Symmetric Matrices

Geometric Algorithms
Lecture 25

Introduction

Objectives

- 1. Finish up our discussion of linear models (actually define linear models).
- 2. Talk briefly about symmetric matrices and eigenvalues.
- 3. Describe an application to constrained optimization problems.

Keywords

linear models design matrices general linear regression symmetric matrices the spectral theorem orthogonal diagonalizability quadratic forms definiteness constrained optimization

Recap

Regression is the process of estimating the relationships independent and dependent variables in a dataset.

Regression is the process of estimating the relationships independent and dependent variables in a dataset.

What we are estimating is a mathematical function

Regression is the process of estimating the relationships independent and dependent variables in a dataset.

What we are estimating is a mathematical function

We think of the environment has providing us a function from our independent variables to our dependent variables.

Recall: How To: Line of Best Fit

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Recall: How To: Line of Best Fit

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Problem. Find the least squares line for the dataset $\{(x_1, y_1), ..., (x_n, y_n)\}$.

Recall: How To: Line of Best Fit

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}^{1} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

Problem. Find the least squares line for the dataset $\{(x_1, y_1), ..., (x_n, y_n)\}$.

Solution. Find the least squares solution to the above equation.

1. What if we have *more than one* independent value?

1. What if we have *more than one* independent value?

multiple regression, (hyper)plane of best fit

1. What if we have *more than one* independent value?

multiple regression, (hyper)plane of best fit

2. What if our data is not exactly linear.

1. What if we have *more than one* independent value?

multiple regression, (hyper)plane of best fit

2. What if our data is not exactly linear.

e.g., polynomial regression

Recall: Plane of Best Fit

Figure 23.2

Multiple Regression Fit to Data

Dataset: $\{(x_1, y_1, z_1), ..., (x_k, y_k, z_k)\}$ where (x_i, y_i) is an longitude and latitude and z_i is an altitude.

Problem: Find $\beta_0, \beta_1, \beta_2$ such that

$$f(x, y) = \beta_0 + \beta_1 x + \beta_2 y$$

which minimizes

$$\sum_{i=1}^{k} (f(x_i, y_i) - z_i)^2$$

Recall: Plane of Best Fit

Figure 23.2

Multiple Regression Fit to Data

Dataset: $\{(x_1, y_1, z_1), ..., (x_k, y_k, z_k)\}$ where (x_i, y_i) is an longitude and latitude and z_i is an altitude.

Problem: Find $\beta_0, \beta_1, \beta_2$ such that

$$f(x, y) = \beta_0 + \beta_1 x + \beta_2 y$$

which minimizes

$$\sum_{i=1}^{k} (f(x_i, y_i) - z_i)^2$$

f(x,y) is a good approximation of the altitude.

Recall: Plane of Best Fit

Figure 23.2

Multiple Regression Fit to Data

Dataset: $\{(x_1, y_1, z_1), ..., (x_k, y_k, z_k)\}$ where (x_i, y_i) is an longitude and latitude and z_i is an altitude.

Problem: Find $\beta_0, \beta_1, \beta_2$ such that

$$f(x,y) = \beta_0 + \beta_1 x + \beta_2 y$$
 recall: planes are given by linear equations

which minimizes

$$\sum_{i=1}^{k} (f(x_i, y_i) - z_i)^2$$

f(x,y) is a good approximation of the altitude.

Dataset: $\{(x_1, y_1), ..., (x_k, y_k)\}$

Problem: Find $\beta_0, \beta_1, \beta_2$ such

that

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

minimizes

$$\sum_{i=1}^{k} (f(x_i) - y_i)^2$$

Dataset: $\{(x_1, y_1), ..., (x_k, y_k)\}$

Problem: Find $\beta_0, \beta_1, \beta_2$ such that

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

minimizes

$$\sum_{i=1}^{k} (f(x_i) - y_i)^2$$

$$\beta_0 + \beta_1 x_1 + \beta_2 x_1^2 = y_1$$

$$\beta_0 + \beta_1 x_2 + \beta_2 x_2^2 = y_2$$

$$\vdots$$

$$\beta_0 + \beta_1 x_k + \beta_2 x_k^2 = y_k$$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_0, \beta_1, \beta_2$

