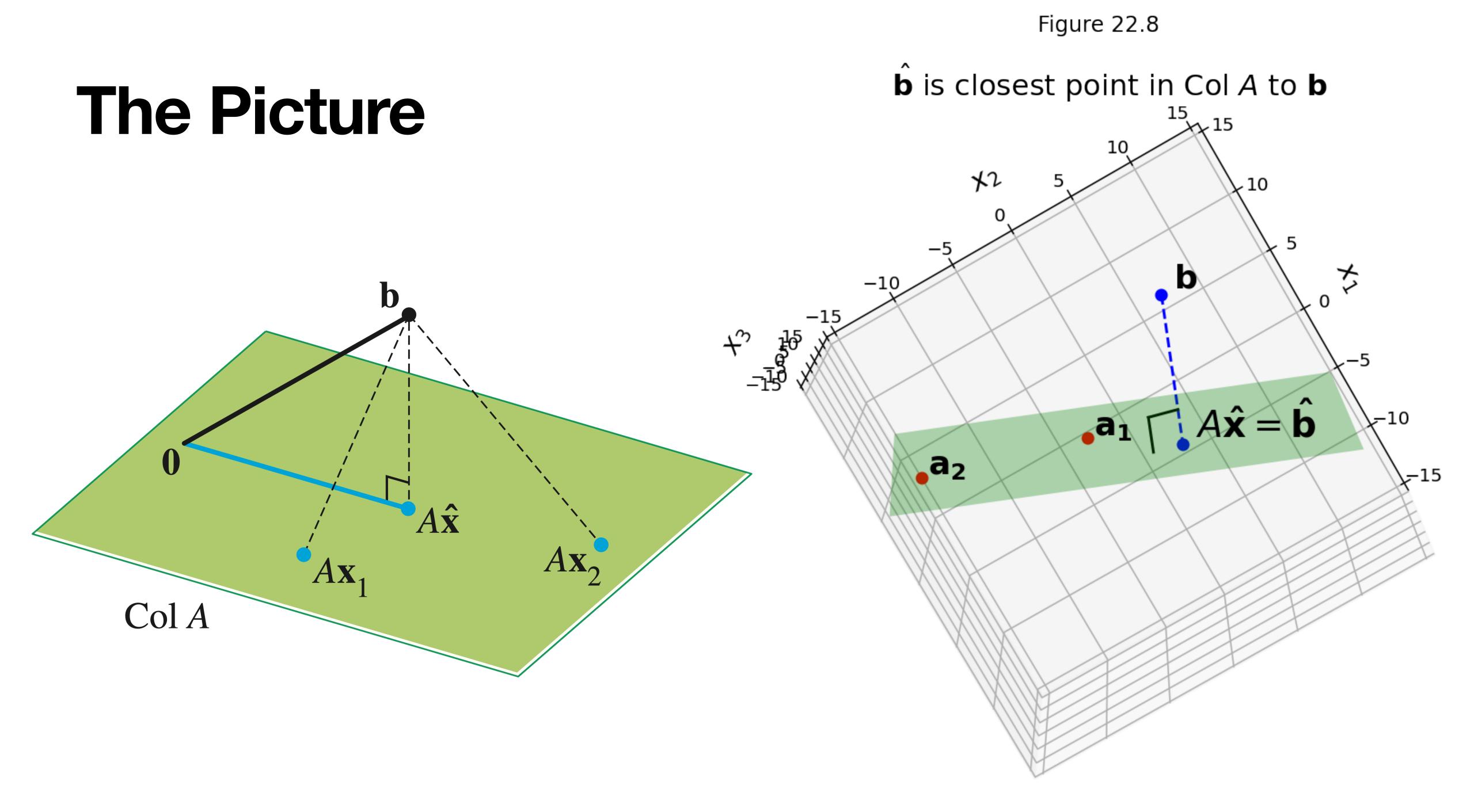
This is a lot more useful in practice than exact solutions.

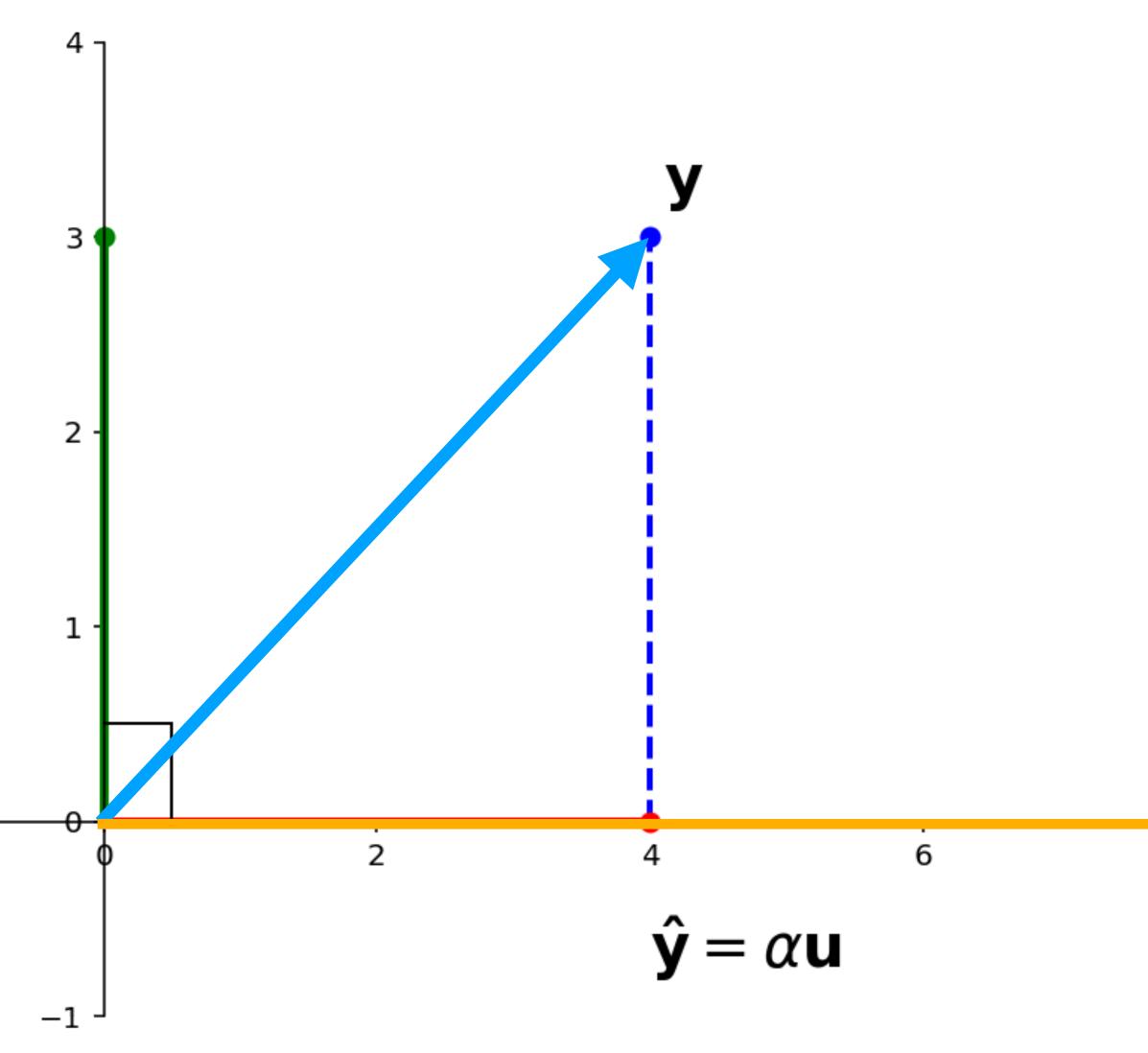
It can be used to do **linear regression** from stats class.



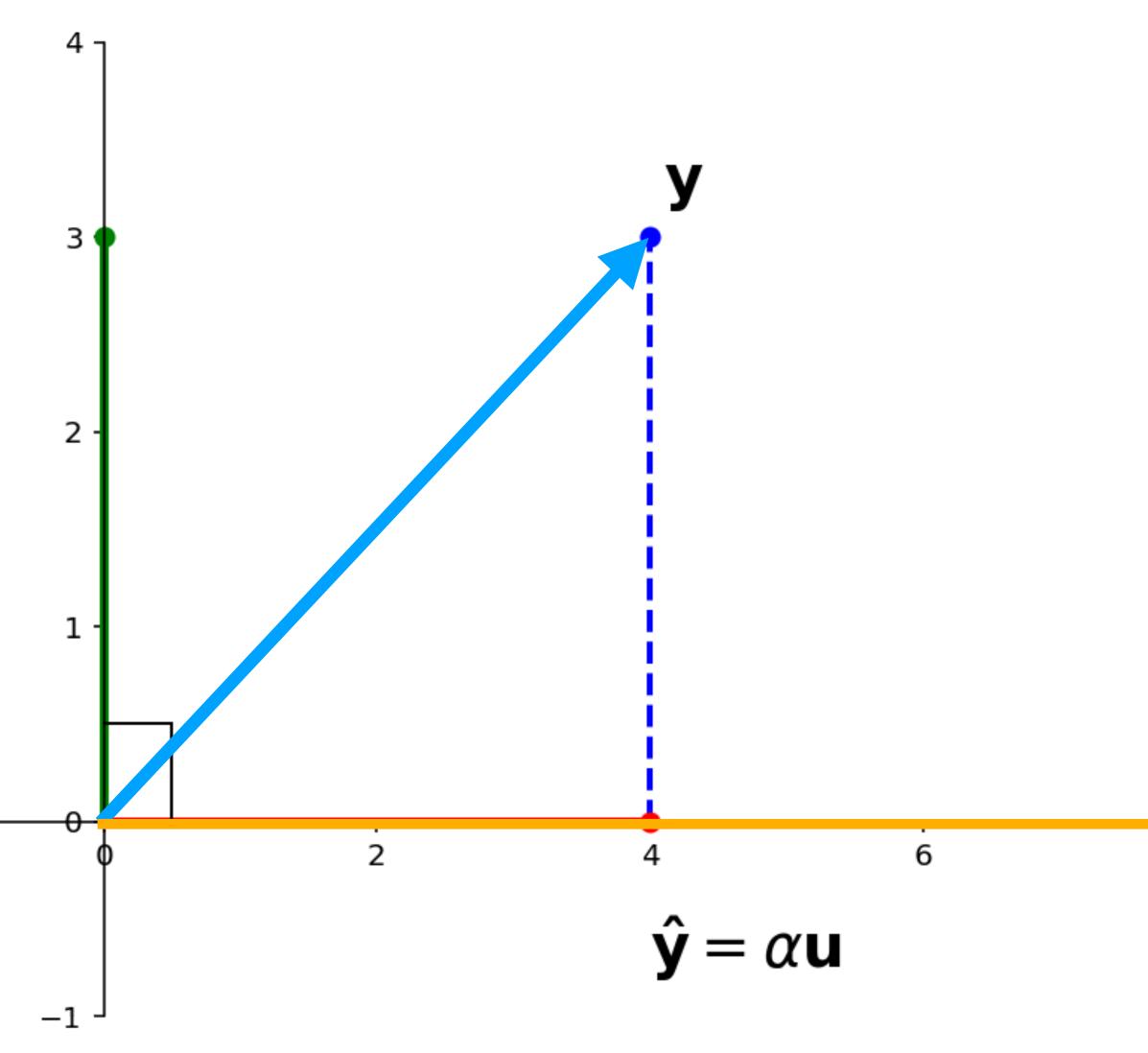
https://commons.wikimedia.org/wiki/File:Linear_regression.svg

