# Symmetric Matrices 

## Geometric Algorithms

Lecture 25

## Introduction

## Objectives

1. Finish up our discussion of linear models (actually define linear models).
2. Talk briefly about symmetric matrices and eigenvalues.
3. Describe an application to constrained optimization problems.

## Keywords

linear models
design matrices
general linear regression
symmetric matrices
the spectral theorem
orthogonal diagonalizability
quadratic forms
definiteness
constrained optimization

## Recap

## Recall: General Regression



## Recall: General Regression

Regression is the process of estimating the relationships independent and dependent variables in a dataset.


## Recall: General Regression

Regression is the process of estimating the relationships independent and dependent variables in a dataset.

What we are estimating is a mathematical function


## Recall: General Regression

Regression is the process of estimating the relationships independent and dependent variables in a dataset.

What we are estimating is a mathematical function

We think of the environment has providing us a function
 from our independent variables to our dependent variables.

## Recall: How To: Line of Best Fit

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

## Recall: How To: Line of Best Fit

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Problem. Find the least squares line for the dataset $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.

## Recall: How To: Line of Best Fit

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] y=\beta_{0}+\beta_{1} x
$$

Problem. Find the least squares line for the dataset $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.

Solution. Find the least squares solution to the above equation.

## Recall: "Vectors" of Generalization

## Recall: "Vectors" of Generalization

1. What if we have more than one independent value?

## Recall: "Vectors" of Generalization

1. What if we have more than one independent value?
multiple regression, (hyper)plane of best fit

## Recall: "Vectors" of Generalization

1. What if we have more than one independent value?
multiple regression, (hyper)plane of best fit
2. What if our data is not exactly linear.

## Recall: "Vectors" of Generalization

1. What if we have more than one independent value?
multiple regression, (hyper)plane of best fit
2. What if our data is not exactly linear. e.g., polynomial regression

## Recall: Plane of Best Fit

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and $z_{i}$ is an altitude. Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

which minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2}
$$



## Recall: Plane of Best Fit

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and $z_{i}$ is an altitude. Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

which minimizes

$$
\begin{aligned}
& \sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2} \\
& f(x, y) \text { is a good approximation of the altitude. }
\end{aligned}
$$

## Recall: Plane of Best Fit

Dataset: $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{k}, y_{k}, z_{k}\right)\right\}$ where $\left(x_{i}, y_{i}\right)$ is an longitude and latitude and $z_{i}$ is an altitude. Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x, y)=\beta_{0}+\beta_{1} x+\beta_{2} y
$$

recall: planes are given by linear equations which minimizes

$$
\begin{aligned}
& \sum_{i=1}^{k}\left(f\left(x_{i}, y_{i}\right)-z_{i}\right)^{2} \\
& f(x, y) \text { is a good approximation of the altitude. }
\end{aligned}
$$

## Recall: Parabola of Best Fit

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$
Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes


## Recall: Parabola of Best Fit

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$
Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

$\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}=y_{1}$
$\beta_{0}+\beta_{1} x_{2}+\beta_{2} x_{2}^{2}=y_{2}$
$\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}=y_{k}$
Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{0}, \beta_{1}, \beta_{2}$

## Recall: Parabola of Best Fit

## This is still linear in the $\beta$ 's

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$
Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

$\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}=y_{1}$

$$
\beta_{0}+\beta_{1} x_{2}+\beta_{2} x_{2}^{2}=y_{2}
$$

$$
\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}=y_{k}
$$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{0}, \beta_{1}, \beta_{2}$

## Recall: Parabola of Best Fit

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$
Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

## Step 2: Rewrite the system as a matrix equation.

## Recall: Parabola of Best Fit <br> $$
\hat{b}=A \hat{x}=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}
$$

Dataset: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$
Problem: Find $\beta_{0}, \beta_{1}, \beta_{2}$ such that

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

minimizes

$$
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

Step 3: Find the least squares solution of this system and use as the parameters of your model.

