Linear Models

Geometric Algorithms
Lecture 24

Introduction

Recap Problem

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
1 & 0 & -1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
3 \\
1 \\
-4
\end{array}\right]
$$

Find the projection of b onto $\operatorname{Col}(A)$.

Answer

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

$$
\mathbf{b}=\left[\begin{array}{c}
3 \\
1 \\
-4
\end{array}\right]
$$

Question

Find the matrix which implements orthogonal projection onto the span of $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.

Answer

$$
\frac{1}{6}\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right]
$$

Objectives

1. Use the least square method to build linear models of noisy data.
2. Show how we can use linear algebraic methods to model with non-linear models.

Keywords

line of best fit
independent/dependent variables
residuals
prediction
simple least squares regression
multiple regression
polynomial regression
models
model fitting
model parameters
design matrices

A Warmup: Line of Best Fit

The Setup

The Setup

You're given a set of points in \mathbb{R}^{2}

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}
$$

The Setup

You're given a set of points in \mathbb{R}^{2}

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}
$$

Example. You collect (height, weight) data for a population.

The Setup

You're given a set of points in \mathbb{R}^{2}

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}
$$

Example. You collect (height, weight) data for a population.

You notice they kind of trend as a line.

The Setup

You're given a set of points in \mathbb{R}^{2}

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}
$$

Example. You collect (height, weight) data for a population.

You notice they kind of trend as a line.

The Setup

You're given a set of points in \mathbb{R}^{2}

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}
$$

Example. You collect (height, weight) data for a population.

You notice they kind of trend as a line.

The Setup

Question. Which line "best" describes the trend of the dataset?

Which one best models the dataset?

Two Important Questions

Two Important Questions

1. What is a model?

Two Important Questions

1. What is a model?

We'll come back to this...

Two Important Questions

1. What is a model?

We'll come back to this...
2. What does "best" mean?

Two Important Questions

1. What is a model?

We'll come back to this...
2. What does "best" mean?

This is a make-or-break question.

Least Squares Simple Linear Regression

Problem. Given a set of points $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, find the line

$$
f(x)=\beta_{0}+\beta_{1} x
$$

which minimizes

$$
\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

Least Squares Simple Linear Regression

Problem. Given a set of points $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, find the line

$$
f(x)=\beta_{0}+\beta_{1} x
$$

which minimizes

$$
\begin{aligned}
& \qquad \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
& \text { The "best" line minimizes } \\
& \text { the sum of squares of } \\
& \text { differences. }
\end{aligned}
$$

The Picture

We want to find the line which makes the sum of these differences as small as possible.

The Picture

We want to find the line which makes the sum of these differences as small as possible.

An Aside: Is this really "best"?

An Aside: Is this really "best"?

Who's to say...

An Aside: Is this really "best"?

Who's to say...
It depends on the data, on the application domain, etc.

An Aside: Is this really "best"?

Who's to say...
It depends on the data, on the application domain, etc.

The point. We fix our notion of "best" first, and then we do calculations and derivations from there.

Terminology: Datasets

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{i}, y_{i}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

Terminology: Datasets

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{i}, y_{i}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

Terminology: Datasets

data point

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{i}, y_{i}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

Terminology: Datasets

data point

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{i}, y_{i}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}, \text { dataset }^{\vdots}\left(x_{i}, y_{i}\right)
$$

Terminology: Datasets

data point

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{i}, y_{i}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

independent variable
(feature) $\quad\left(x_{i}, y_{i}\right)$

Terminology: Datasets

data point

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{i}, y_{i}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

dataset
independent variable
(feature) $\quad\left(x_{i}, y_{d}\right)_{\text {dependent variable }}$ (label)