Dataset:
$$\{(x_1, y_1), ..., (x_k, y_k)\}$$

Problem: Find
$$\beta_0, \beta_1, \beta_2$$
 such

that

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

minimizes

$$\sum_{i=1}^{k} (f(x_i) - y_i)^2$$

This is still linear in the
$$\beta$$
's
$$\beta_0 + \beta_1 x_1 + \beta_2 x_1^2 = y_1$$

$$\beta_0 + \beta_1 x_2 + \beta_2 x_2^2 = y_2$$

 $\beta_0 + \beta_1 x_k + \beta_2 x_k^2 = y_k$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_0, \beta_1, \beta_2$

Dataset: $\{(x_1, y_1), ..., (x_k, y_k)\}$

Problem: Find $\beta_0, \beta_1, \beta_2$ such

that

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

minimizes

$$\sum_{i=1}^{k} (f(x_i) - y_i)^2$$

$$\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_k & x_k^2 \end{bmatrix} \begin{bmatrix} \vec{\beta} \\ \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_k \end{bmatrix}$$

Step 2: Rewrite the system as a matrix equation.

Dataset:
$$\{(x_1, y_1), ..., (x_k, y_k)\}$$

Problem: Find $\beta_0, \beta_1, \beta_2$ such

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

minimizes

$$\sum_{i=1}^{k} (f(x_i) - y_i)^2$$

$$\hat{\vec{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$$

Step 3: Find the least squares solution of this system and use as the parameters of your model.

Recap Problem

$$\{(0,3),(1,1),(-1,1),(2,3)\}$$

Find the matrices X as in the previous example to find the least squares best fix parabola <u>and the</u> <u>least squares best fit cubic</u> for this dataset.

 $\{(0,3),(1,1),(-1,1),(2,3)\}$

Design Matrices

The Takeaway

We can use non-linear modeling functions as long as they are <u>linear in the parameters</u>.

non example:

Linear in Parameters $f(x_1, x_2) = \beta \circ \beta \circ x_1$

Definition. A function $f: \mathbb{R}^n \to \mathbb{R}$ is linear in the parameters $\beta_1, ..., \beta_k$ if it can be written as

$$f(\mathbf{x}) = \beta_1 \phi_1(\mathbf{x}) + \beta_2 \phi_2(\mathbf{x}) + \dots + \beta_k \phi_k(\mathbf{x})$$
we say the second of th

for functions $\phi_1, ..., \phi_k : \mathbb{R}^n \to \mathbb{R}$

Example:
$$f(x_1, x_2) = \beta_0 \cos(x_1 x_2) + \beta_1 e^{x_1 x_2}$$

$$f(x_1)$$

$$\mathbf{y} = X \beta + \vec{\epsilon}$$

$$\mathbf{y} = X \vec{\beta} + \vec{\epsilon}$$

So far, we have been considering inconsistent systems of the form $\mathbf{y} = X\vec{\beta}$.

$$\mathbf{y} = X \beta + \vec{\epsilon}$$

So far, we have been considering *inconsistent* systems of the form $\mathbf{y} = X\vec{\beta}$.

It is also common to make the system consistent by adding error terms (the ϵ 's).

$$\mathbf{y} = X \vec{\beta} + \vec{\epsilon}$$

So far, we have been considering inconsistent systems of the form $\mathbf{y} = X\vec{\beta}$.

It is also common to make the system consistent by adding error terms (the ϵ 's).

(We won't use this view, this is mostly for your personal betterment, and because the notes use this notation occasionally.)

$$\frac{\text{design matrix}}{\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}}$$

So far, we have been considering inconsistent systems of the form $\mathbf{y} = X\vec{\beta}$.

It is also common to make the system consistent by adding error terms (the ϵ 's).

(We won't use this view, this is mostly for your personal betterment, and because the notes use this notation occasionally.)

The Takeaway (Again)

We can build <u>design matrices</u> for function which are linear in their parameters.

Linear (Regression) Model

Definition. A **linear model** with parameters $\beta_1, ..., \beta_k$ is a function $f: \mathbb{R}^n \to \mathbb{R}$ which is linear in the parameters $\beta_1, ..., \beta_k$.