## Recap Problem

$$
\{(0,3),(1,1),(-1,1),(2,3)\}
$$

Find the matrices $X$ as in the previous example to find the least squares best fix parabola and the least squares best fit cubic for this dataset.

$$
\begin{aligned}
& \text { Answer } \\
& {\left[\begin{array}{lll}
1 & x_{i} & x_{i}^{2}
\end{array}\right] X=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right] \text { for } \begin{array}{l}
\text { best-sir } \\
\text { parabolr }
\end{array}} \\
& {\left[\begin{array}{llll}
1 & x_{i} & x_{i}^{2} & x_{i}^{3}
\end{array}\right] X=\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 0
\end{array}\right] \text { for best-fir }}
\end{aligned}
$$

## Design Matrices

## The Takeaway

We can use non-linear modeling functions as long as they are linear in the parameters.
nor example:
Linear in Parameters

$$
f\left(x_{1}, x_{2}\right)=\beta_{0} \beta_{1} x_{1}
$$

$$
=e^{\beta_{1} x_{1}}
$$

Definition. A function $f\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ is linear in the parameters $\beta_{1}, \ldots, \beta_{k}$ if it can be written as

$$
\left.f(\mathbf{x})=\beta_{1} \phi_{1}(\mathbf{x})+\beta_{2} \phi_{2}(\mathbf{x})+\ldots+\beta_{k} \phi_{k}(\mathbf{x})\right)^{- \text {not }} \text { ncessurim }
$$

for functions $\phi_{1}, \ldots, \phi_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
Example: $f\left(x_{1}, x_{2}\right)=\beta_{0} \cos \left(x_{1} x_{2}\right)+\beta_{1} e^{x_{2} / 3}$

$$
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)
$$

## An Aside: Statistical Models (Another view)

$$
\mathbf{y}=X \vec{\beta}+\vec{\epsilon}
$$

## An Aside: Statistical Models (Another view)

$$
\mathbf{y}=X \vec{\beta}+\vec{\epsilon}
$$

So far, we have been considering inconsistent systems of the form $\mathbf{y}=X \vec{\beta}$.

## An Aside: Statistical Models (Another view)

$$
\mathbf{y}=X \vec{\beta}+\vec{\epsilon}
$$

So far, we have been considering inconsistent systems of the form $\mathbf{y}=X \vec{\beta}$.

It is also common to make the system consistent by adding error terms (the $\epsilon$ 's).

## An Aside: Statistical Models (Another view)

$$
\mathbf{y}=X \vec{\beta}+\vec{\epsilon}
$$

So far, we have been considering inconsistent systems of the form $\mathbf{y}=X \vec{\beta}$.

It is also common to make the system consistent by adding error terms (the $\epsilon$ 's).
(We won't use this view, this is mostly for your personal betterment, and because the notes use this notation occasionally.)

## An Aside: Statistical Models (Another view)

$$
\begin{aligned}
& \text { design matrix } \\
& \mathbf{y}=X \vec{\beta}+\vec{\epsilon}
\end{aligned}
$$

So far, we have been considering inconsistent systems of the form $\mathbf{y}=X \vec{\beta}$.

It is also common to make the system consistent by adding error terms (the $\epsilon$ 's).
(We won't use this view, this is mostly for your personal betterment, and because the notes use this notation occasionally.)

## The Takeaway (Again)

We can build design matrices for function which are linear in their parameters.

## Linear (Regression) Model

Definition. A linear model with parameters $\beta_{1}, \ldots, \beta_{k}$ is a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is linear in the parameters $\beta_{1}, \ldots, \beta_{k}$.
The model fitting problem is the problem of determining which parameters fit the data "best".

## General Linear Regression

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k}\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$



## General Linear Regression

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k} \frac{\left.r_{1} \frac{\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)\right.}{\text { predichar }}-y_{i}\right)^{2}}{\text { obserotion }}
$$

Build a linear model which minimizes the least-squares error.