General Least Squares Problem



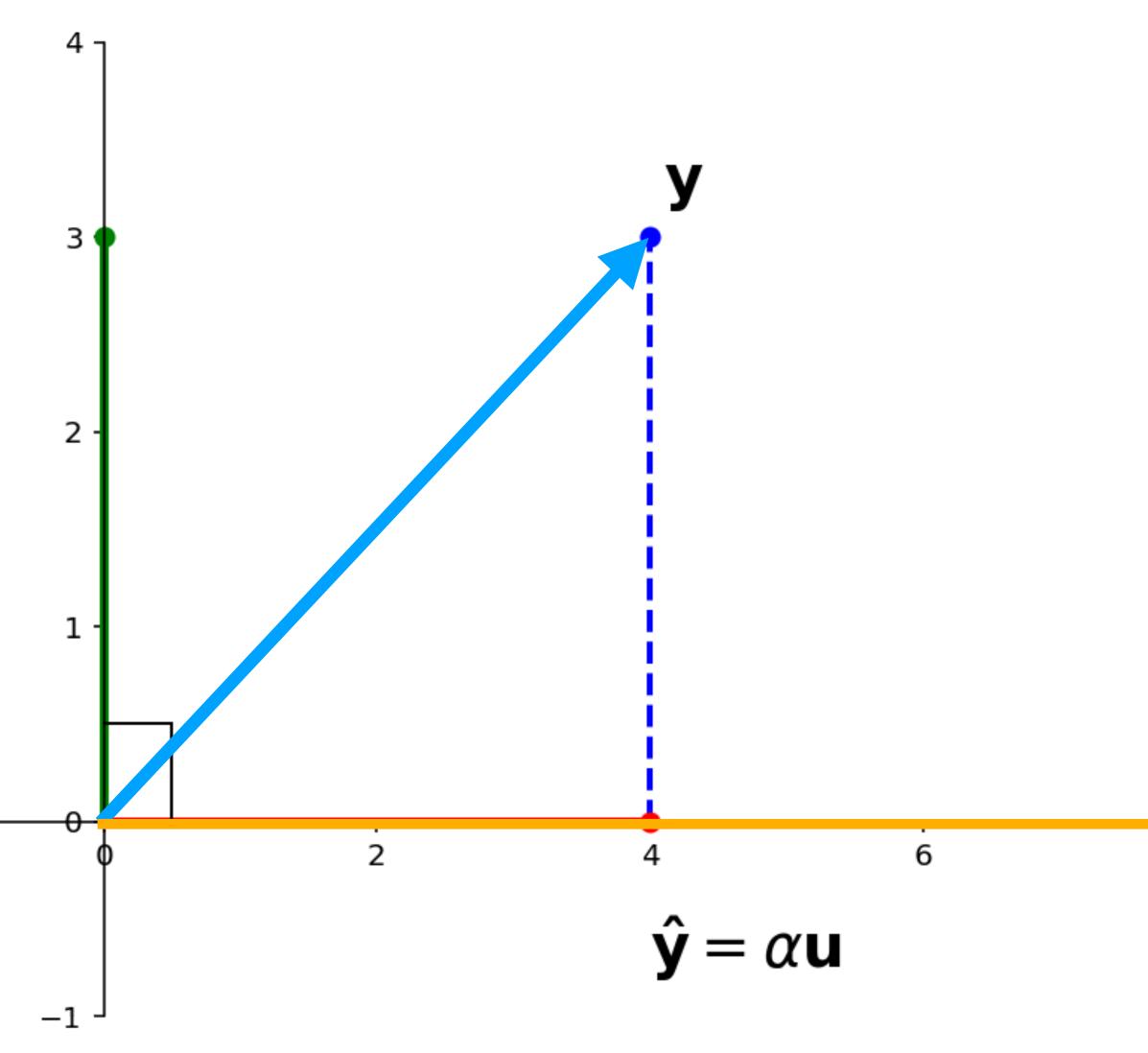


Question. Given vectors y and u in R^n , find vectors \hat{y} and z such that



Question. Given vectors y and u in R^n , find vectors \hat{y} and z such that

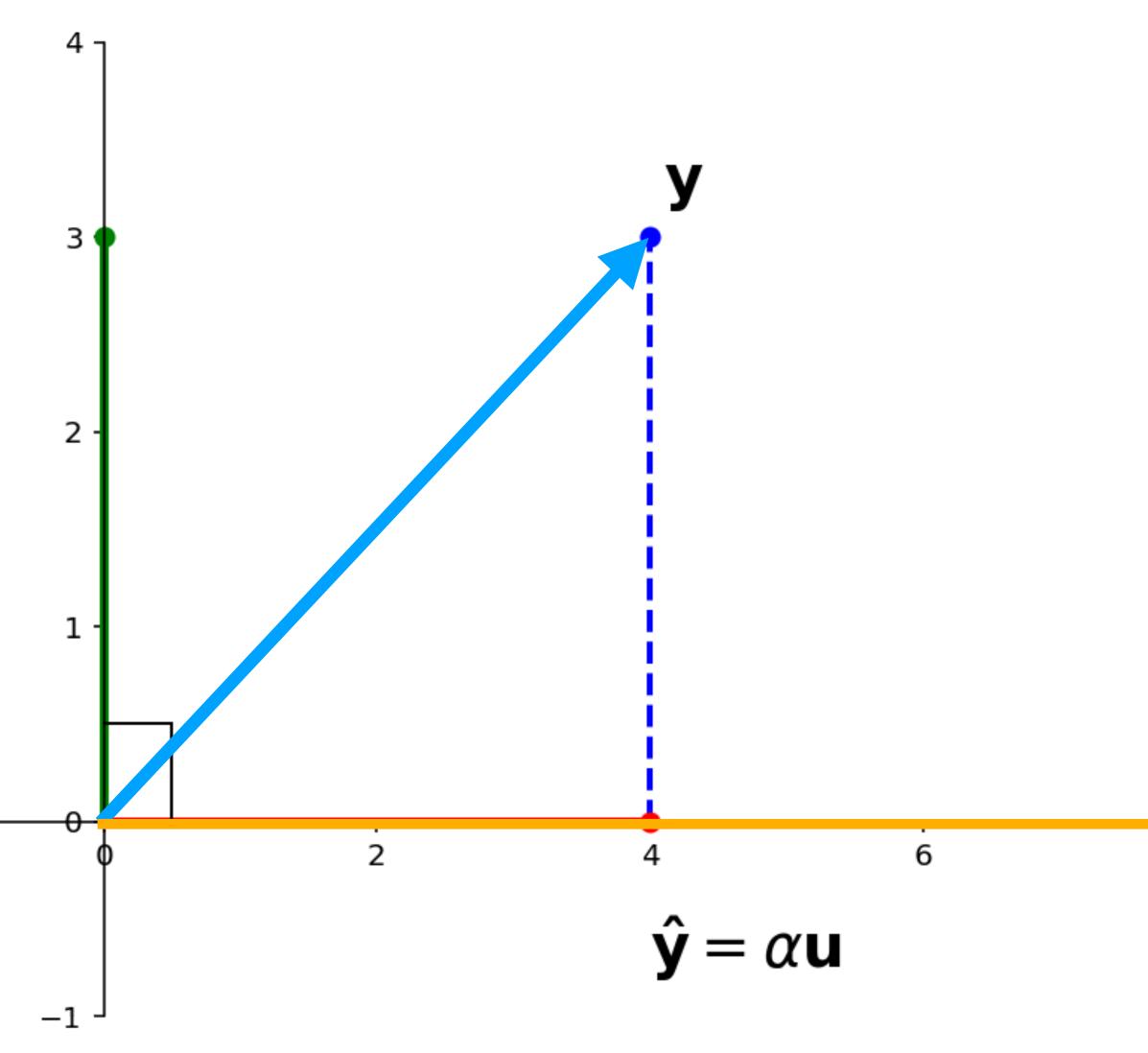
» z is orthogonal to u
(i.e., $z \cdot u = 0$)



Question. Given vectors y and u in R^n , find vectors \hat{y} and z such that

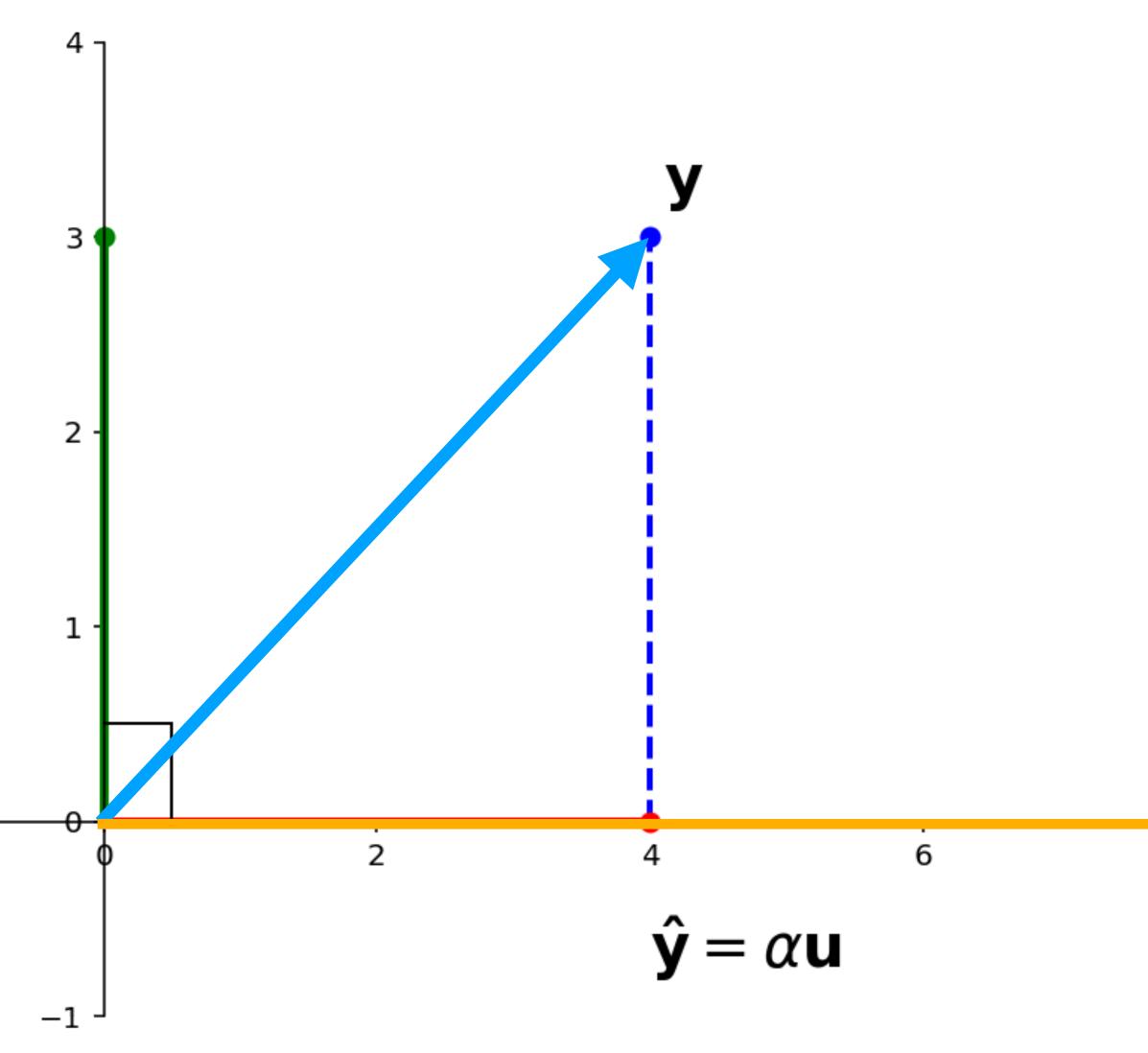
» z is orthogonal to u (i.e., $z \cdot u = 0$)

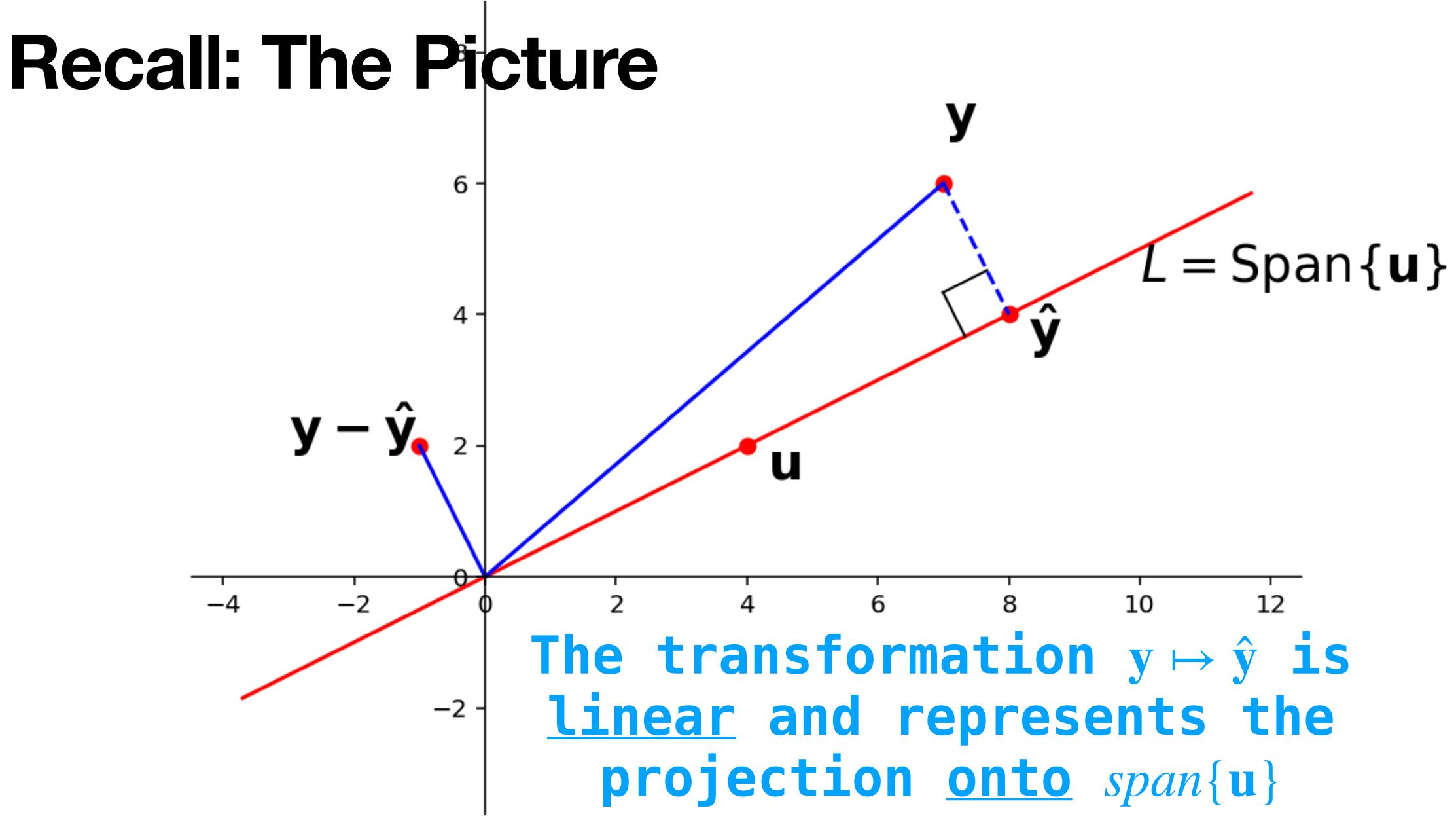
» $\hat{\mathbf{y}}$ ∈ *span*{ \mathbf{u} }



Question. Given vectors y and u in R^n , find vectors \hat{y} and z such that

- » z is orthogonal to u
 (i.e., $z \cdot u = 0$)
- » $\hat{\mathbf{y}}$ ∈ *span*{ \mathbf{u} }
- $y = \hat{y} + z$



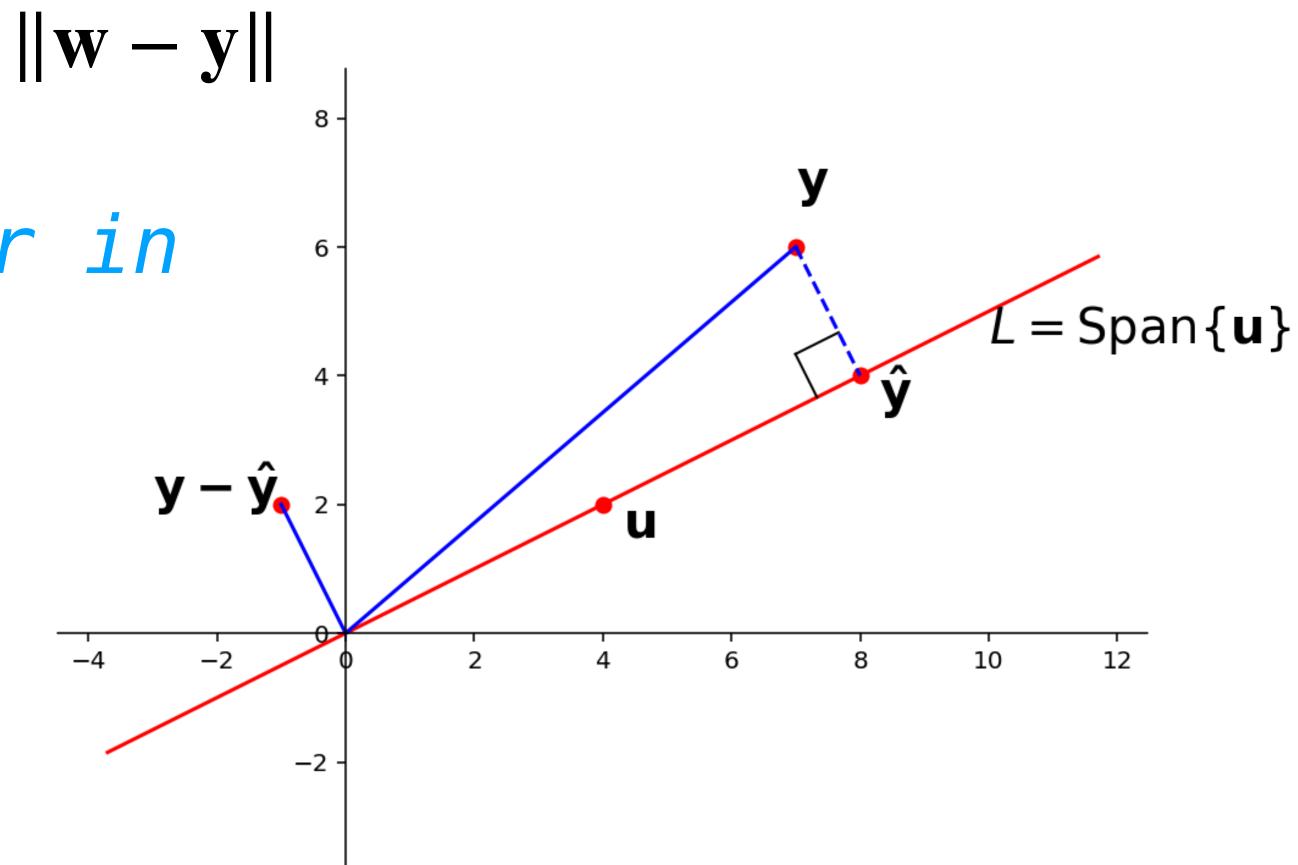


Recall: \hat{y} and Distance

Theorem. $\|\hat{\mathbf{y}} - \mathbf{y}\| = \min_{\mathbf{w} \in span\{\mathbf{u}\}} \|\mathbf{w} - \mathbf{y}\|$

ŷ is the <u>closest</u> vector in $span\{u\}$ to y.

"Proof" by inspection:



We know the equation $x\mathbf{u} = \mathbf{y}$ may have no solution.

Question. Find a value α such that αu is as close as possible to y.

We know the equation $x\mathbf{u} = \mathbf{y}$ may have no solution.

Question. Find a value α such that αu is as close as possible to y. That is, the distance $dist(\mathbf{y}, \alpha \mathbf{u}) = \|\mathbf{y} - \alpha \mathbf{u}\|$ is as small as possible.

We know the equation $x\mathbf{u} = \mathbf{y}$ may have no solution.