The model fitting problem is the problem of determining which parameters fit the data "best".

dataset: $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$ where $\mathbf{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$

Problem. Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is *linear in the* parameters $\beta_1,...,\beta_k$, find values for $\beta_1,...,\beta_k$ which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$

dataset: $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$ where $\mathbf{x}_i \in \mathbb{R}^n \text{ and } y_i \in \mathbb{R}$

Problem. Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is linear in the parameters $\beta_1, ..., \beta_k$, find values for β_1, \ldots, β_k which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$

$$i=1$$

dataset: $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$ where $\mathbf{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$

Problem. Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is *linear in the* parameters $\beta_1,...,\beta_k$, find values for $\beta_1,...,\beta_k$ which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$

$$\beta_1 \phi_1(\mathbf{x}_1) + \dots + \beta_k \phi_k(\mathbf{x}_1) = y_1$$

 $\beta_1 \phi_1(\mathbf{x}_2) + \dots + \beta_k \phi_k(\mathbf{x}_2) = y_2$
:

$$\beta_1 \phi_1(\mathbf{x}_2) + \dots + \beta_k \phi_k(\mathbf{x}_2) = y_2$$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables β_1, \ldots, β_k

This is still linear in the β 's

dataset:
$$\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$$
 where $\mathbf{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$

Problem. Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is *linear in the* parameters $\beta_1,...,\beta_k$, find values for $\beta_1,...,\beta_k$ which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$

$$\beta_1 \phi_1(\mathbf{x}_1) + \dots + \beta_k \phi_k(\mathbf{x}_1) = y_1$$

 $\beta_1 \phi_1(\mathbf{x}_2) + \dots + \beta_k \phi_k(\mathbf{x}_2) = y_2$
:

$$\beta_1 \phi_1(\mathbf{x}_2) + \dots + \beta_k \phi_k(\mathbf{x}_2) = y_2$$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_1, ..., \beta_k$

dataset: $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$ where $\mathbf{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$

Problem. Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is linear in the parameters $\beta_1,...,\beta_k$, find values for $\beta_1,...,\beta_k$ which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$

 $\begin{bmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_k(\mathbf{x}_1) \\ \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_k(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_m) & \phi_2(\mathbf{x}_m) & \dots & \phi_k(\mathbf{x}_m) \end{bmatrix} \begin{bmatrix} \vec{\beta} \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} \mathbf{y} \\ y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix}$

Step 2: Rewrite the system as a matrix equation.

dataset: $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$ where $\mathbf{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$

Problem. Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is *linear in the* parameters $\beta_1,...,\beta_k$, find values for $\beta_1,...,\beta_k$ which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$

$$\hat{\vec{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$$

Step 3: Find the least squares solution of this system and use as the parameters of your model.

How To: Design Matrices

How To: Design Matrices

Problem. Find the design matrix for least squares regression with the function f in terms of the parameters $\beta_1, \beta_2, ..., \beta_k$ given the dataset $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$.

How To: Design Matrices

Problem. Find the design matrix for least squares regression with the function f in terms of the parameters $\beta_1, \beta_2, ..., \beta_k$ given the dataset $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$.

Solution. First write $f(\mathbf{x})$ as $\beta_1\phi_1(\mathbf{x}) + ... + \beta_k\phi(\mathbf{x})$ where $\phi_1, ..., \phi_k$ are potentially non-linear functions. Then build the matrix:

$$\begin{bmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_k(\mathbf{x}_1) \\ \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_k(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_m) & \phi_2(\mathbf{x}_m) & \dots & \phi_k(\mathbf{x}_m) \end{bmatrix}$$

Question

Find the design matrix for the least squares regression with the function

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \beta_1 \cos(x_1) + \beta_2 e^{-x_1 x_2} - \beta_1 x_3 + \beta_3$$

for the dataset

$$\mathbf{x}_1 = (0,0,0)$$
 $y_1 = 5$
 $\mathbf{x}_2 = (\pi,3,1)$ $y_2 = 3$

Answer:
$$\begin{bmatrix} 1 & 1 & 1 \\ -2 & e^{-3\pi} & 1 \end{bmatrix}$$

$$f(x, x_1, x_2) = \beta_1(\omega_5(x_1) - x_3) + \beta_2 e^{-x_1x_2} + \beta_3$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$

$$= (0, 0$$

Many functions require large design matrices, e.g. multivariate polynomials have *a lot* of possible terms.