## General Linear Regression

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k}\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

$\beta_{1} \phi_{1}\left(\mathbf{x}_{1}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{1}\right)=y_{1}$ $\beta_{1} \phi_{1}\left(\mathbf{x}_{2}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{2}\right)=y_{2}$
:

$$
\beta_{1} \phi_{1}\left(\mathbf{x}_{2}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{2}\right)=y_{2}
$$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{1}, \ldots, \beta_{k}$

## General Linear Regression

## This is still linear in the $\beta$ 's

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k}\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

$\beta_{1} \phi_{1}\left(\mathbf{x}_{1}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{1}\right)=y_{1}$ $\beta_{1} \phi_{1}\left(\mathbf{x}_{2}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{2}\right)=y_{2}$
:

$$
\beta_{1} \phi_{1}\left(\mathbf{x}_{2}\right)+\ldots+\beta_{k} \phi_{k}\left(\mathbf{x}_{2}\right)=y_{2}
$$

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables $\beta_{1}, \ldots, \beta_{k}$

## General Linear Regression

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values
design matrix

$$
\left[\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{1}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{1}\right) \\
\phi_{1}\left(\mathbf{x}_{2}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{1}\left(\mathbf{x}_{m}\right) & \phi_{2}\left(\mathbf{x}_{m}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{m}\right)
\end{array}\right]\left[\begin{array}{c}
\vec{\beta} \\
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{y} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{k}
\end{array}\right]
$$

Step 2: Rewrite the system as a matrix equation.

## General Linear Regression

dataset: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$

Problem. Given a function

$$
f_{\beta_{1}, \ldots, \beta_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

$$
\hat{\vec{\beta}}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
$$

which is linear in the parameters $\beta_{1}, \ldots \beta_{k}$, find values for $\beta_{1}, \ldots, \beta_{k}$ which minimize

$$
\sum_{i=1}^{k}\left(f_{\beta_{1}, \ldots, \beta_{k}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

## How To: Design Matrices

## How To: Design Matrices

Problem. Find the design matrix for least squares regression with the function $f$ in terms of the parameters $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ given the dataset $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$.

## How To: Design Matrices

Problem. Find the design matrix for least squares regression with the function $f$ in terms of the parameters $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ given the dataset $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$.

Solution. First write $f(\mathbf{x})$ as $\beta_{1} \phi_{1}(\mathbf{x})+\ldots+\beta_{k} \phi(\mathbf{x})$ where $\phi_{1}, \ldots, \phi_{k}$ are potentially non-linear functions. Then build the matrix:

$$
\left[\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{1}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{1}\right) \\
\phi_{1}\left(\mathbf{x}_{2}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{1}\left(\mathbf{x}_{m}\right) & \phi_{2}\left(\mathbf{x}_{m}\right) & \ldots & \phi_{k}\left(\mathbf{x}_{m}\right)
\end{array}\right]
$$

## Question

Find the design matrix for the least squares regression with the function

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \mapsto \beta_{1} \cos \left(x_{1}\right)+\beta_{2} e^{-x_{1} x_{2}}-\beta_{1} x_{3}+\beta_{3}
$$

for the dataset

$$
\begin{array}{ll}
\mathbf{x}_{1}=(0,0,0) & y_{1}=5 \\
\mathbf{x}_{2}=(\pi, 3,1) & y_{2}=3
\end{array}
$$

Answer: $\left[\begin{array}{ccc}1 & 1 & 1 \\ -2 & e^{-3 \pi} & 1\end{array}\right]$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=\beta_{1}\left(\cos \left(x_{1}\right)-x_{3}\right)+\left[\beta_{2} e^{-x_{1} x_{2}}+\beta_{3}\right. \\
& \vec{x}_{1}=(0,0,0) \\
& \vec{x}_{2}=(\pi, 3,1) \quad\left[\begin{array}{ccc}
\cos (0)-0 & e^{-0(0)} & 1 \\
\cos (\pi)-1 & e^{-\pi 3} & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & e^{-3 \pi} & 1
\end{array}\right]
\end{aligned}
$$

## Practical Considerations

## Practical Considerations

Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible terms.

## Practical Considerations

Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible terms.

We haven't actually talked about which modeling functions to use.

## Practical Considerations

Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible terms.

We haven't actually talked about which modeling functions to use.

Again, is least-squares error really what we want? What if we want to minimize something else?

## Practical Considerations

Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible terms.

We haven't actually talked about which modeling functions to use.

Again, is least-squares error really what we want? What if we want to minimize something else? Concerns for another class.

## One Last Thing

Read though the extended example in the notes on "Multiple Regression in Practice."