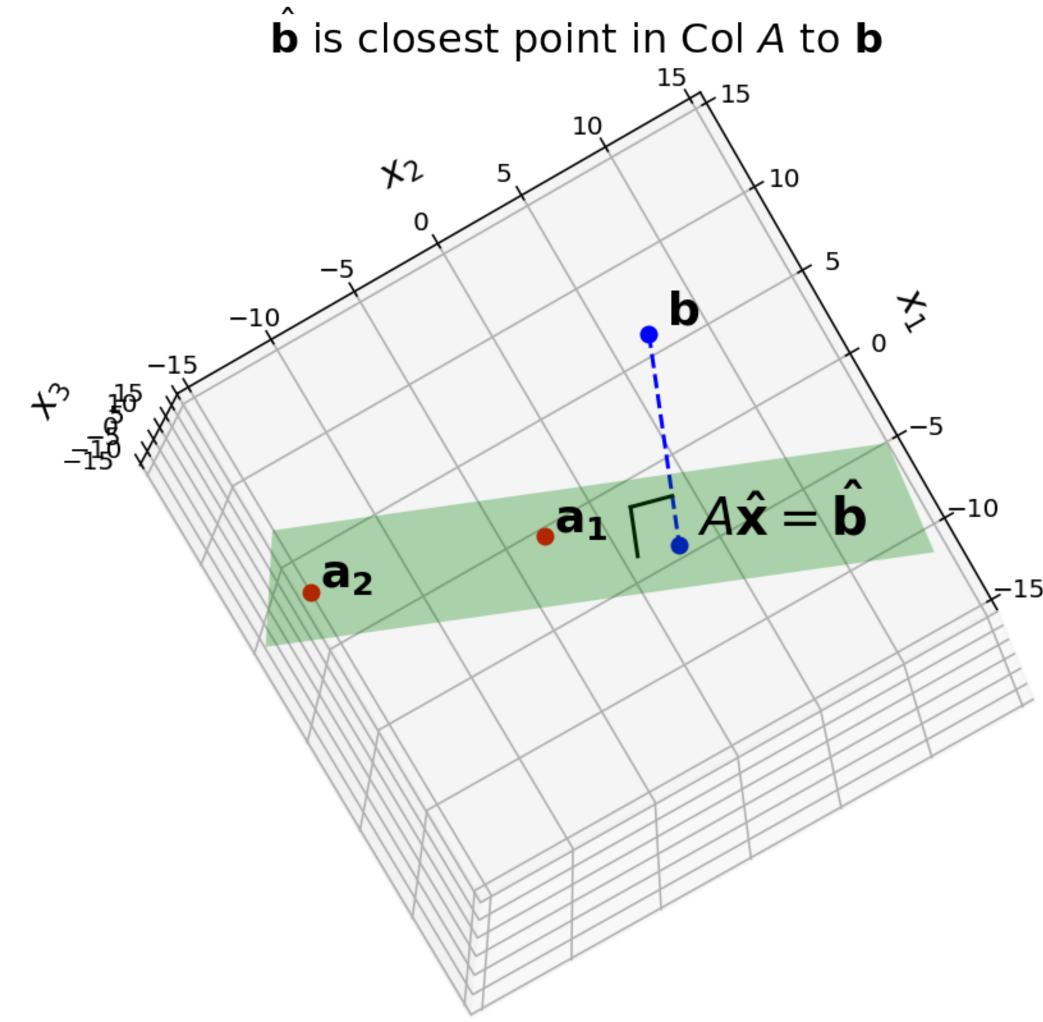
- Question. Find a value α such that αu is as close as possible to y.
- That is, the distance $dist(\mathbf{y}, \alpha \mathbf{u}) = \|\mathbf{y} \alpha \mathbf{u}\|$ is as small as possible.
- equations.

We know the equation $x\mathbf{u} = \mathbf{y}$ may have no solution.

We need to generalize this to arbitrary matrix

The General Least Squares Problem

Figure 22.8

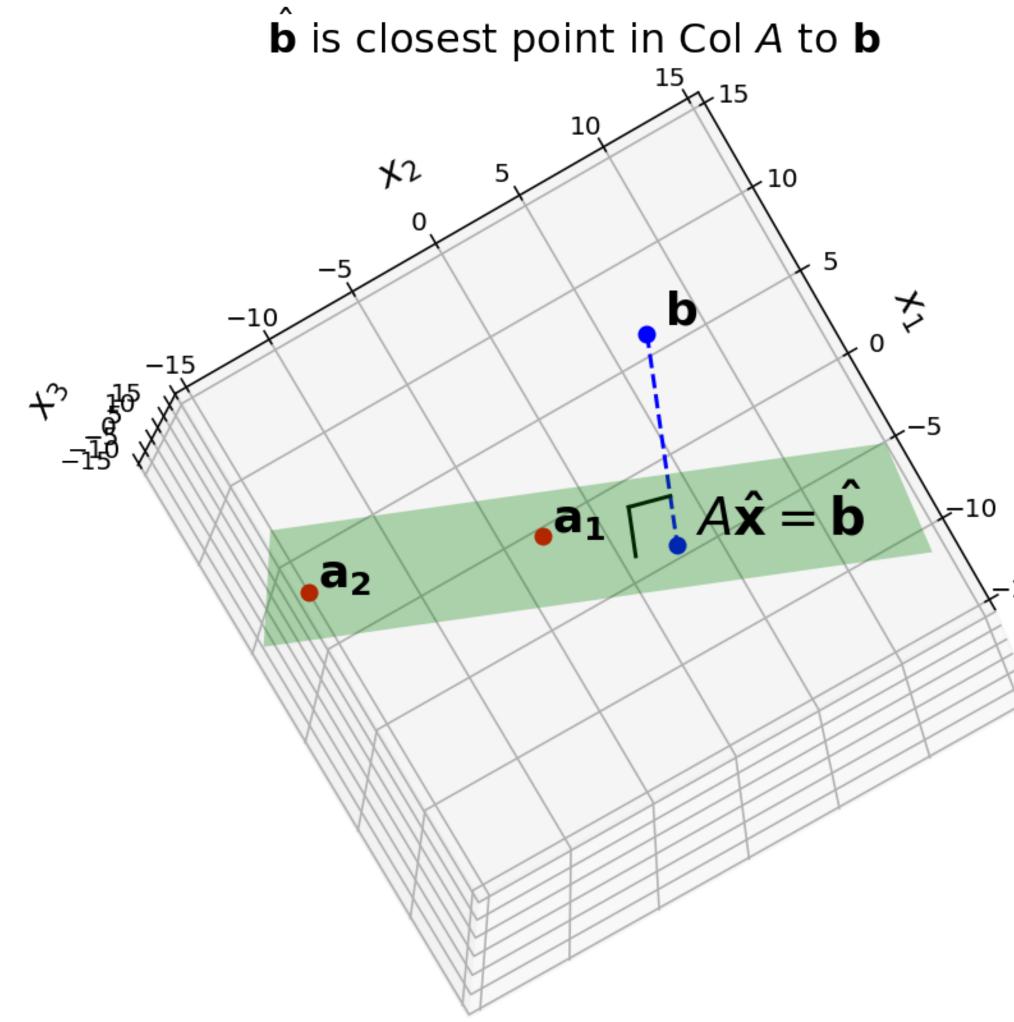


The General Least Squares Problem

Problem. Given a $m \times n$ matrix A and a vector \mathbf{b} from \mathbb{R}^m , find a vector \mathbf{x} in \mathbb{R}^n which minimizes

 $dist(A\mathbf{x}, \mathbf{b}) = ||A\mathbf{x} - \mathbf{b}||$

Figure 22.8



Ē

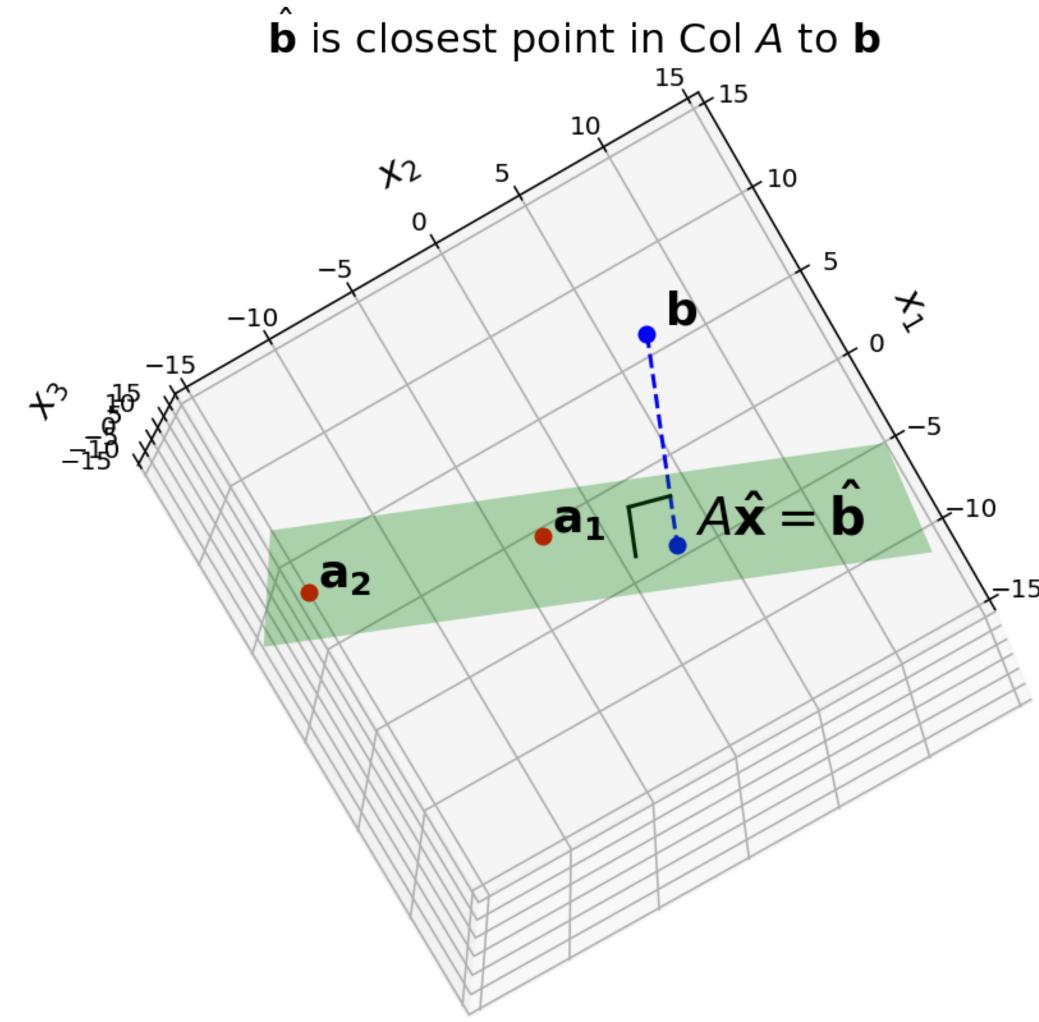
The General Least Squares Problem

Problem. Given a $m \times n$ matrix A and a vector b from \mathbb{R}^m , find a vector **x** in \mathbb{R}^n which <u>minimizes</u>

 $dist(A\mathbf{x}, \mathbf{b}) = ||A\mathbf{x} - \mathbf{b}||$

Find a vector x which makes $||A\mathbf{x} - \mathbf{b}||$ as small as possible.

Figure 22.8



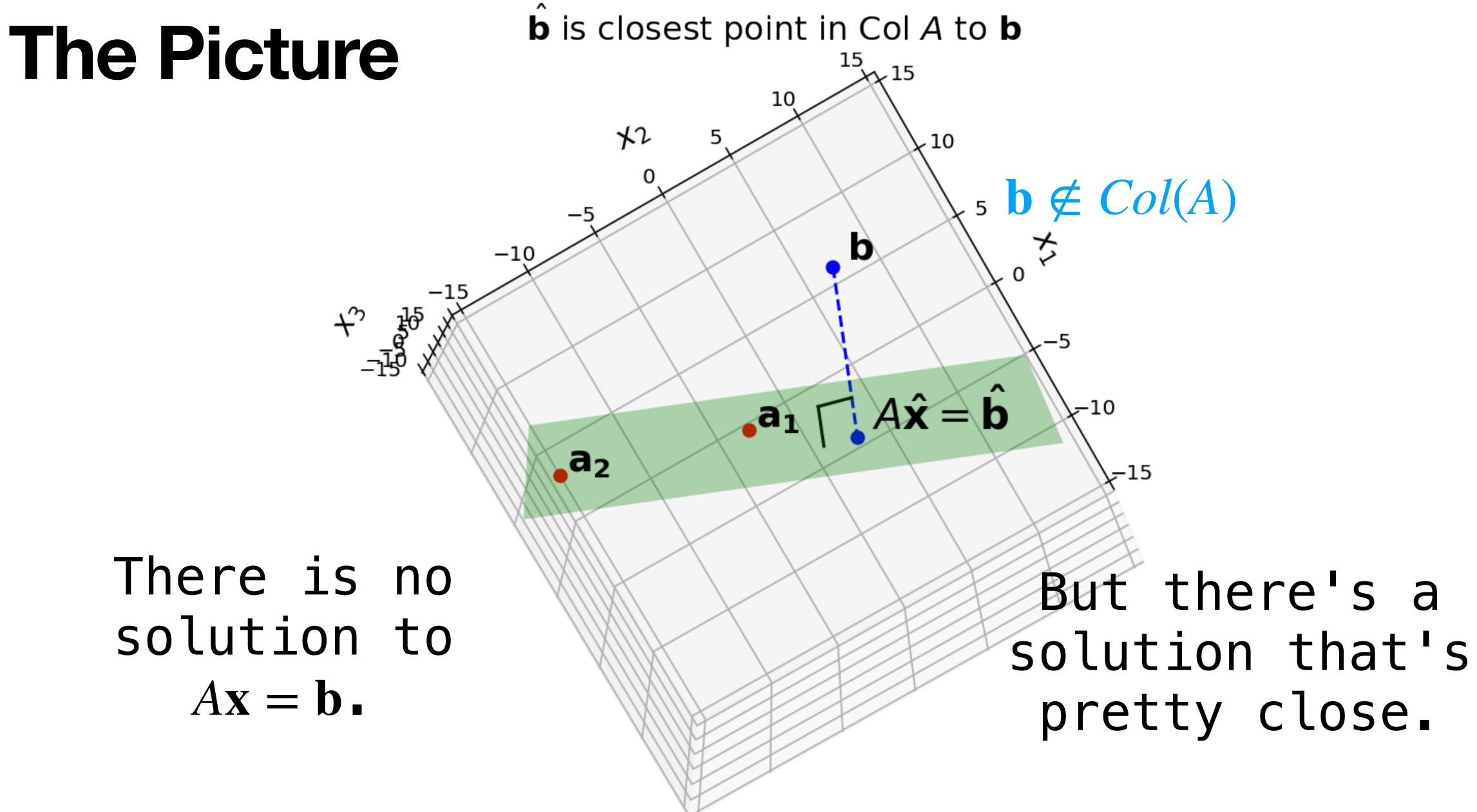
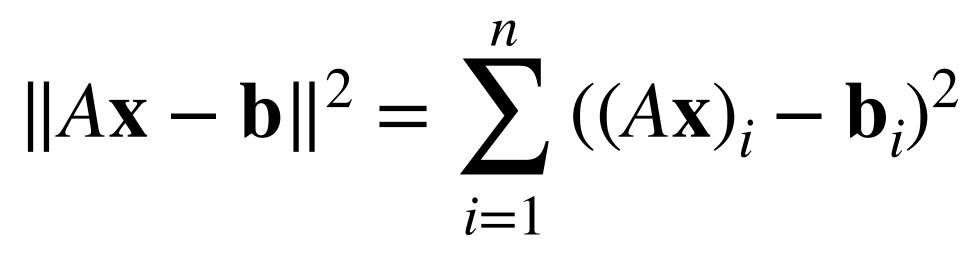


Figure 22.8



It is equivalent to minimize $||A\mathbf{x} - \mathbf{b}||^2$, which can be viewed as a sum of squares.

 $\|A\mathbf{x} - \mathbf{b}\|^2 = \sum ((A\mathbf{x})_i - \mathbf{b}_i)^2$ i=1

It is equivalent to minimize $||A\mathbf{x} - \mathbf{b}||^2$, which can be viewed as a sum of squares. These things come up everywhere.

 $\|A\mathbf{x} - \mathbf{b}\|^2 = \sum ((A\mathbf{x})_i - \mathbf{b}_i)^2$ i=1

It is equivalent to minimize $||A\mathbf{x} - \mathbf{b}||^2$, which can be viewed as a sum of squares. These things come up everywhere. (Advanced.) This error is everywhere differentiable, whereas $\sum_{i=1}^{n} |(A\mathbf{x})_i - b_i|$ is not. i = 1

 $\|A\mathbf{x} - \mathbf{b}\|^2 = \sum ((A\mathbf{x})_i - \mathbf{b}_i)^2$ i=1

Least Squares Solution

vector $\hat{\mathbf{x}}$ from \mathbb{R}^n such that

for any x in \mathbb{R}^n . Again, $||A\hat{\mathbf{x}} - \mathbf{b}||$ is as small as possible.