Terminology: Models

$$
f(x)=\beta_{0}+\beta_{1} x
$$

Terminology: Models

$$
f(x)=\beta_{0}+\beta_{1} x
$$

Terminology: Models

$$
f(\mathcal{X})=\beta_{0}+\beta_{1} \mathcal{X}
$$

Terminology: Least-Squares Error

Terminology: Least-Squares Error

Terminology: Least-Squares Error

Terminology: Least-Squares Error

Terminology

data point
$\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{i}, y_{i}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
dataset
model parameters/
regression coefficients

$$
f(x)=\beta_{0}+\beta_{\text {model }} x
$$

$$
\sum_{i=1}^{n} \stackrel{\text { observation }}{\text { presicistion }}_{\left(y_{i}-\underset{\text { pres }}{f}\left(x_{i}\right)\right)^{2}}
$$

How to: Finding the Least Squares Line

$$
\beta_{1}=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \quad \beta_{0}=\frac{\sum_{i=1}^{n} y_{i}-\beta_{1} \sum_{i-1}^{n} x_{i}}{n}
$$

How to: Finding the Least Squares Line

$$
\beta_{1}=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \Gamma^{n} x^{2}-\left(\Gamma^{n} r\right)^{2}} \quad \beta_{0}=\frac{\sum_{i=1}^{n} y_{i}-\beta_{1} \sum_{i-1}^{n} x_{i}}{n}
$$

Problem. Find the least squares line for the dataset $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.

How to: Finding the Least Squares Line

$$
\beta_{1}=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum^{n} x^{2}-\left(\sum^{n} x_{i}\right)^{2}} \quad \beta_{0}=\frac{\sum_{i=1}^{n} y_{i}-\beta_{1} \sum_{i-1}^{n} x_{i}}{n}
$$

Problem. Find the least squares line for the dataset $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.
Solution (First attempt). Use these equations...

How to: Finding the Least Squares Line

Don't memorize these.

Problem. Find the least squares line for the dataset $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.

Solution (First attempt). Use these equations...

An Observation

$$
\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \quad\|A \mathbf{x}-\mathbf{b}\|^{2}=\sum_{i=1}^{n}\left((A \mathbf{x})_{i}-\mathbf{b}_{i}\right)^{2}
$$

An Observation

$$
\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

minimize for least-squares line

$$
\|A \mathbf{x}-\mathbf{b}\|^{2}=\sum_{i=1}^{n}\left((A \mathbf{x})_{i}-\mathbf{b}_{i}\right)^{2}
$$

minimize for least-squares method

An Observation

$$
\sum_{\substack{i=1 \\ \text { minimize for least-squares line }}}^{n} \quad\|A \mathbf{x}-\mathbf{b}\|^{2}=\sum_{i=1}^{n}\left((A \mathbf{x})_{i}-\mathbf{b}_{i}\right)^{2}
$$

These expressions look very similar.

An Observation

$$
\sum_{\substack{i=1 \\ \text { minimize for least-squares line }}}^{n} \quad\|A \mathbf{x}-\mathbf{b}\|^{2}=\sum_{i=1}^{n}\left((A \mathbf{x})_{i}-\mathbf{b}_{i}\right)^{2}
$$

These expressions look very similar.
Can we design a matrix where finding a least squares solution gives us a least squares line?

A Least Squares Problem

$$
\begin{gathered}
\beta_{0}+\beta_{1} x_{1}=y_{1} \\
\beta_{0}+\beta_{1} x_{2}=y_{2} \\
\vdots \\
\beta_{0}+\beta_{1} x_{n}=y_{n}
\end{gathered}
$$

A Least Squares Problem

In the "ideal" world, we could find parameters β_{0} and β_{1} such that all of these equations hold.

$$
\begin{gathered}
\beta_{0}+\beta_{1} x_{1}=y_{1} \\
\beta_{0}+\beta_{1} x_{2}=y_{2} \\
\vdots \\
\beta_{0}+\beta_{1} x_{n}=y_{n}
\end{gathered}
$$

A Least Squares Problem

In the "ideal" world, we could find parameters β_{0} and β_{1} such that all of these equations hold.

This would mean all the points already lie on a single line.

$$
\begin{gathered}
\beta_{0}+\beta_{1} x_{1}=y_{1} \\
\beta_{0}+\beta_{1} x_{2}=y_{2} \\
\vdots
\end{gathered}
$$

$$
\beta_{0}+\beta_{1} x_{n}=y_{n}
$$

A Least Squares Problem

In the "ideal" world, we could find parameters β_{0} and β_{1} such that all of these equations hold.