It should be useful for Homework 12.

## Symmetric Matrices

## Recall: Symmetric Matrices

Definition. A square matrix $A$ is symmetric if $A^{T}=A$.

Example:


Orthogonal Eigenvectors


Theorem. For a symmetric matrix $A$, if $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors for distinct eigenvalues, then $\mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Verify:

$$
\begin{aligned}
\text { Verify: } \quad A \vec{u}=\lambda_{1} u \\
\begin{aligned}
& v^{\langle }: \\
&\langle\vec{u}, \vec{v}\rangle=0 \quad\langle\vec{u}, A \vec{v}\rangle=u^{\top} A \vec{r} \\
&=u^{\top} \lambda_{2} \vec{v} \\
& u^{\top} A \vec{r}=u^{\top} A^{\top} \vec{v}=(A \vec{u})^{\top} \vec{r} \quad=\lambda_{1}\langle u, \vec{r}\rangle \quad \\
& \lambda_{1} \neq \lambda_{2} \quad=u, v\rangle \\
& \therefore\langle\vec{u}, \vec{v}\rangle=0
\end{aligned}
\end{aligned}
$$

## Recall: Diagonalizable Matrices

## Recall: Diagonalizable Matrices

Definition. A matrix $A$ is diagonalizable if it is similar to a diagonal matrix.

## Recall: Diagonalizable Matrices

Definition. A matrix $A$ is diagonalizable if it is similar to a diagonal matrix.

There is an invertible matrix $P$ and diagonal matrix $D$ such that $\mid A=P D P^{-1}$.

## Recall: Diagonalizable Matrices

Definition. A matrix $A$ is diagonalizable if it is similar to a diagonal matrix.

There is an invertible matrix $P$ and diagonal matrix $D$ such that $A=P D P^{-1}$.

Diagonalizable matrices are the same as scaling matrices up to a change of basis.

## Recall: The Picture



$$
\begin{gathered}
A=P D P^{-1} \\
{\left[\begin{array}{cc}
2 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right]^{-1}}
\end{gathered}
$$




## Recall: The Diagonalization Theorem

$$
A=P D P^{-1}
$$

## Recall: The Diagonalization Theorem

$$
A=P D P^{-1}
$$

Theorem. $A$ is diagonalizable if and only if it has an eigenbasis.

## Recall: The Diagonalization Theorem

## $A=P D P^{-1}$

Theorem. $A$ is diagonalizable if and only if it has an eigenbasis.
The idea:

## Recall: The Diagonalization Theorem

$$
A=P D P^{-1}
$$

Theorem. $A$ is diagonalizable if and only if it has an eigenbasis.
The idea:
The columns of $P$ form an eigenbasis for $A$.

## Recall: The Diagonalization Theorem

$$
A \stackrel{\text { difenasisis }}{=P} P P_{\text {eifgevalues }}^{-1}
$$

Theorem. $A$ is diagonalizable if and only if it has an eigenbasis.

The idea:
The columns of $P$ form an eigenbasis for $A$.
The diagonal of $D$ are the eigenvalues for each column of $P$.

## Recall: The Diagonalization Theorem

$$
A \stackrel{\text { difenasisis }}{=P} P P_{\text {eifgevalues }}^{-1}
$$

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:
The columns of $P$ form an eigenbasis for $A$.
The diagonal of $D$ are the eigenvalues for each column of $P$. The matrix $P^{-1}$ is a change of basis to this eigenbasis of $A$.

## The Spectral Theorem

Theorem. If $A$ is symmetric, then it has an orthonormal eigenbasis.
(we won't prove this)
Symmetric matrices are diagonalizable.
But more than that, we can choose $P$ to be orthogonal.

## Recall: Orthonormal Matrices

Definition. A matrix is orthonormal if its columns form an orthonormal set.

The notes call a square orthonormal matrix an orthogonal matrix.

## Recall: Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix $U$ is orthogonal (square orthonormal) then it is invertible and

$$
U^{-1}=U^{T}
$$

Verify:

## Orthogonal Diagonalizability

Definition. A matrix $A$ is orthogonally diagonalizable if there is a diagonal matrix $D$ and matrix $P$ such that

$$
A=P D P^{T}=P D P^{-1}
$$

$P$ must be an orthogonal matrix.