- **Definition.** Given a $m \times n$ matrix A and a vector **b** in \mathbb{R}^m , a least squares solution of $A\mathbf{x} = \mathbf{b}$ is a
 - $\|A\hat{\mathbf{x}} \mathbf{b}\| \le \|A\mathbf{x} \mathbf{b}\|$

The Picture (Again)

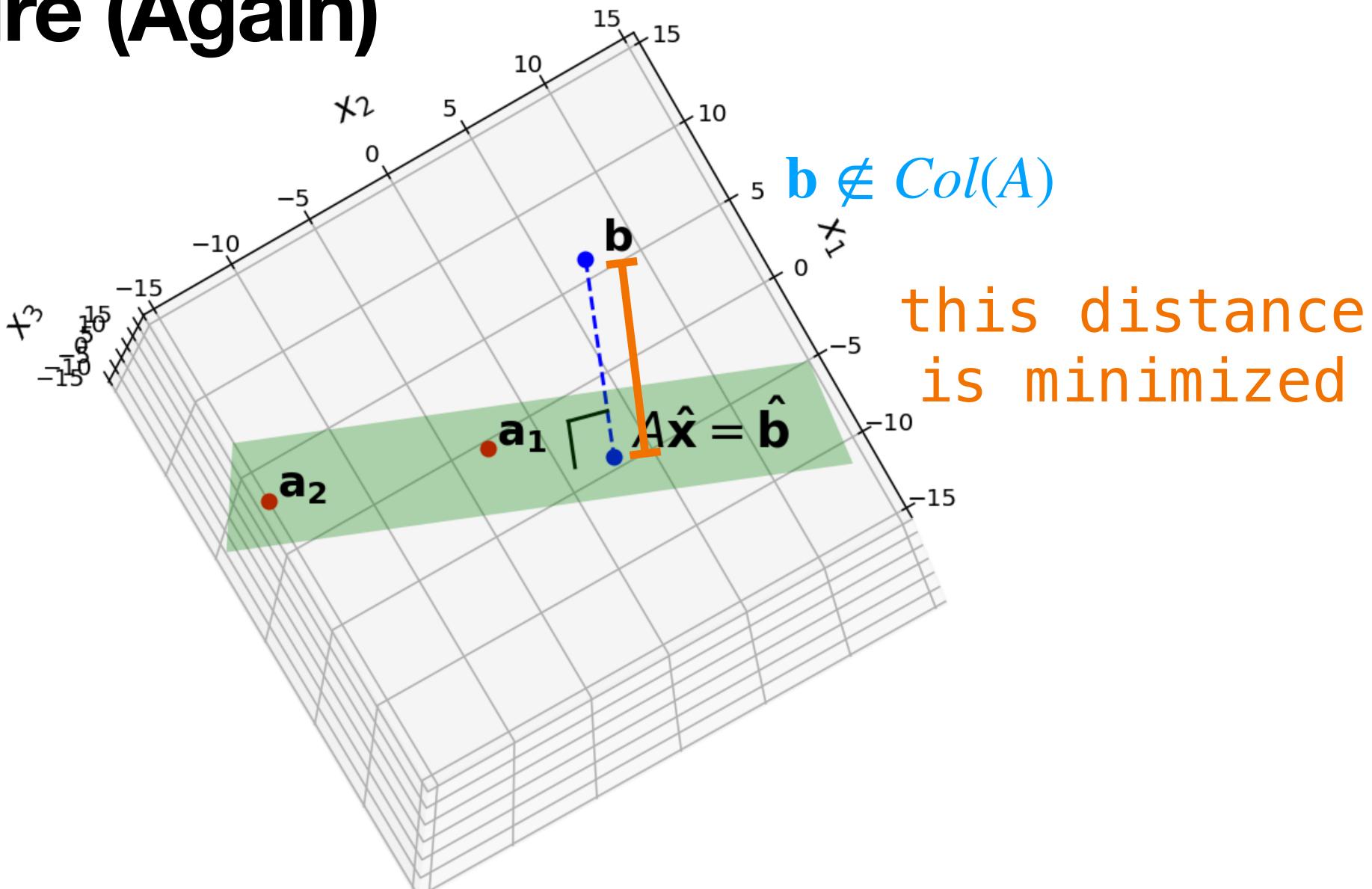
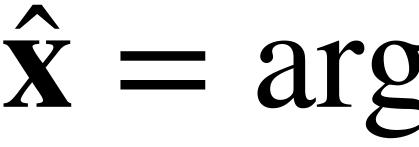


Figure 22.8

Argmin



$\hat{\mathbf{x}} = \arg \min \|A\mathbf{x} - \mathbf{b}\|$ $\mathbf{x} \in \mathbb{R}^n$

Argmin $\hat{\mathbf{x}} = \arg \min \|A\mathbf{x} - \mathbf{b}\|$ $\mathbf{x} \in \mathbb{R}^n$

Another way of framing this is via argmin.

Argmin $\hat{\mathbf{x}} = \arg \min \|A\mathbf{x} - \mathbf{b}\|$ $\mathbf{x} \in \mathbb{R}^n$

Another way of framing this is via argmin. **Defintion.** $\arg \min f(x) = \hat{x}$ where $f(\hat{x}) = \min f(x)$ $x \in X$

xEX

$\hat{\mathbf{x}} = \arg \min \|A\mathbf{x} - \mathbf{b}\|$ $\mathbf{x} \in \mathbb{R}^n$

Another way of framing this is via argmin.

Argmin

Defintion. $\arg \min f(x) = \hat{x}$ where $f(\hat{x}) = \min f(x)$ $x \in X$

 \hat{x} is the *argument* that *minimizes* f.

 $x \in X$

$\hat{\mathbf{x}} = \arg \min \|A\mathbf{x} - \mathbf{b}\|$ $\mathbf{x} \in \mathbb{R}^n$

Another way of framing this is via argmin.

Argmin

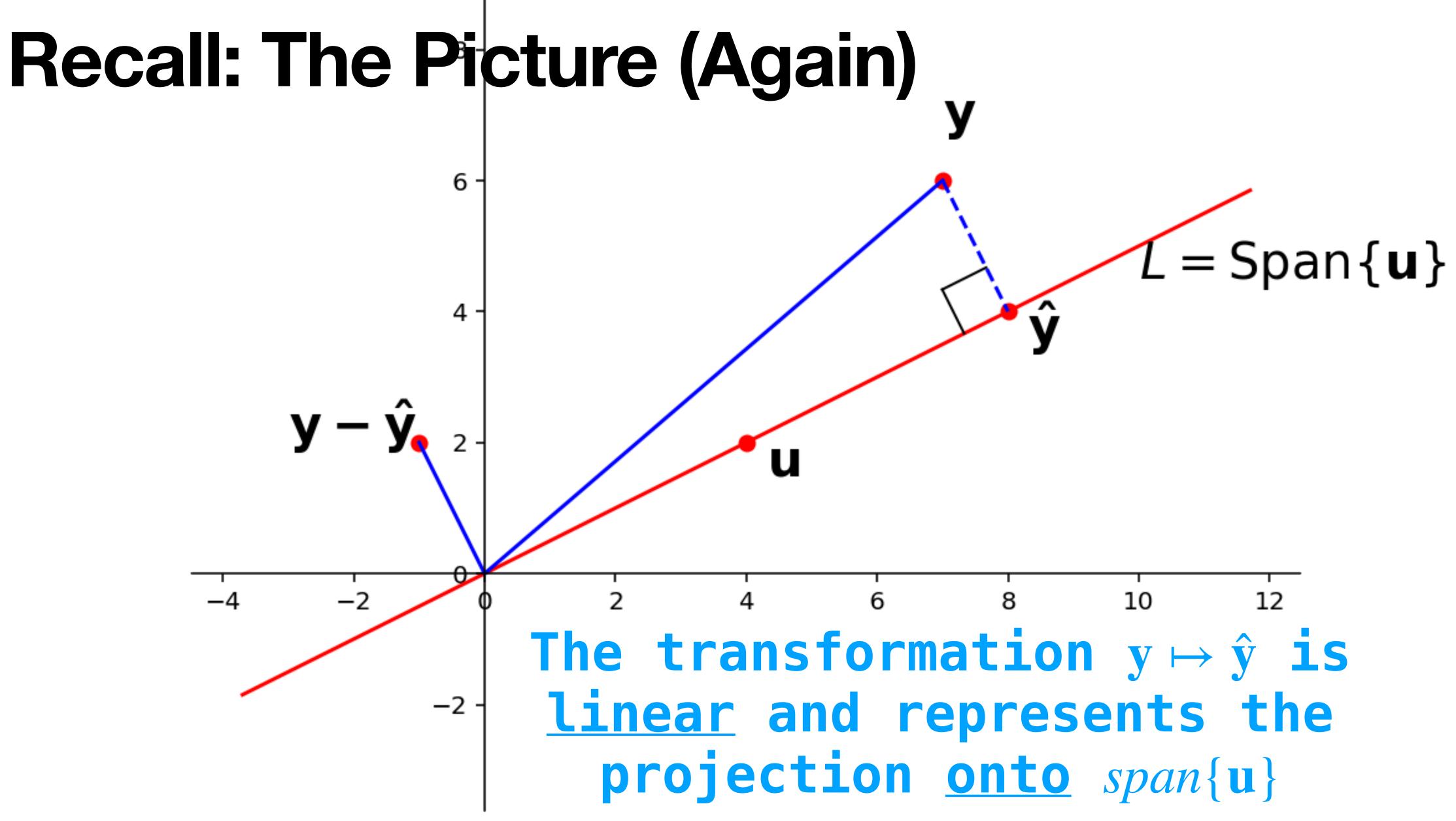
Defintion. $\arg \min f(x) = \hat{x}$ where $f(\hat{x}) = \min f(x)$ $x \in X$

 \hat{x} is the *argument* that *minimizes* f.

This is now an <u>optimization problem</u>.

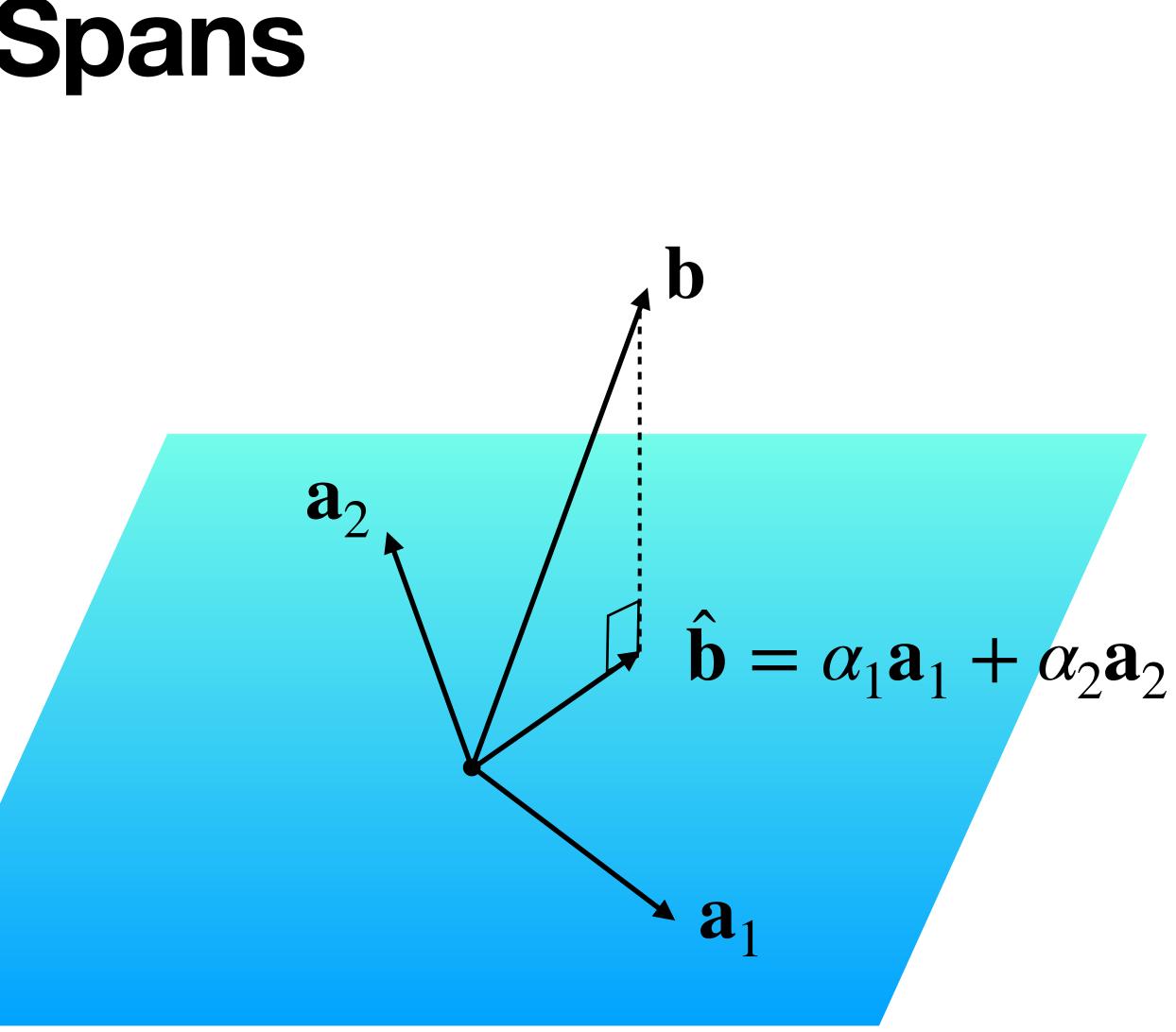
- $x \in X$

Solving the General Least Squares Problems



Projects onto other Spans

The transformation $\mathbf{b} \mapsto \hat{\mathbf{b}}$ is the projection of b onto span $\{\mathbf{a}_1, \mathbf{a}_2\}$



The High Level Approach.

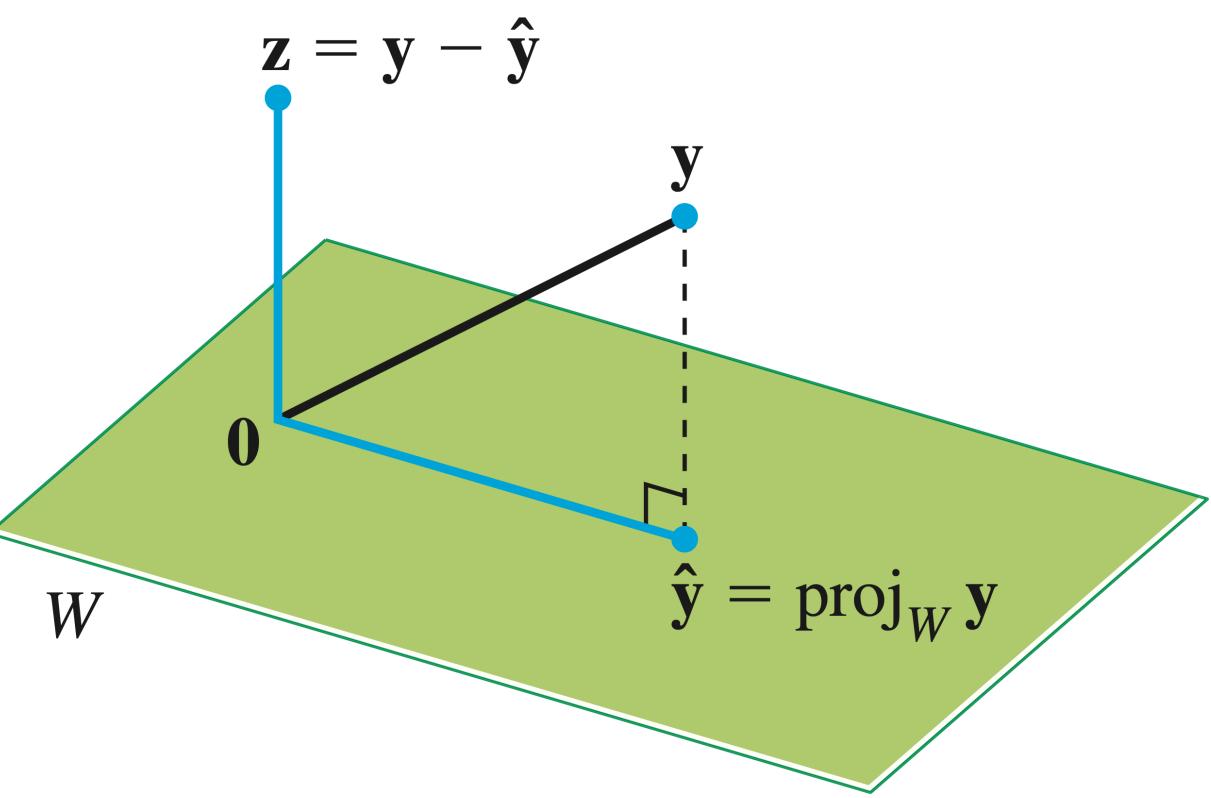
- Question. Find a least squares solutions to $A = \mathbf{b}$
- Solution.
- 1. Find the closest point $\hat{\mathbf{b}}$ in Col(A) to b.
- 2. Solve the equation $A\mathbf{x} = \hat{\mathbf{b}}$ instead.