This would mean all the points already lie on a single line.
This is a linear system in the variables β_{0} and β_{1}

A Least Squares Problem

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

A Least Squares Problem

In the "ideal" world, this matrix equation has a solution.

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

A Least Squares Problem

In the "ideal" world, this matrix equation has a solution.

In reality this system is unlikely to have a solution, but maybe we can find an

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$ approximate solution.

$$
\|X \vec{\beta}-\mathbf{y}\|^{2}=\sum_{i=1}^{n}\left(\left(\beta_{0}+\beta_{1} x_{i}\right)-y_{i}\right)^{2}
$$

A Least Squares Problem

$$
\|X \vec{\beta}-\mathbf{y}\|^{2}=\sum_{i=1}^{n}\left(\left(\beta_{0}+\beta_{1} x_{i}\right)-y_{i}\right)^{2}
$$

The sum of squares of residuals is the squared distances between $X \beta$ and \mathbf{y}.

A Least Squares Problem

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
\vec{\beta} \\
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

$$
\|X \vec{\beta}-\mathbf{y}\|^{2}=\sum_{i=1}^{n}\left(\left(\beta_{0}+\beta_{1} x_{i}\right)-y_{i}\right)^{2}
$$

The sum of squares of residuals is the squared distances between $X \beta$ and $\mathbf{y .}$

Least squares solutions to this system give us parameters for least squares lines.

Just for Fun
Let's derive it:

$$
\beta_{1}=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}
$$

How To: Least Squares Line

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

How To: Least Squares Line

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Problem. Find the least squares line for the dataset $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.

How To: Least Squares Line

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Problem. Find the least squares line for the dataset $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.
Solution. Find the least squares solution to the above equation.

General Regression

General Regression

Regression is the process of estimating the relationships independent and dependent variables in a dataset.

General Regression

Regression is the process of estimating the relationships independent and dependent variables in a dataset.

What we are estimating is a mathematical function

General Regression

Regression is the process of estimating the relationships independent and dependent variables in a dataset. What we are estimating is a mathematical function

We think of the environment has providing us a function
 from our independent variables to our dependent variables.

Models

Models

Therefore, a model is a mathematical function.

Models

Underfitted

Overfitted

Therefore, a model is a mathematical function.
We're interested in finding mathematical functions that "correctly" model the data we've seen.

Models

Therefore, a model is a mathematical function.
We're interested in finding mathematical functions that "correctly" model the data we've seen.

But this would a bit boring if we just wanted to model data we've seen.

Models

Underfitted

Good Fit/Robust

Overfitted

Therefore, a model is a mathematical function.
We're interested in finding mathematical functions that "correctly" model the data we've seen.

But this would a bit boring if we just wanted to model data we've seen. (Advanced) We pick models from weaker classes of functions so that they are more robust when we predict values using the model.

How To: Prediction

How To: Prediction

Problem. Given the data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ use the line of best fit to predict the value of y^{\prime} for the input x^{\prime}.

How To: Prediction

Problem. Given the data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ use the line of best fit to predict the value of y^{\prime} for the input x^{\prime}.
Solution. Find the best fit line $f(x)=\beta_{0}+\beta_{1} x$. The predicted value of x^{\prime} is $f\left(x^{\prime}\right)$.

How To: Prediction

Problem. Given the data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ use the line of best fit to predict the value of y^{\prime} for the input x^{\prime}.
Solution. Find the best fit line $f(x)=\beta_{0}+\beta_{1} x$. The predicted value of x^{\prime} is $f\left(x^{\prime}\right)$.

This generalizes to any model fitting problem

Example: Height from Weight

Example: Height from Weight

Suppose we know that person X weighs 150lb. How would we guess the height of person X ?

Example: Height from Weight

Suppose we know that person X weighs 150lb. How would we guess the height of person X ?