Orthogonal Diagonalizability and Symmetry

Fact. All orthogonally diagonalizable matrices are symmetric.
Verify:

$$
\begin{aligned}
& \text { ify: } \quad \begin{aligned}
A=P D P^{\top} \quad A^{\top} & =\left(P D P^{\top}\right)^{\top} \\
& =P^{\top}\left(P D^{\top}\right)^{\top} \\
& =P^{\top} D^{\top} P^{\top} \\
& =P D P^{\top}=A
\end{aligned}
\end{aligned}
$$

## Orthogonal Diagonalizability and Symmetry

Theorem. A matrix is orthogonally diagonalizable if and only if it is symmetric. (You won't need to construct an orthogonal diagonalization, we'll just use NumPy.)

## Quadratic Forms

## Quadratic Forms

Definition. A quadratic form is an function of variables $x_{1}, \ldots, x_{n}$ in which every term has degree two:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j} x_{i} x_{j}
$$



Quadratic forms are the quadratic versions the left-hand-sides of linear equations.

Examples

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+2 x_{3}^{2}+4 x_{1} x_{3}-2 x_{2} x_{3} \\
& Q(\vec{x})=\vec{x}^{\top} \vec{x}=\langle\vec{x}, \vec{x}\rangle
\end{aligned}
$$

Non. crumples
$Q\left(x_{1}\right)=x_{1}^{3}$
$Q\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{1} x_{2}$


Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented as

$$
\mathbf{x}^{T}\langle\mathbf{A}\langle x, A x\rangle
$$

where $A$ is symmetric.
Example:

$$
\begin{aligned}
3 x_{1}^{2}+7 x_{2}^{2}= & {\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } \\
& {\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
3 x_{1} \\
7 x_{2}
\end{array}\right]=3 x_{1}^{2}+7 x_{2}^{2} }
\end{aligned}
$$

Example: Computing the Quadratic Form for a Matrix

$$
A=\left[\begin{array}{cc}
3 & -2 \\
-2 & 7
\end{array}\right]
$$

This means, given a symmetric matrix $A$, we can compute its corresponding quadratic form:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
3 & -2 \\
-2 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{c}
3 x_{1}-2 x_{2} \\
-2 x_{1}+7 x_{2}
\end{array}\right]} \\
& x_{1}\left(3 x_{1}-2 x_{2}\right)+x_{2}\left(-2 x_{1}+7 x_{2}\right)=3 x_{1}^{2}-4 x_{1} x_{2}+7 x_{2}^{2} \\
& 3 x_{1}^{2}-2 x_{2} x_{1}+(-2) x_{2} x_{1}+7 x_{2}^{2}=3 x_{1}
\end{aligned}
$$

## Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say

$$
\mathbf{x}^{T} A \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

Verify:

## A Slightly more Complicated Example

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & 0 \\
-1 & 0 & 5
\end{array}\right]
$$

Let's expand $\mathbf{x}^{T} A \mathbf{x}$ :

## Matrices from Quadratic Forms

$$
Q(\mathbf{x})=5 x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}-x_{1} x_{2}+8 x_{2} x_{3}
$$

We can also go in the other direction. Let's express this as $\mathbf{x}^{T} A \mathbf{x}$ :

## How To: Matrices of Quadratic Forms

Problem. Given a quadratic form $Q(\mathbf{x})$, find the symmetric matrix $A$ such that $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$.
Solution.
» if $Q(\mathbf{x})$ has the term $\alpha x_{i}^{2}$ then $A_{i i}=\alpha$
» if $Q(\mathbf{x})$ has the term $\alpha_{i} x_{j}$, then $A_{i j}=A_{j i}=\frac{\alpha}{2}$

## Question

$$
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+3 x_{2}^{2}-2 x_{3} x_{4}-6 x_{4}^{2}+7 x_{1} x_{3}
$$

Find the symmetric matrix $A$ such that $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$.