Orthogonal Decomposition Theorem

Theorem. Let W be a subspace of \mathbb{R}^n . Every vector \mathbf{y} in \mathbb{R}^n can be written uniquely as

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}} \in W$ and \mathbf{z} is orthogonal to every vector in W.

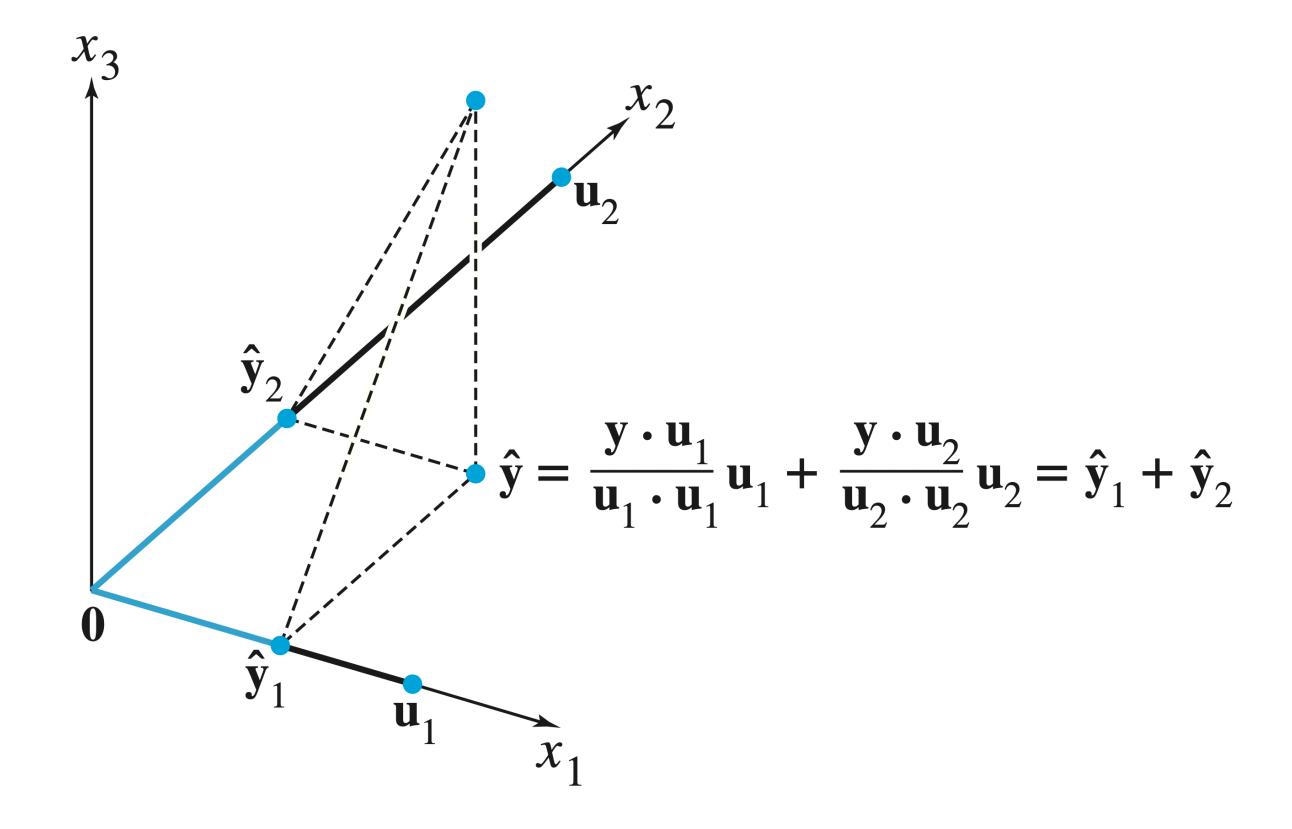


Linear Algebra and its Applications, Lay, Lay, McDonald

Projection via Orthogonal Bases

We can determine $\hat{\mathbf{y}}$ by projecting onto an orthogonal basis.

Every subspace has an orthogonal basis (we won't prove this)



Linear Algebra and its Applications, Lay, Lay, McDonald

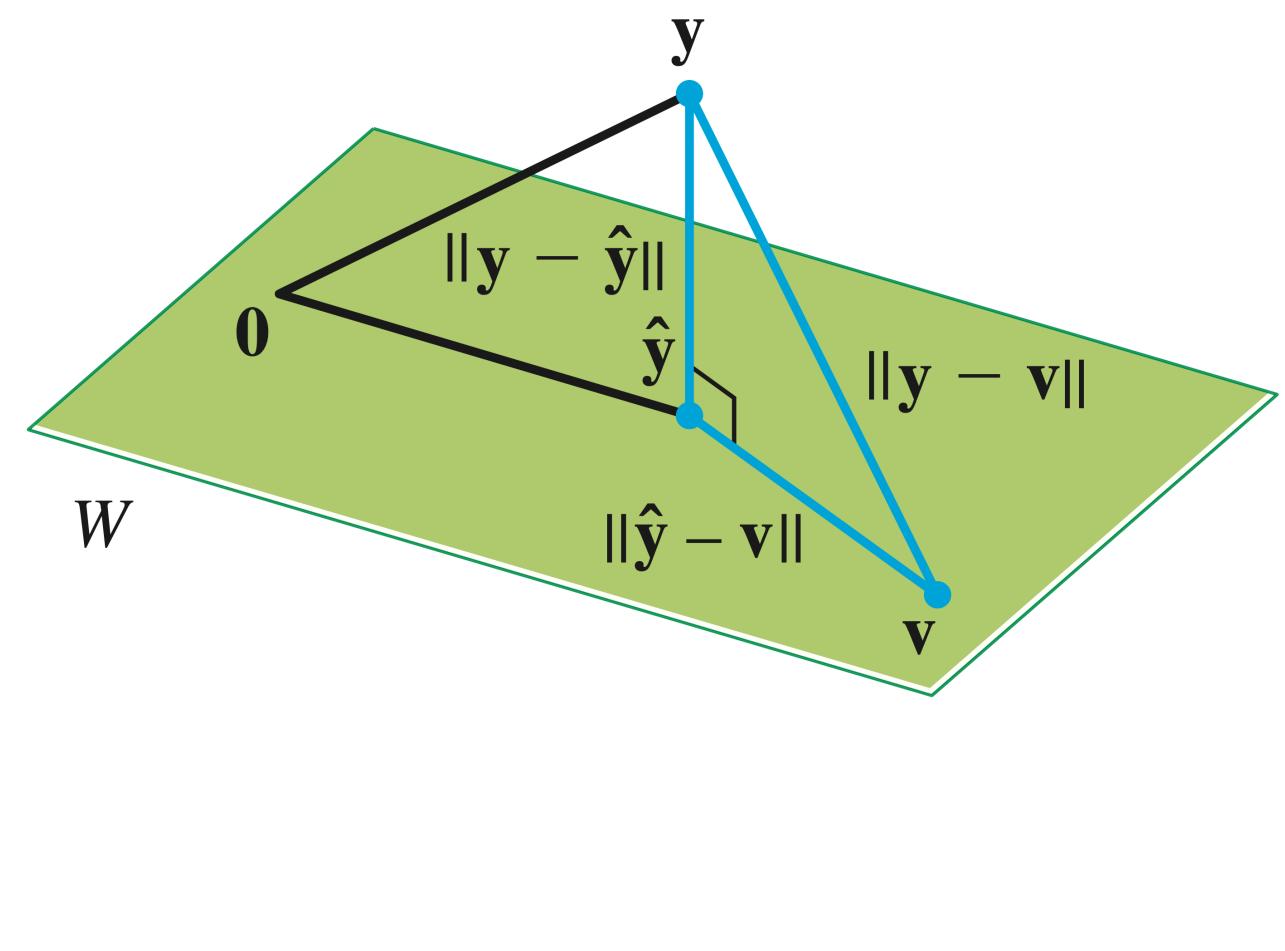
The Best-Approximation Theorem

Theorem. Let W be a subspace of \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then

$\|\mathbf{y} - \hat{\mathbf{y}}\| \le \|\mathbf{y} - \mathbf{w}\|$

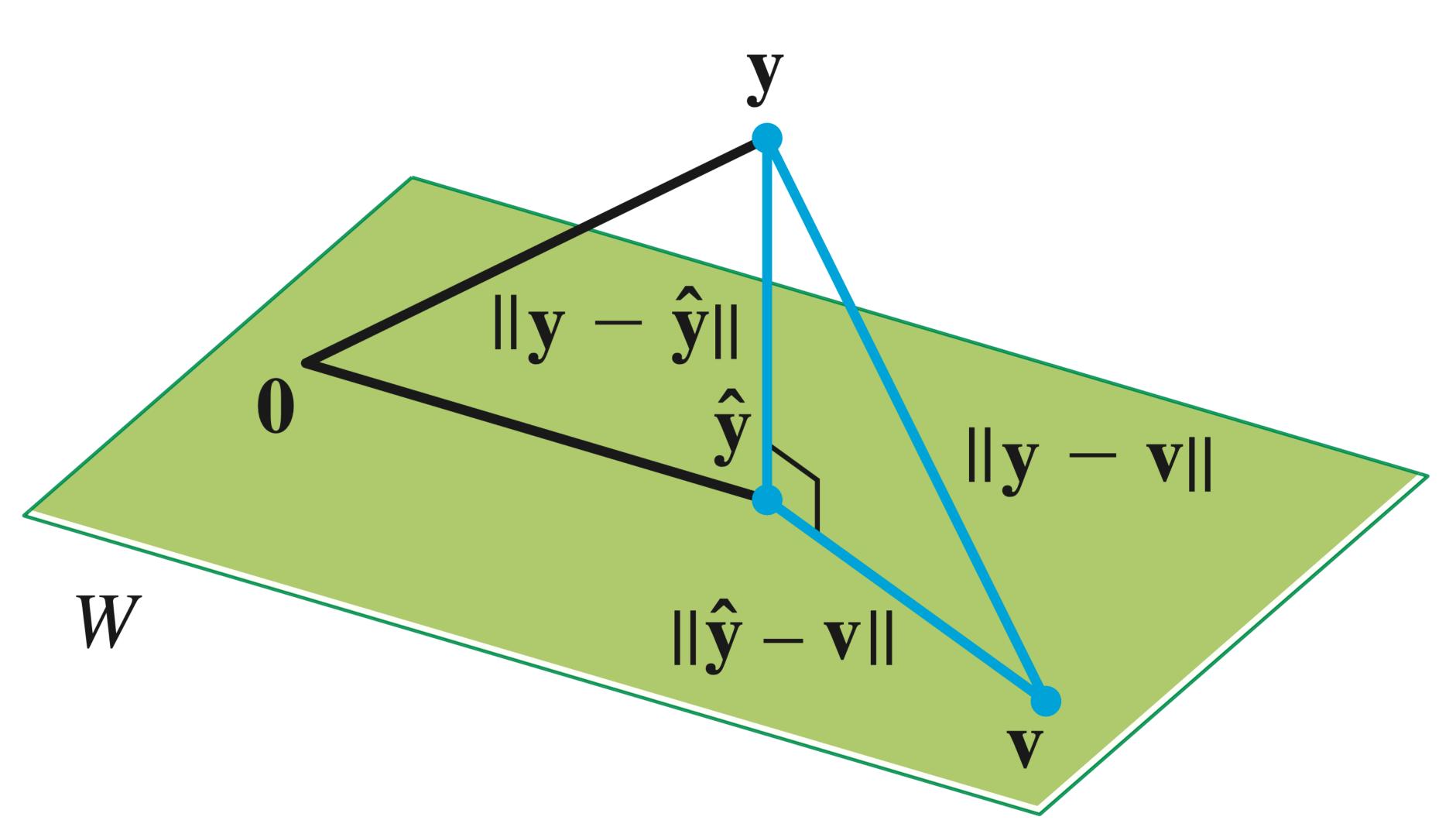
for any vector w in W_{\bullet}

 $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y}



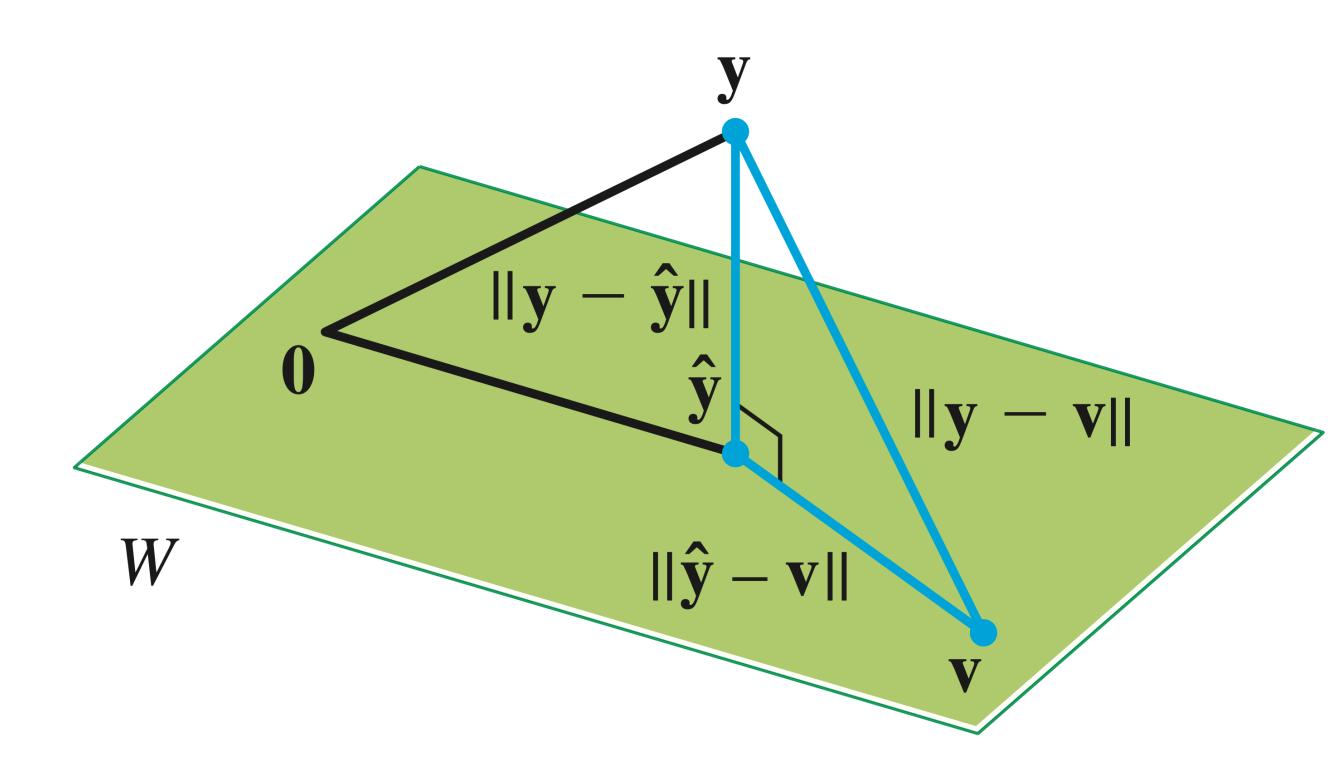
Linear Algebra and its Applications, Lay, Lay, McDonald