If we know the heights and weights of a population (from which X comes), then we can find the line of best fit for that data and then use that function.

Example: Height from Weight

Suppose we know that person X weighs 150lb. How would we guess the height of person X ?
(centered on the average)
If we know the heights and weights of a population (from which X comes), then we can find the line of best fit for that data and then use that function.

Example: Height from Weight

Suppose we know that person X weighs 150lb. How would we guess the height of person X ?

If we know the heights and weights of a population (from which X comes), then we can find the line of best fit for that data and then use that function.

Example: Height from Weight

Suppose we know that person X weighs 150lb. How would we guess the height of person X ?

If we know the heights and weights of a population (from which X comes), then we can find the line of best fit for that data and then use that function.

Question

Find the line of best fit for the dataset

$$
\{(0,3),(1,1),(-1,1),(2,3)\}
$$

If you have time, graph your result and use it to "predict" the corresponding value for the input 4.

Answer

$$
\{(0,3),(1,1),(-1,1),(2,3)\}
$$

Linear Models and Least Squares Regression

"Vectors" of Generalization

"Vectors" of Generalization

1. What if we have more than one independent value?

"Vectors" of Generalization

1. What if we have more than one independent value?
multiple regression, (hyper)plane of best fit

"Vectors" of Generalization

1. What if we have more than one independent value?
multiple regression, (hyper)plane of best fit
2. What if our data is not exactly linear.

"Vectors" of Generalization

1. What if we have more than one independent value?
multiple regression, (hyper)plane of best fit
2. What if our data is not exactly linear. e.g., polynomial regression

"Vectors" of Generalization

1. What if we have more than one independent value?
multiple regression, (hyper)plane of best fit
2. What if our data is not exactly linear. e.g., polynomial regression

Example: Terrain Data

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and z_{i} is an altitude.

Problem: Find the plane which "best" fits the data.

Example: Terrain Data

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and z_{i} is an altitude. Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

which minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2}
$$

Example: Terrain Data

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and z_{i} is an altitude. Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

which minimizes

$$
\begin{aligned}
& \sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2} \\
& f(x, y) \text { is a good approximation of the altitude. }
\end{aligned}
$$

Example: Terrain Data

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and z_{i} is an altitude. Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

recall: planes are given by linear equations which minimizes

$$
\begin{aligned}
& \sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2} \\
& f(x, y) \text { is a good approximation of the altitude. }
\end{aligned}
$$

Example: Terrain Data

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and z_{i} is an altitude.

$$
\beta_{0}+\beta_{1} x_{1}+\beta_{2} y_{1}=z_{1}
$$

$$
\beta_{0}+\beta_{1} x_{2}+\beta_{2} y_{2}=z_{2}
$$

Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

which minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2}
$$

$\beta_{0}+\beta_{1} x_{k}+\beta_{2} y_{k}=z_{k}$
Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{0}, \beta_{1}, \beta_{2}$

Example: Terrain Data

This is still linear in the β^{\prime} s

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$

$$
\beta_{0}+\beta_{1} x_{1}+\beta_{2} y_{1}=z_{1}
$$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and z_{i} is an altitude. $\beta_{0}+\beta_{1} x_{2}+\beta_{2} y_{2}=z_{2}$

Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

which minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2}
$$

$\beta_{0}+\beta_{1} x_{k}+\beta_{2} y_{k}=z_{k}$
Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{0}, \beta_{1}, \beta_{2}$

Example: Terrain Data

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and z_{i} is an altitude. Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

which minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2}
$$

Step 2: Rewrite the system as a

 matrix equation.
Example: Terrain Data

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and z_{i} is an altitude. Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that $\hat{\vec{\beta}}=\left(X^{T} X\right)^{-1} X^{T} Z$

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

which minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2}
$$

Step 3: Find the least squares solution of this system and use as the parameters of your model.

An Aside: Unique Least Squares

$$
\left[\begin{array}{ccc}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
\vdots & \vdots & \vdots \\
1 & x_{k} & y_{k}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{k}
\end{array}\right]
$$

Question (Conceptual). Why can almost always assume that the columns of this matrix are linearly independent?