Many functions require large design matrices, e.g. multivariate polynomials have *a lot* of possible terms.

We haven't actually talked about which modeling functions to use.

Many functions require large design matrices, e.g. multivariate polynomials have *a lot* of possible terms.

We haven't actually talked about which modeling functions to use.

Again, is least-squares error really what we want? What if we want to minimize something else?

Many functions require large design matrices, e.g. multivariate polynomials have *a lot* of possible terms.

We haven't actually talked about which modeling functions to use.

Again, is least-squares error really what we want? What if we want to minimize something else?

Concerns for another class.

One Last Thing

Read though the extended example in the notes on "Multiple Regression in Practice."

It should be useful for Homework 12.

Symmetric Matrices

Recall: Symmetric Matrices

Definition. A square matrix A is **symmetric** if $A^T = A$

Example:

Orthogonal Eigenvectors

Theorem. For a symmetric matrix A, if \mathbf{u} and \mathbf{v} are eigenvectors for distinct eigenvalues, then \mathbf{u} and \mathbf{v} are orthogonal.

Verify:
$$A\vec{u} = \lambda_1 \vec{u}$$
 $A\vec{r} = \lambda_2 \vec{v}$
 \vec{u} \vec{v} $\vec{$

Definition. A matrix A is **diagonalizable** if it is similar to a diagonal matrix.

Definition. A matrix *A* is **diagonalizable** if it is similar to a diagonal matrix.

There is an invertible matrix \underline{P} and $\underline{diagonal}$ matrix \underline{D} such that $\underline{A} = PDP^{-1}$.

Definition. A matrix *A* is **diagonalizable** if it is similar to a diagonal matrix.

There is an invertible matrix P and <u>diagonal</u> matrix D such that $A = PDP^{-1}$.

Diagonalizable matrices are the same as scaling matrices up to a change of basis.

Recall: The Picture

$$A = PDP^{-1}$$

$$\begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}^{-1}$$

$$A = PDP^{-1}$$

$$A = PDP^{-1}$$

Theorem. A is diagonalizable if and only if it has an eigenbasis.

$$A = PDP^{-1}$$

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

The columns of P form an <u>eigenbasis</u> for A.

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

The columns of P form an <u>eigenbasis</u> for A.

The diagonal of D are the eigenvalues for each column of P_{ullet}

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

The columns of P form an <u>eigenbasis</u> for A.

The diagonal of D are the eigenvalues for each column of P_{ullet}

The matrix P^{-1} is a change of basis to this eigenbasis of A.

The Spectral Theorem

Theorem. If A is symmetric, then it has an orthonormal eigenbasis.

(we won't prove this)

Symmetric matrices are <u>diagonalizable</u>.

But more than that, we can choose P to be orthogonal.

Recall: Orthonormal Matrices

Definition. A matrix is **orthonormal** if its columns form an orthonormal set.

The notes call a square orthonormal matrix an orthogonal matrix.

Recall: Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix U is orthogonal (square orthonormal) then it is invertible and

$$U^{-1} = U^T$$

Verify:

Orthogonal Diagonalizability

Definition. A matrix A is **orthogonally diagonalizable** if there is a diagonal matrix D and matrix P such that

$$A = PDP^T = PDP^{-1}$$

P must be an <u>orthogonal matrix</u>.

Symmetric matrices are orthogonally diagonalizable

Orthogonal Diagonalizability and Symmetry

Fact. All orthogonally diagonalizable matrices are symmetric.

Orthogonal Diagonalizability and Symmetry

```
Theorem. A matrix is orthogonally diagonalizable if and only if it is symmetric.
```

```
(You won't need to construct an orthogonal diagonalization, we'll just use NumPy.)
```

Quadratic Forms

Quadratic Forms

Definition. A quadratic form is an function of variables $x_1, ..., x_n$ in which every term has degree two:

Quadratic forms are the quadratic versions the left-hand-sides of linear equations.