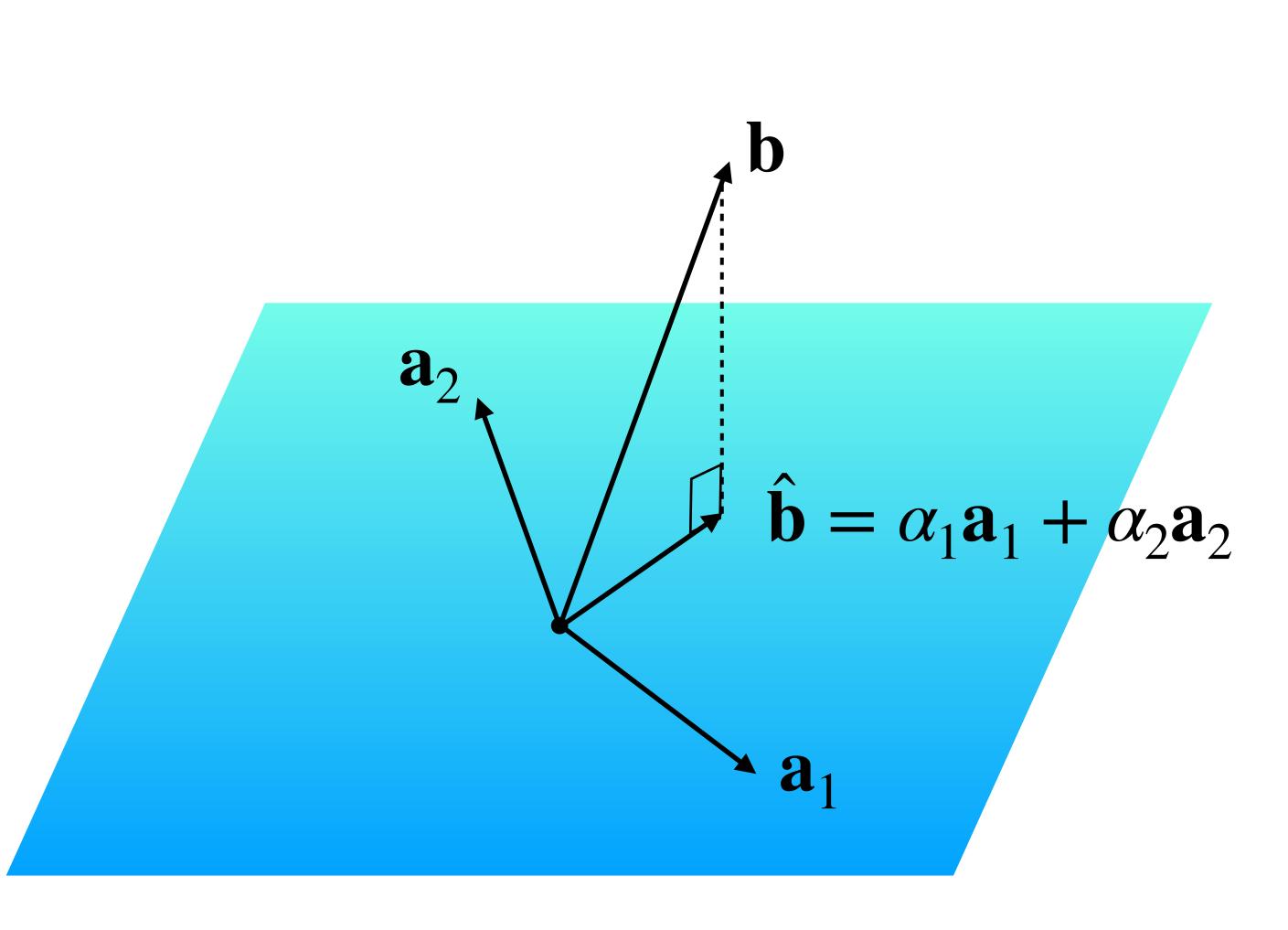
Proof by Inspection



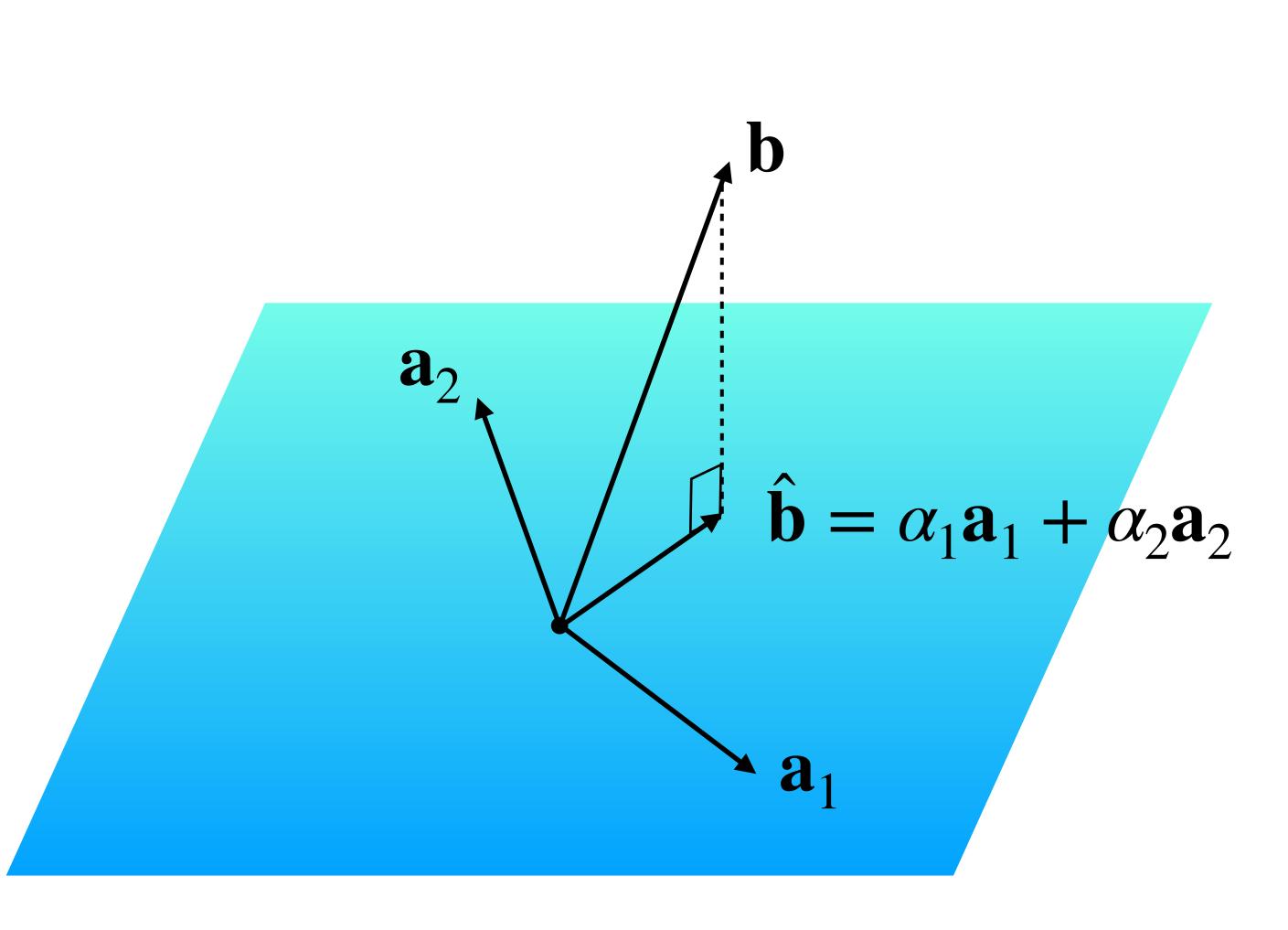
Proof by Algebra

Verify:



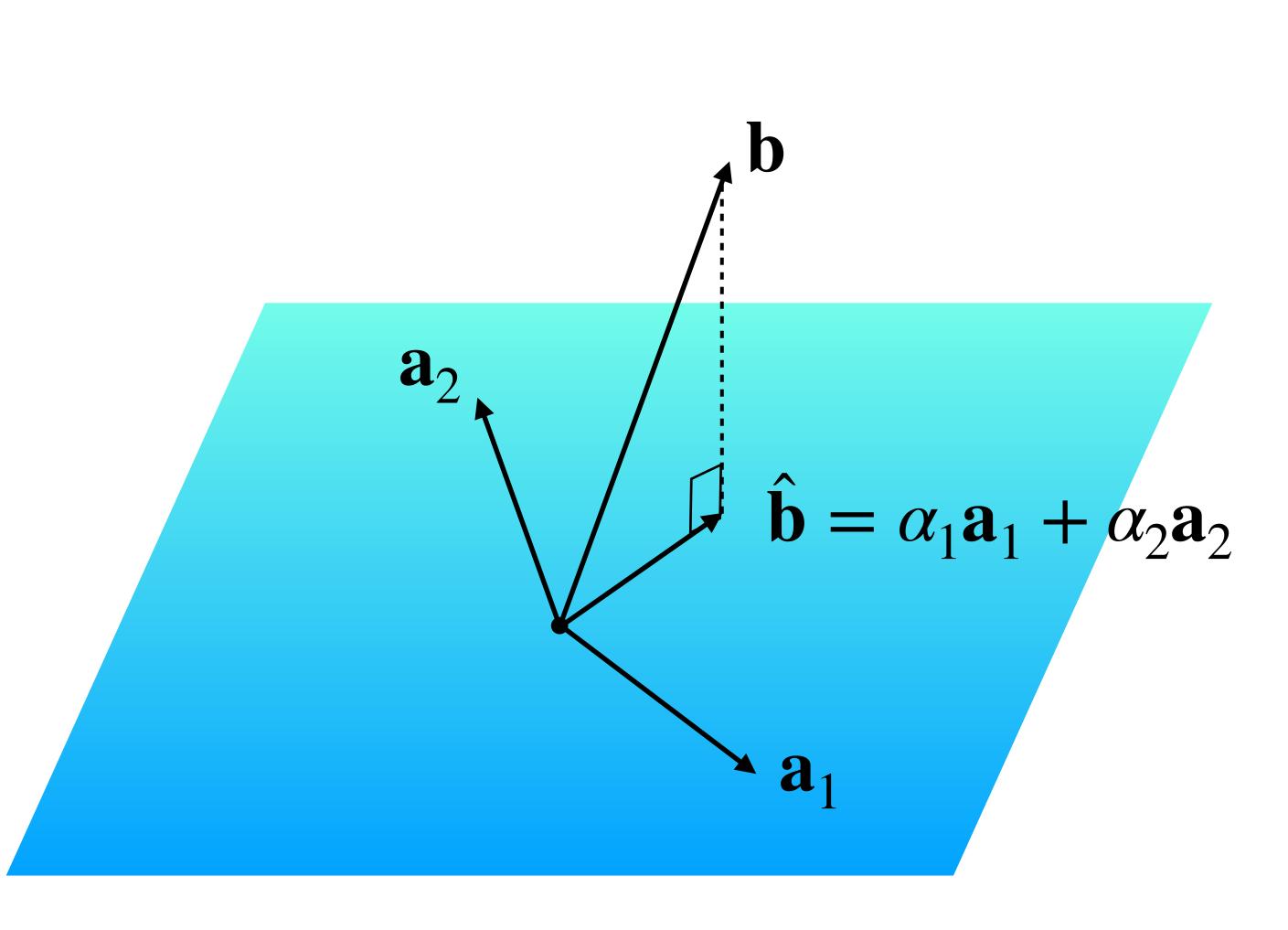


$\hat{\mathbf{b}}$ is in Col(A) so $A\mathbf{x} = \hat{\mathbf{b}}$ has a solution.



$\hat{\mathbf{b}}$ is in Col(A) so $A\mathbf{x} = \hat{\mathbf{b}}$ has a solution.

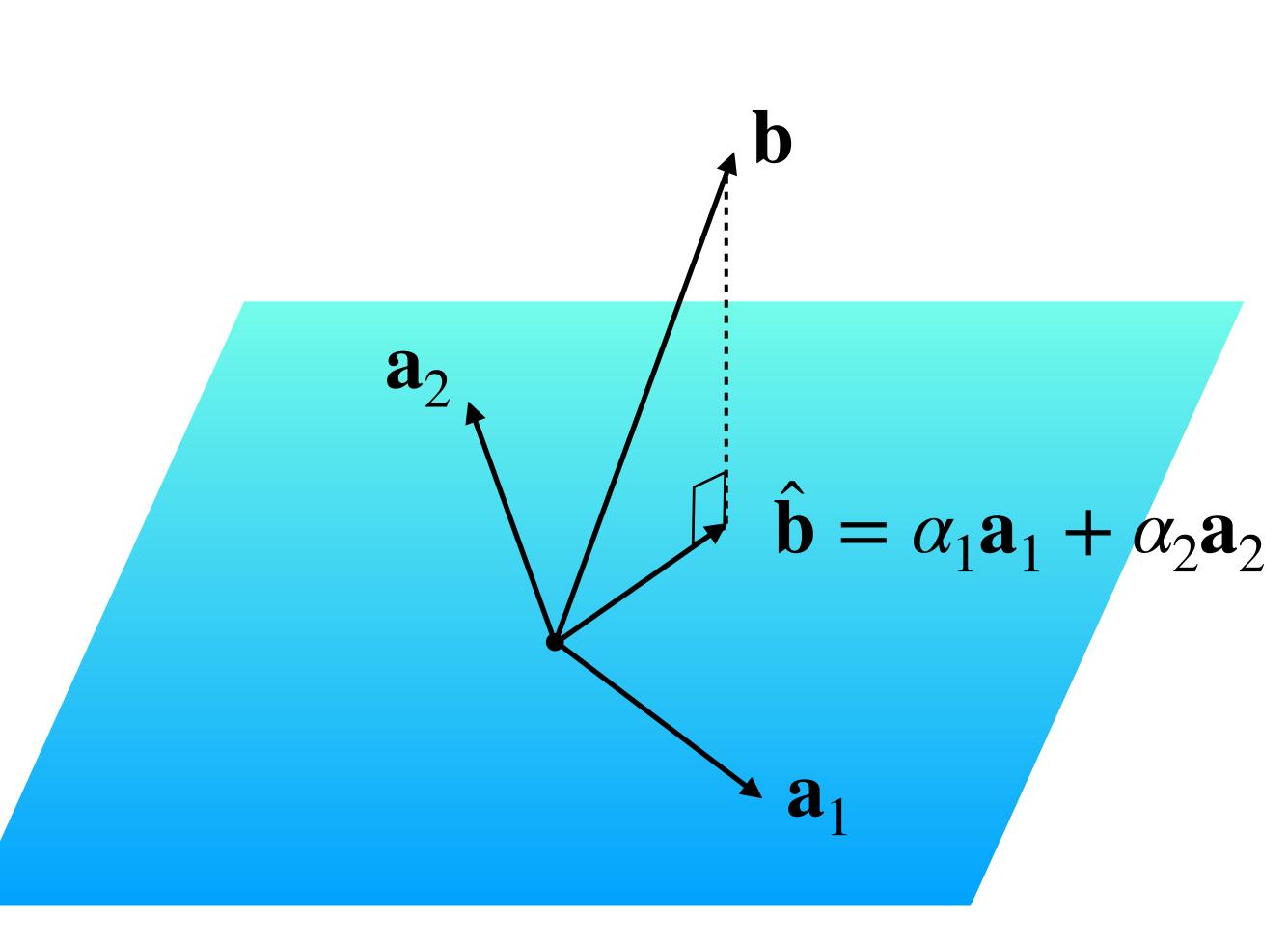
At this point, we could call it a day:



$\hat{\mathbf{b}}$ is in Col(A) so $A\mathbf{x} = \hat{\mathbf{b}}$ has a solution.