Answer

Answer

If the columns were linearly dependent, then one of our independent variables can be computed in terms of the others.

Answer

If the columns were linearly dependent, then one of our independent variables can be computed in terms of the others.

First off, this is very unlikely.

Answer

If the columns were linearly dependent, then one of our independent variables can be computed in terms of the others.

First off, this is very unlikely.
Second, this variable could be then be thought of as a dependent variable.

Answer

If the columns were linearly dependent, then one of our independent variables can be computed in terms of the others.

First off, this is very unlikely.
Second, this variable could be then be thought of as a dependent variable.

It wouldn't contribute anything when using the least squares method.

"Vectors" of Generalization

1. What if we have more than one independent value?
multiple regression, (hyper)plane of best fit
2. What if our data is not exactly linear. e.g., polynomial regression

"Vectors" of Generalization

1. What if we have more than one independent value?
multiple regression, (hyper)plane of best fit
2. What if our data is not exactly linear. e.g., polynomial regression

Example: Best Fit Quadratic

Example: Best Fit Quadratic

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$

Example: Best Fit Quadratic

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$

The issue: There is no good line to approximate this data.

Example: Best Fit Quadratic

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$

The issue: There is no good line to approximate this data.

What about a parabola?

Example: Best Fit Quadratic

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$
Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes

Example: Best Fit Quadratic

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$
Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

$\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}=y_{1}$
$\beta_{0}+\beta_{1} x_{2}+\beta_{2} x_{2}^{2}=y_{2}$
$\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}=y_{k}$
Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{0}, \beta_{1}, \beta_{2}$

Example: Best Fit Quadratic

This is still linear in the β 's

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$

$$
\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}=y_{1}
$$

Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
\beta_{0}+\beta_{1} x_{2}+\beta_{2} x_{2}^{2}=y_{2}
$$

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes
$\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}=y_{k}$

$$
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{0}, \beta_{1}, \beta_{2}$

Example: Best Fit Quadratic

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$
Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

Step 2: Rewrite the system as a matrix equation.

Example: Best Fit Quadratic

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$
Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

Question

Find the parabola of best fit for the dataset

$$
\{(0,3),(1,1),(-1,1)\}
$$

Hint. Plot it

Answer

$$
\{(0,3),(1,1),(-1,1)\}
$$

The Takeaway

We can use non-linear modeling functions as long as they are linear in the parameters.

Linear in Parameters

Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is linear in the parameters $\beta_{1}, \ldots, \beta_{k}$ if it can be written as

$$
f(\mathbf{x})=\beta_{1} \phi_{1}(\mathbf{x})+\beta_{2} \phi_{2}(\mathbf{x})+\ldots+\beta_{k} \phi_{k}(\mathbf{x})
$$

for functions $\phi_{1}, \ldots, \phi_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
Example:

An Aside: Statistical Models (Another view)

$$
\mathbf{y}=X \vec{\beta}+\vec{\epsilon}
$$

An Aside: Statistical Models (Another view)

$$
\mathbf{y}=X \vec{\beta}+\vec{\epsilon}
$$

So far, we have been considering inconsistent systems of the form $\mathbf{y}=X \vec{\beta}$.

An Aside: Statistical Models (Another view)

$$
\mathbf{y}=X \vec{\beta}+\vec{\epsilon}
$$

So far, we have been considering inconsistent systems of the form $\mathbf{y}=X \vec{\beta}$.

It is also common to make the system consistent by adding error terms (the ϵ 's).

An Aside: Statistical Models (Another view)

$$
\mathbf{y}=X \vec{\beta}+\vec{\epsilon}
$$

So far, we have been considering inconsistent systems of the form $\mathbf{y}=X \vec{\beta}$.

It is also common to make the system consistent by adding error terms (the ϵ 's).
(We won't use this view, this is mostly for your personal betterment, and because the notes use this notation occasionally.)