Answer

## Shapes of of Quadratic Forms in $\mathbb{R}^{3}$



There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

## Shapes of of Quadratic Forms in $\mathbb{R}^{3}$



There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

## Definiteness



For $\mathbf{x} \neq \mathbf{0}$, each of the above graphs satisfy the associated properties.

## Definiteness

positive semidefinite

positive definite


For $\mathbf{x} \neq \mathbf{0}$, each of the above graphs satisfy the associated properties.

## Definiteness and Eigenvectors

Theorem. For a symmetric matrix $A$, the quadratic form $\mathbf{x}^{T} A \mathbf{x}$
» positive definite $\quad \equiv$ all positive eigenvalues
» positive semidefinite $\equiv$ all nonnegative eigenvalues
» indefinite $\equiv$ positive and negative eigenvalues
» negative definite $\equiv$ all negative eigenvalues

## Definiteness

all nonneg. eigenvals positive semidefinite

positive definite all pos. eigenvals

$$
{ }^{x_{1}^{\prime}} \Omega(\mathbf{X})>0
$$

all neg. eigenvals negative definite

$Q(\mathbf{x})$ can be $+\&-Q(\mathbf{x})<0$ indefinite pos. and neg. eigenvals

## Positive Definite Case

Let's think why this is for the positive definite case:

## Example

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}+x_{2}^{2}+4 x_{2} x_{3}+x_{3}^{2}
$$

Let's determine which case this is:

## Constrained Optimization

## In General

## In General

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a set of vectors $X$ from $\mathbb{R}^{n}$ the constrained minimization problem for $f$ over $X$ is the problem of determining

$$
\min _{\mathbf{v} \in X} f(\mathbf{v})
$$

## In General

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a set of vectors $X$ from $\mathbb{R}^{n}$ the constrained minimization problem for $f$ over $X$ is the problem of determining

$$
\min _{\mathbf{v} \in X} f(\mathbf{v})
$$

(analogously for maximization)

## In General

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a set of vectors $X$ from $\mathbb{R}^{n}$ the constrained minimization problem for $f$ over $X$ is the problem of determining

$$
\min _{\mathbf{v} \in X} f(\mathbf{v})
$$

(analogously for maximization)
Find the smallest value of $f(\mathbf{v})$ subject to choosing a vector in $X$

## Constrained Optimization for Quadratic Forms and Unit Vectors

## mini/maximize $\mathbf{x}^{T} A \mathbf{x}$ subject to $\|\mathbf{x}\|=1$



It's common to constraint to unit vectors.

## Example: $3 x_{1}^{2}+7 x_{2}^{2}$

What are the min/max values?:


Example: $3 x_{1}^{2}+7 x_{2}^{2}$

The minimum and maximum values are attained when the "weight" of the vector is distributed all on $x_{1}$ or $x_{2}$.


## Example: $3 x_{1}^{2}+7 x_{2}^{2}$

What is the matrix?:


## Constrained Optimization and Eigenvalues

Theorem. For a symmetric matrix $A$, with largest eigenvalue $\lambda_{1}$ and smallest eigenvalue $\lambda_{n}$

$$
\max _{\|\mathbf{x}\|=1} \mathbf{x}^{T} A \mathbf{x}=\lambda_{1} \quad \min _{\|\mathbf{x}\|=1} \mathbf{x}^{T} A \mathbf{x}=\lambda_{n}
$$

No matter the shape of $A$, this will hold.

## How To: Constrained Optimization

## How To: Constrained Optimization

Problem. Find the maximum value of $\mathbf{x}^{T} A \mathbf{x}$ subject to $\|\mathbf{x}\|=1$.

## How To: Constrained Optimization

> Problem. Find the maximum value of $\mathbf{x}^{T} A \mathbf{x}$ subject to $\|\mathbf{x}\|=1$.

Solution. Find the largest eigenvalue of $A$, this will be the maximum value.

## How To: Constrained Optimization

> Problem. Find the maximum value of $\mathbf{x}^{T} A \mathbf{x}$ subject to $\|\mathbf{x}\|=1$.

Solution. Find the largest eigenvalue of $A$, this will be the maximum value.
(Use NumPy)

## Summary

We can build models which are nonlinear functions if those functions are linear in their parameters.

We can solve constrained optimization problems using eigenvalues.