At this point, we could call it a day:

Question. Find a least squares solution to $A\mathbf{x} = \mathbf{b}$

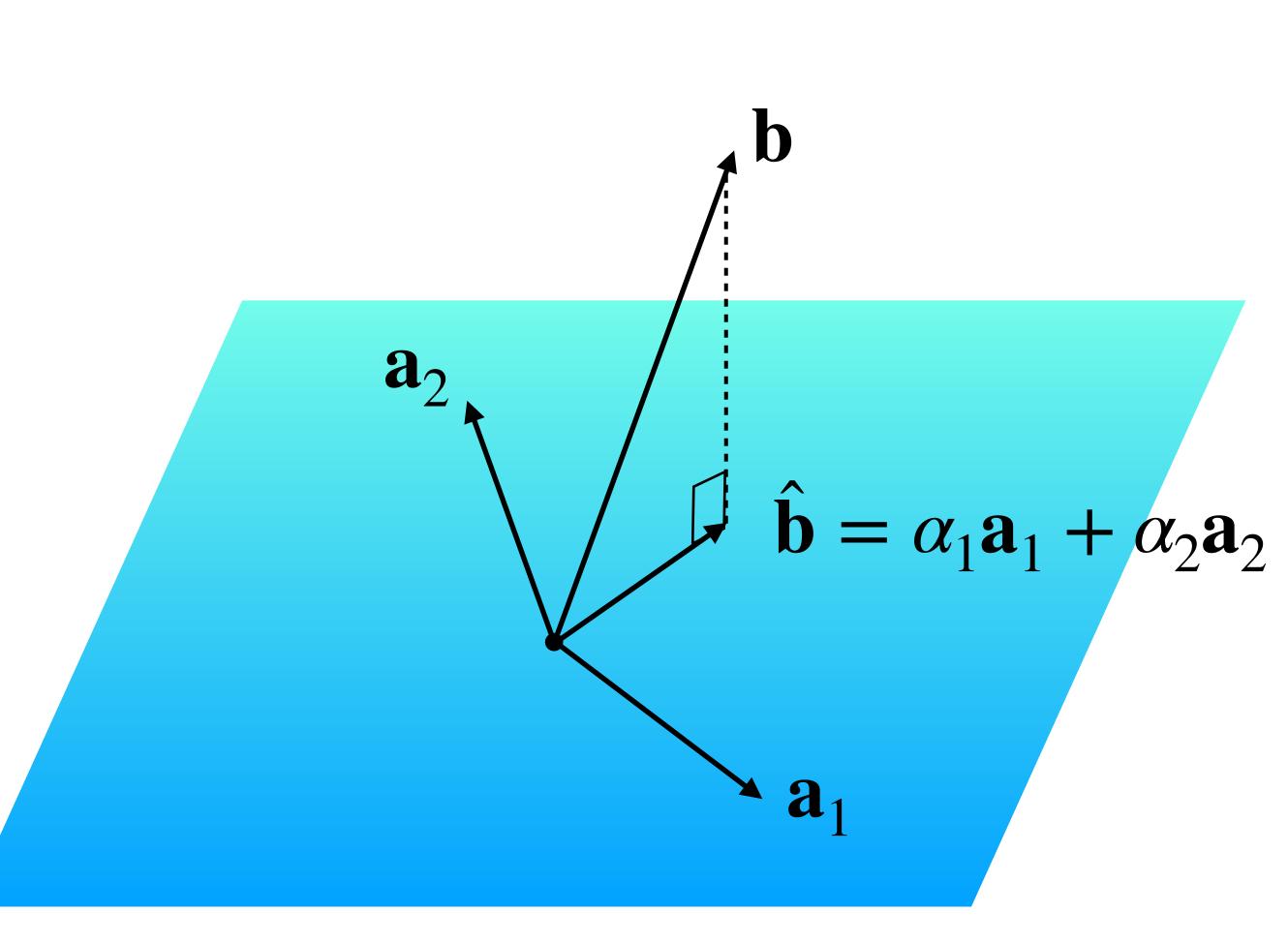


$\hat{\mathbf{b}}$ is in Col(A) so $A\mathbf{x} = \hat{\mathbf{b}}$ has a solution.

At this point, we could call it a day:

Question. Find a least squares solution to $A\mathbf{x} = \mathbf{b}$

Solution. Find $\hat{\mathbf{b}}$, then solve $A\mathbf{x} = \hat{\mathbf{b}}$

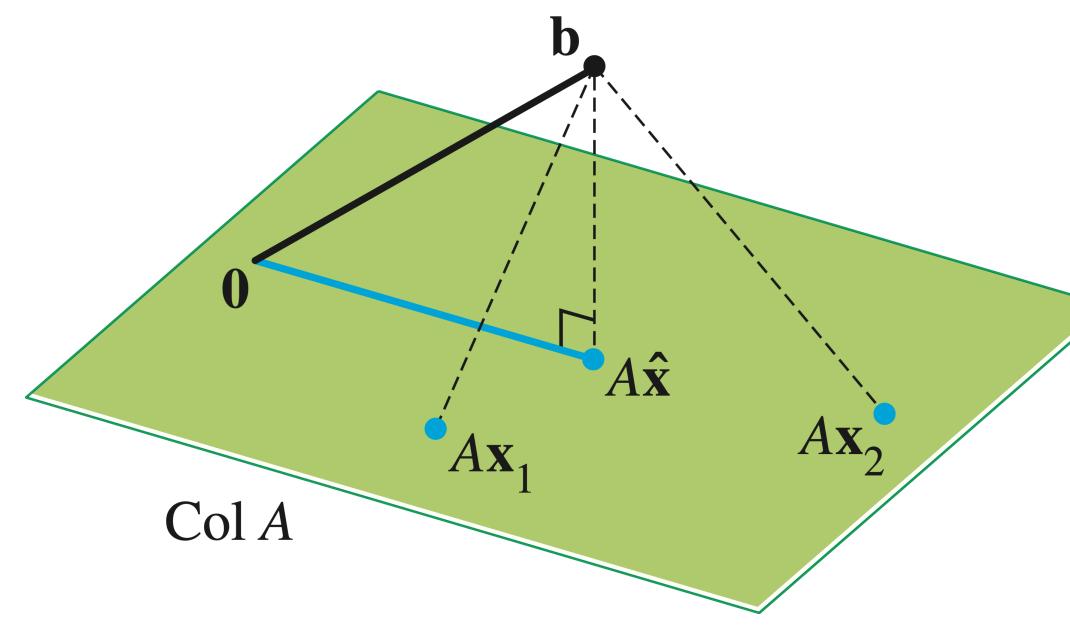


Question

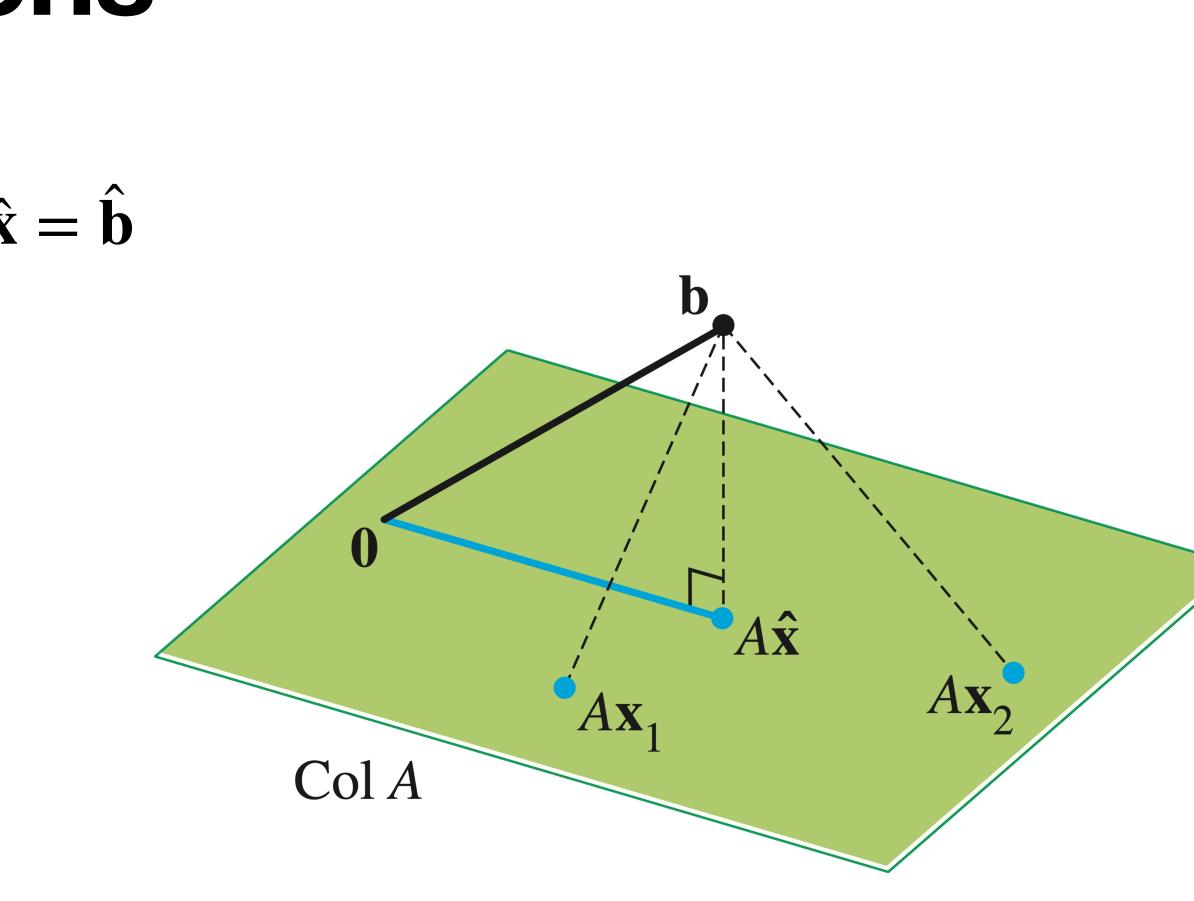
Find the least square solution for the equation

 $\begin{vmatrix} 1 & 2 \\ -1 & 3 \\ 0 & 0 \end{vmatrix} \mathbf{x} = \begin{vmatrix} 4 \\ 1 \\ 4 \end{vmatrix}$

$\begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 0 & 0 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ 4 \end{bmatrix}$

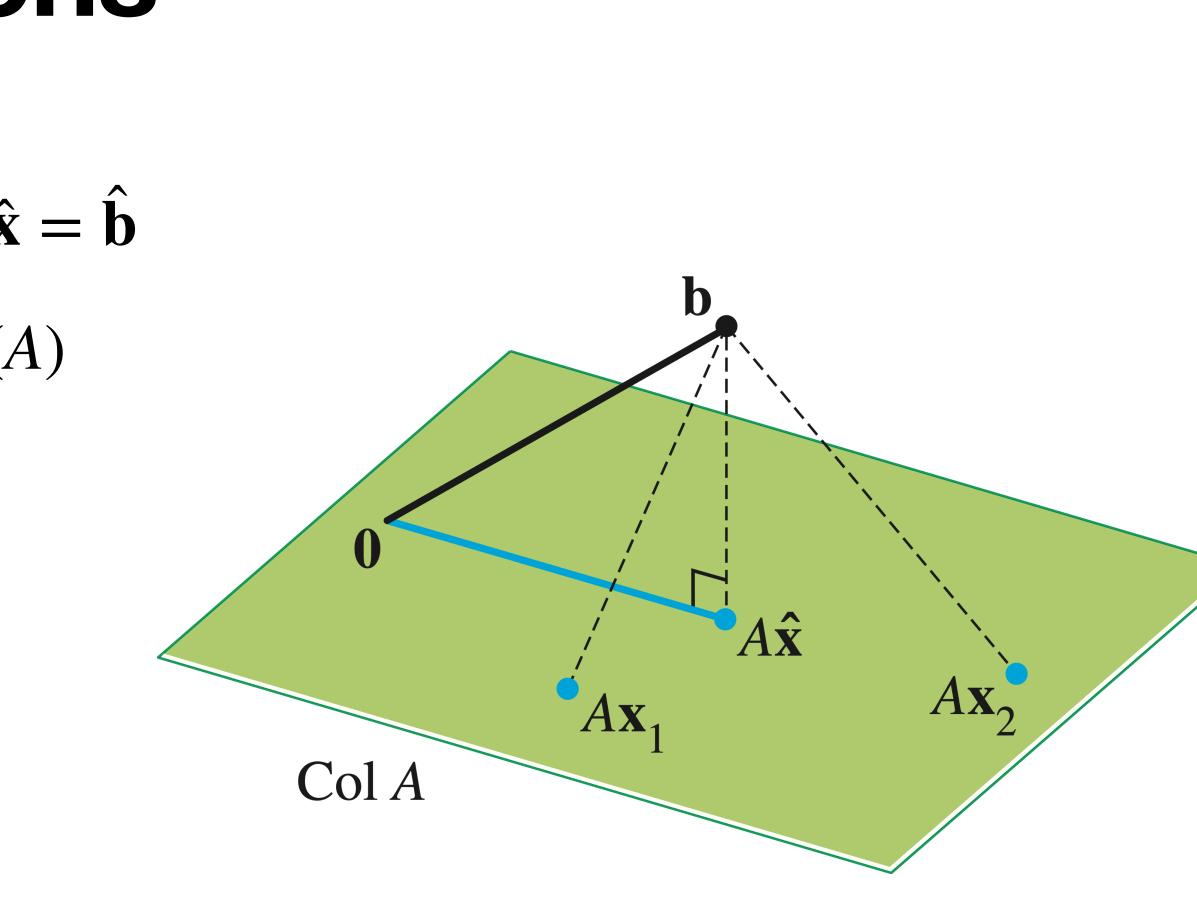


Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$



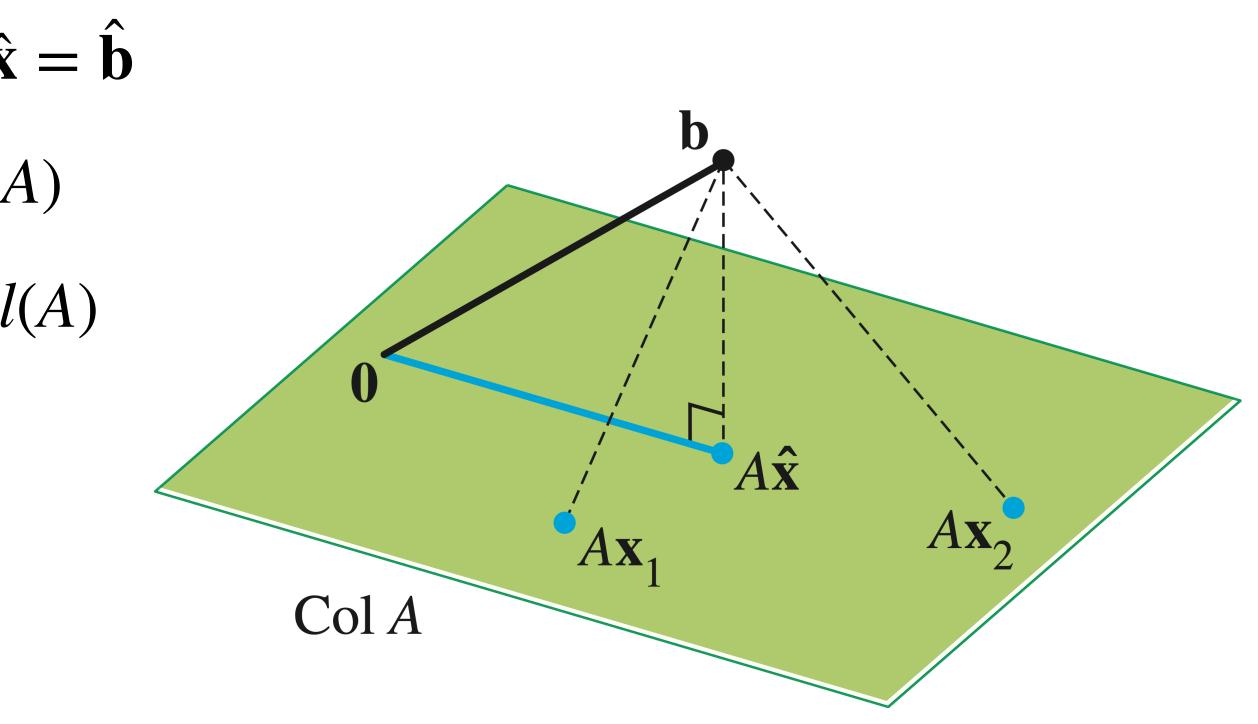
Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$

• $\hat{\mathbf{b}} - \mathbf{b}$ is orthogonal to Col(A)