An Aside: Statistical Models (Another view)

$$
\begin{aligned}
& \text { design matrix } \\
& \mathbf{y}=X \vec{\beta}+\vec{\epsilon}
\end{aligned}
$$

So far, we have been considering inconsistent systems of the form $\mathbf{y}=X \vec{\beta}$.

It is also common to make the system consistent by adding error terms (the ϵ 's).
(We won't use this view, this is mostly for your personal betterment, and because the notes use this notation occasionally.)

We can build design matrices for function which are linear in their parameters.

General Linear Regression

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k}\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

General Linear Regression

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k}\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

$\beta_{1} \phi_{1}\left(\mathbf{x}_{1}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{1}\right)=y_{1}$ $\beta_{1} \phi_{1}\left(\mathbf{x}_{2}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{2}\right)=y_{2}$
:

$$
\beta_{1} \phi_{1}\left(\mathbf{x}_{2}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{2}\right)=y_{2}
$$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{1}, \ldots, \beta_{k}$

General Linear Regression

This is still linear in the β 's

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k}\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

$\beta_{1} \phi_{1}\left(\mathbf{x}_{1}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{1}\right)=y_{1}$ $\beta_{1} \phi_{1}\left(\mathbf{x}_{2}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{2}\right)=y_{2}$
:

$$
\beta_{1} \phi_{1}\left(\mathbf{x}_{2}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{2}\right)=y_{2}
$$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{1}, \ldots, \beta_{k}$

General Linear Regression

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which is linear in the
design matrix

$$
\left[\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{1}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{1}\right) \\
\phi_{1}\left(\mathbf{x}_{2}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{1}\left(\mathbf{x}_{m}\right) & \phi_{2}\left(\mathbf{x}_{m}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{m}\right)
\end{array}\right]\left[\begin{array}{c}
\vec{\beta} \\
\beta_{1} \\
\beta_{2} \\
\vdots \beta_{k}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{k}
\end{array}\right]
$$ parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k}\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

Step 2: Rewrite the system as a matrix equation.

General Linear Regression

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

$$
\hat{\vec{\beta}}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k}\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

How To: Design Matrices

How To: Design Matrices

Problem. Find the design matrix for least squares regression with the function f in terms of the parameters $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ given the dataset $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$.

How To: Design Matrices

Problem. Find the design matrix for least squares regression with the function f in terms of the parameters $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ given the dataset $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$.

Solution. First write $f(\mathbf{x})$ as $\beta_{1} \phi_{1}(\mathbf{x})+\ldots+\beta_{k} \phi(\mathbf{x})$ where $\phi_{1}, \ldots, \phi_{k}$ are potentially non-linear functions. Then build the matrix:

$$
\left[\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{1}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{1}\right) \\
\phi_{1}\left(\mathbf{x}_{2}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{1}\left(\mathbf{x}_{m}\right) & \phi_{2}\left(\mathbf{x}_{m}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{m}\right)
\end{array}\right]
$$

Question

Find the design matrix for the least squares regression with the function

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \mapsto \beta_{1} \cos \left(x_{1}\right)+\beta_{2} e^{-x_{1} x_{2}}-\beta_{1} x_{3}+\beta_{3}
$$

for the dataset

$$
\begin{array}{ll}
\mathbf{x}_{1}=(0,0,0) & y_{1}=5 \\
\mathbf{x}_{2}=(\pi, 3,1) & y_{2}=3
\end{array}
$$

Answer: $\left[\begin{array}{ccc}1 & 1 & 1 \\ -2 & e^{-3 \pi} & 1\end{array}\right]$

Practical Considerations

Practical Considerations

Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible terms.

Practical Considerations

Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible terms.

We haven't actually talked about which modeling functions to use.

Practical Considerations

Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible terms.

We haven't actually talked about which modeling functions to use.

Again, is least-squares error really what we want? What if we want to minimize something else?

Practical Considerations

Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible terms.

We haven't actually talked about which modeling functions to use.

Again, is least-squares error really what we want? What if we want to minimize something else? Concerns for another class.

One Last Thing

Please through the last section of the notes
"Multiple Regression in Practice"
It will be useful for Homework 12.