Examples

$$Q(x_1, x_2, x_3) = 2x_1^2 + 2x_3^2 + 4x_1x_3 - 2x_2x_3$$

$$Q(x) = x^T x = \langle x, x \rangle$$

Non. Carroles

$$Q(x,) = x,$$

$$Q(x,, x_2) = x,$$

$$X, x_2$$

Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented as

$$\mathbf{X}^T \mathbf{A} \mathbf{X}$$

where A is <u>symmetric</u>.

Example:
$$3 \times_{1}^{2} + 7 \times_{2}^{2} = (\times_{1} \times_{2}) (3 \times_{1}) (\times_{1} \times_{2} \times_{2} \times_{2}) (\times_{1} \times_{2} \times_{2} \times_{2}) (\times_{1} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2}) (\times_{1} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2}) (\times_{1} \times_{2}) (\times_{1} \times_{2} \times_{2}$$

Example: Computing the Quadratic Form for a Matrix

$$A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$$

This means, given a symmetric matrix A, we can compute its corresponding quadratic form:

Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say

$$\mathbf{x}^T A \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

Verify:

A Slightly more Complicated Example

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 0 \\ -1 & 0 & 5 \end{bmatrix}$$

Let's expand $\mathbf{x}^T A \mathbf{x}$:

Matrices from Quadratic Forms

$$Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$$

We can also go in the other direction. Let's express this as $\mathbf{x}^T A \mathbf{x}$:

How To: Matrices of Quadratic Forms

Problem. Given a quadratic form $Q(\mathbf{x})$, find the symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

Solution.

- » if $Q(\mathbf{x})$ has the term αx_i^2 then $A_{ii} = \alpha$
- » if $Q(\mathbf{x})$ has the term $\alpha x_i x_j$, then $A_{ij} = A_{ji} = \frac{\alpha}{2}$

Question

$$Q(x_1, x_2, x_3, x_4) = x_1^2 + 3x_2^2 - 2x_3x_4 - 6x_4^2 + 7x_1x_3$$

Find the symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

Answer

Shapes of of Quadratic Forms in \mathbb{R}^3

There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

Shapes of of Quadratic Forms in \mathbb{R}^3

There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

Definiteness

For $x \neq 0$, each of the above graphs satisfy the associated properties.

Definiteness

For $x \neq 0$, each of the above graphs satisfy the associated properties.

Definiteness and Eigenvectors

Theorem. For a symmetric matrix A, the quadratic form $\mathbf{x}^T A \mathbf{x}$

- > positive definite \equiv all positive eigenvalues
- \Rightarrow positive semidefinite \equiv all <u>nonnegative</u> eigenvalues
- \Rightarrow indefinite \equiv positive and negative eigenvalues
- > negative definite \equiv all <u>negative</u> eigenvalues

Definiteness

Positive Definite Case

Let's think why this is for the positive definite case:

Example

$$Q(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 4x_2x_3 + x_3^2$$

Let's determine which case this is:

Constrained Optimization

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for f over X is the problem of determining

$$\min_{\mathbf{v} \in X} f(\mathbf{v})$$

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for f over X is the problem of determining

$$\min_{\mathbf{v} \in X} f(\mathbf{v})$$

(analogously for maximization)

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for f over X is the problem of determining

$$\min_{\mathbf{v} \in X} f(\mathbf{v})$$

(analogously for maximization)

Find the smallest value of $f(\mathbf{v})$ subject to choosing a vector in X

Constrained Optimization for Quadratic Forms and Unit Vectors

mini/maximize $\mathbf{x}^T A \mathbf{x}$ subject to $||\mathbf{x}|| = 1$

It's common to constraint to unit vectors.

Example: $3x_1^2 + 7x_2^2$

What are the min/max values?:

Example: $3x_1^2 + 7x_2^2$

The minimum and maximum values are attained when the "weight" of the vector is distributed all on x_1 or x_2 .

Example: $3x_1^2 + 7x_2^2$

What is the matrix?:

Constrained Optimization and Eigenvalues

Theorem. For a symmetric matrix A, with largest eigenvalue λ_1 and smallest eigenvalue λ_n

$$\max_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x} = \lambda_1 \qquad \min_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x} = \lambda_n$$

No matter the shape of A, this will hold.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

(Use NumPy)

Summary

We can build models which are <u>nonlinear</u> functions if those functions are linear in their parameters.

We can solve constrained optimization problems using <u>eigenvalues</u>.