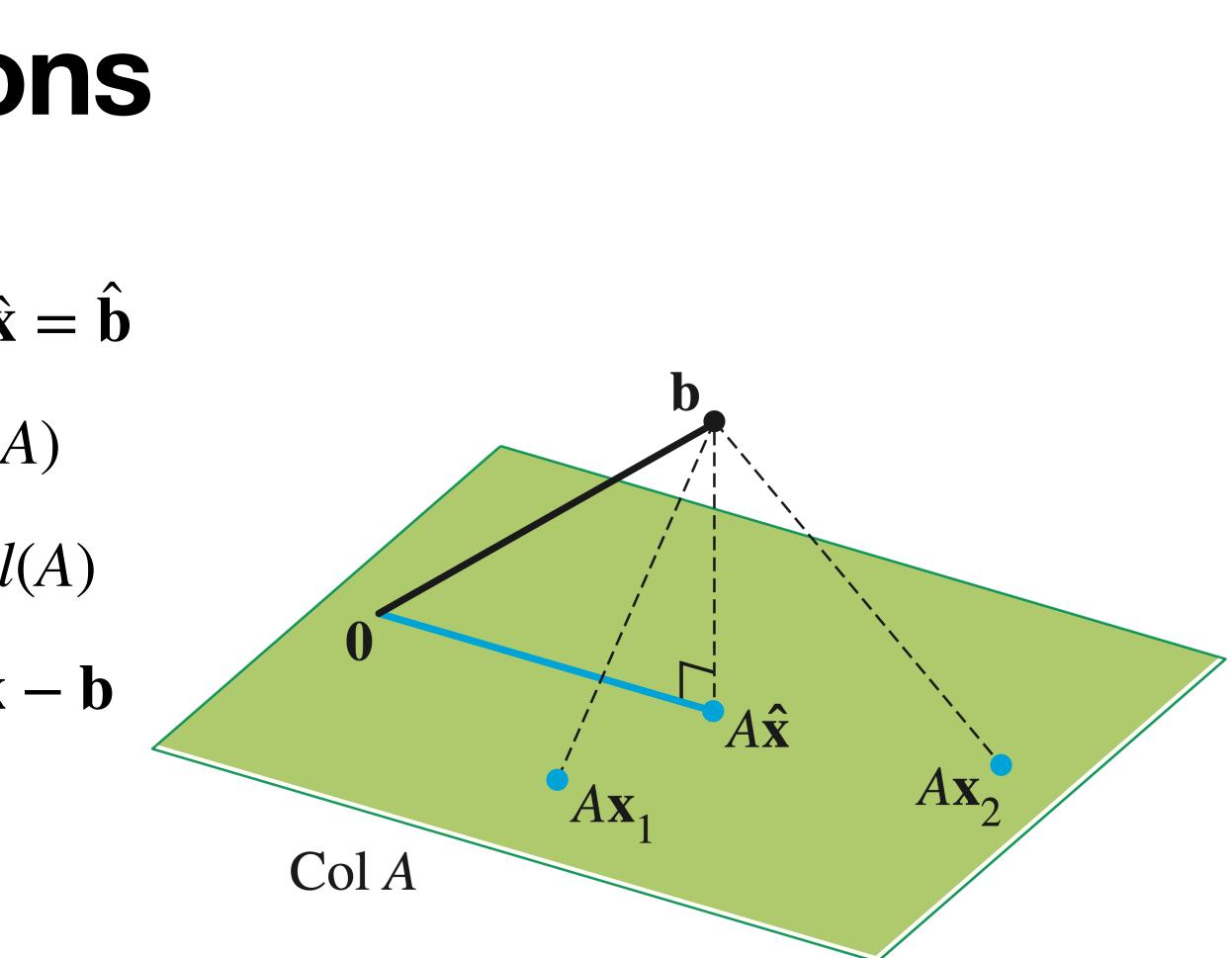
Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$

- $\hat{\mathbf{b}} \mathbf{b}$ is orthogonal to Col(A)
- $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to Col(A)

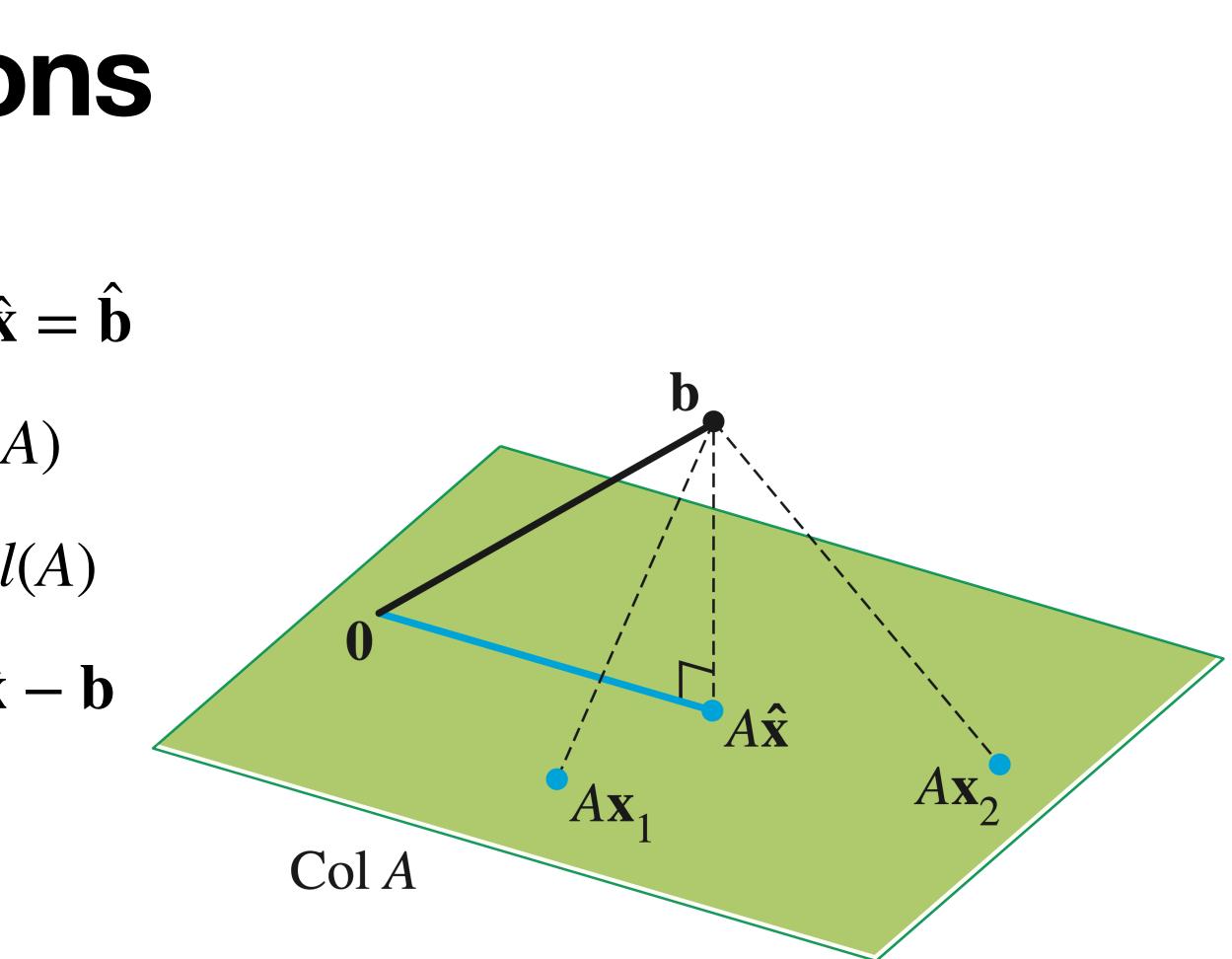


Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$

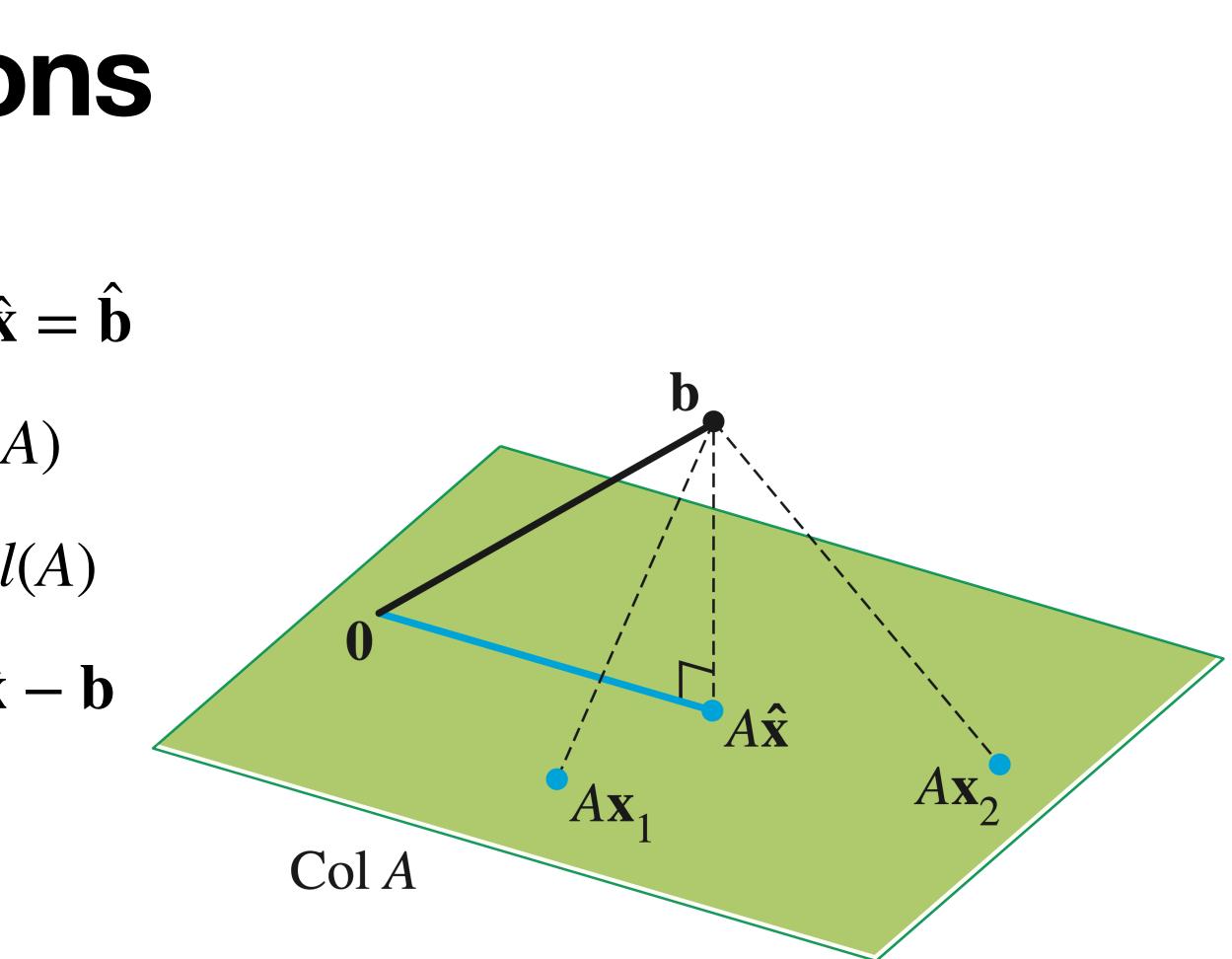
- $\hat{\mathbf{b}} \mathbf{b}$ is orthogonal to Col(A)
- $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to Col(A)
- If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ then $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to each $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$



- Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$
- $\hat{\mathbf{b}} \mathbf{b}$ is orthogonal to Col(A)
- $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to Col(A)
- If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ then $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to each $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$
- $\mathbf{a}_i^T(A\hat{\mathbf{x}} \mathbf{b}) = 0$



- Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$
- $\hat{\mathbf{b}} \mathbf{b}$ is orthogonal to Col(A)
- $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to Col(A)
- If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ then $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to each $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$
- $\mathbf{a}_i^T(A\hat{\mathbf{x}} \mathbf{b}) = 0$
- $A^T(A\hat{\mathbf{x}} \mathbf{b}) = \mathbf{0}$



A bit more magic

Let's simplify $A^T(A\hat{\mathbf{x}} - \mathbf{b})$:

Theorem. The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is the same as the set of solutions to

 $A^T A \mathbf{x} = A^T \mathbf{b}$

Theorem. The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is the same as the set of solutions to $A^T A \mathbf{x} = A^T \mathbf{h}$

In particular, this set of solutions is nonempty.

 $A\mathbf{x} = \mathbf{b}$ is the same as the set of solutions to

- In particular, this set of solutions is nonempty.
- We just showed that if $\hat{\mathbf{x}}$ is a least squares solution then $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

- **Theorem.** The set of least-squares solutions of
 - $A^T A \mathbf{x} = A^T \mathbf{h}$

In the other direction, suppose $A^T A \mathbf{x} = A^T \mathbf{b}$:

Example $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$ Let's find the normal equations for $A\mathbf{x} = \mathbf{b}$:

Example $\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$

Let's solve the normal equations for $A\mathbf{x} = \mathbf{b}$:

Question

Find the normal equations for the equation $\begin{vmatrix} 1 & 2 \\ -1 & 3 \\ 0 & 0 \end{vmatrix} \mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ 4 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 0 & 0 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ 4 \end{bmatrix}$

Unique Least Squares Solutions

Question (Conceptual)

Is a least squares solution unique?

Answer: No

Remember that if $\mathbf{b} \in Col(A)$ then $\hat{\mathbf{b}} = \mathbf{b}$ and then we're asking if $A\mathbf{x} = \mathbf{b}$ has a unique solution for any choice of A.

When is there a unique solution?

The least squares method gives us to find an approximate solution when there is no exact solution.

case that there are many.

But it doesn't help us choose a solution in the

Practically Speaking numpy.linalg.lstsq

linalg.lstsq(a, b, rcond='warn')

Return the least-squares solution to a linear matrix equation.

Computes the vector *x* that approximately solves the equation **a** (a = b). The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of *a* can be less than, equal to, or greater than its number of linearly independent columns). If *a* is square and of full rank, then *x* (but for round-off error) is the "exact" solution of the equation. Else, *x* minimizes the Euclidean 2-norm ||b - ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Parameters: a : (M, N) array_like

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If *b* is two-dimensional, the least-squares solution is calculated for each of the *K* columns of *b*.

rcond : float. optional

[source]

Practically Speaking numpy.linalg.lstsq

linalg.lstsq(a, b, rcond='warn')

Return the least-squares solution to a linear matrix equation.

Computes the vector *x* that approximately solves the equation **a** @ x = b. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of *a* can be less than, equal to, or greater than its number of linearly independent columns). If *a* is square and of full rank, then *x* (but for round-off error) is the "exact" solution of the equation. Else, *x* minimizes the Euclidean 2-norm ||b - ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Parameters: a : (M, N) array_like

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If *b* is two-dimensional, the least-squares solution is calculated for each of the *K* columns of *b*.

rcond : float. optional

[source]

NumPy chooses the shortest vector

Practically Speaking numpy.linalg.lstsq

linalg.lstsq(a, b, rcond='warn')

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation $a \neq x = b$. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the "exact" solution of the equation. Else, x minimizes the Euclidean 2-norm ||b - ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Parameters: a : (M, N) array_like

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If b is two-dimensional, the least-squares solution is calculated for each of the K columns of b.

rcond : float. optional

[source]

NumPy chooses the shortest vector (why?...)

Unique Least Squares Solutions

- equivalent:
- any choice of b
- » $A^T A$ is invertible.

Theorem. For a $m \times n$ matrix A the following are

Ax = b has a <u>unique</u> least squares solution for

» The columns of A are <u>linearly independent</u>.

Unique Least Squares Solutions $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$

If A has linearly independent columns, then its unique least squares solution is defined as above:

Projecting onto a subspace

$\hat{\mathbf{b}} = A\hat{\mathbf{x}} = A(A^T A)^{-1}A^T \mathbf{b}$

then they form a basis.

construct a matrix A whose columns are the vectors in *R*.

This means we can find arbitrary projections.

- If the columns of A are linearly independent,
- Said another way: if \mathscr{B} is a basis, then we can

Summary

- Not all matrix equations have solutions, but every equation has a <u>least squares solution</u>
- The least squares solution is an <u>approximate</u> solution, so it is close to an "actual" solution.
- to compute least squares solutions.

The normal equations give us a convenient way