## Symmetric Matrices Geometric Algorithms Lecture 25

CAS CS 132

## Introduction

## **Objectives**

- 1. Finish up our discussion of linear models (actually define linear models).
- 2. Talk briefly about symmetric matrices and eigenvalues.
- 3. Describe an application to constrained optimization problems.

## Keywords

linear models design matrices general linear regression symmetric matrices the spectral theorem orthogonal diagonalizability quadratic forms definiteness constrained optimization

Recap



https://commons.wikimedia.org/wiki/File:Polyreg\_scheffe.svg



**Regression** is the process of estimating the relationships independent and dependent variables in a dataset.



**Regression** is the process of estimating the relationships independent and dependent variables in a dataset.

What we are estimating is a mathematical function



**Regression** is the process of estimating the relationships independent and dependent variables in a dataset.

What we are estimating is a mathematical function

We think of the environment has providing us a function from our independent variables to our dependent variables.



https://commons.wikimedia.org/wiki/File:Polyreg\_scheffe.svg

# **Recall: How To: Line of Best Fit** $\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

## **Recall: How To: Line of Best Fit** $\begin{vmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{vmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

**Problem.** Find the least squares line for the dataset  $\{(x_1, y_1), \dots, (x_n, y_n)\}$ .



## **Recall: How To: Line of Best Fit** $\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

**Problem.** Find the least squares line for the dataset  $\{(x_1, y_1), \dots, (x_n, y_n)\}$ .

Solution. Find the least squares solution to the above equation.



## 1. What if we have more than one independent value?

1. What if we have more than one independent value?

## multiple regression, (hyper)plane of best fit

- 1. What if we have more than one independent value?
- 2. What if our data is not exactly linear.

## multiple regression, (hyper)plane of best fit

- 1. What if we have more than one independent value?
- 2. What if our data is not exactly linear.
  - e.g., polynomial regression

### multiple regression, (hyper)plane of best fit

## **Recall: Plane of Best Fit**

**Dataset:**  $\{(x_1, y_1, z_1), \dots, (x_k, y_k, z_k)\}$ where  $(x_i, y_i)$  is an longitude and latitude and  $z_i$  is an altitude.

**Problem:** Find  $\beta_0, \beta_1, \beta_2$  such that

$$f(x, y) = \beta_0 + \beta_1 x + \beta_2 y$$

which minimizes

$$\sum_{i=1}^{k} (f(x_i, y_i) - z_i)^2$$

Figure 23.2

### Multiple Regression Fit to Data



## **Recall: Plane of Best Fit**

**Dataset:**  $\{(x_1, y_1, z_1), \dots, (x_k, y_k, z_k)\}$ where  $(x_i, y_i)$  is an longitude and latitude and  $z_i$  is an altitude.

**Problem:** Find  $\beta_0, \beta_1, \beta_2$  such that

$$f(x, y) = \beta_0 + \beta_1 x + \beta_2 y$$

which minimizes

$$\sum_{i=1}^{k} (f(x_i, y_i) - z_i)^2$$

$$f(x, y) \text{ is a good app}$$

Figure 23.2

### Multiple Regression Fit to Data



proximation of the altitude.

## **Recall: Plane of Best Fit**

**Dataset:**  $\{(x_1, y_1, z_1), ..., (x_k, y_k, z_k)\}$ where  $(x_i, y_i)$  is an longitude and latitude and  $z_i$  is an altitude.

**Problem:** Find  $\beta_0, \beta_1, \beta_2$  such that

 $f(x,y) = \beta_0 + \beta_1 x + \beta_2 y$   $= \frac{f(x,y)}{recall: planes are given by linear equations}$   $= \frac{-6}{-8}$ 

$$\sum_{i=1}^{k} (f(x_i, y_i) - z_i)^2$$

$$f(x, y) \text{ is a good app}$$

Figure 23.2

### Multiple Regression Fit to Data



proximation of the altitude.

**Dataset:**  $\{(x_1, y_1), \dots, (x_k, y_k)\}$ **Problem:** Find  $\beta_0, \beta_1, \beta_2$  such that

 $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$ 

minimizes





**Dataset:**  $\{(x_1, y_1), \dots, (x_k, y_k)\}$ **Problem:** Find  $\beta_0, \beta_1, \beta_2$  such that

 $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$ 

minimizes



 $\beta_0 + \beta_1 x_1 + \beta_2 x_1^2 = y_1$  $\beta_0 + \beta_1 x_2 + \beta_2 x_2^2 = y_2$  $\beta_0 + \beta_1 x_k + \beta_2 x_k^2 = y_k$ 

**Step 1:** Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables  $\beta_0, \beta_1, \beta_2$ 

**Dataset:**  $\{(x_1, y_1), \dots, (x_k, y_k)\}$ **Problem:** Find  $\beta_0, \beta_1, \beta_2$  such that

 $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$ 

minimizes



This is still linear in the  $\beta$ 's  $\beta_0 + \beta_1 x_1 + \beta_2 x_1^2 = y_1$  $\beta_0 + \beta_1 x_2 + \beta_2 x_2^2 = y_2$  $\beta_0 + \beta_1 x_k + \beta_2 x_k^2 = y_k$ 

Step 1: Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables  $\beta_0, \beta_1, \beta_2$ 

**Dataset:**  $\{(x_1, y_1), \dots, (x_k, y_k)\}$ **Problem:** Find  $\beta_0, \beta_1, \beta_2$  such that

 $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$ 

minimizes





Step 2: Rewrite the system as a
 matrix equation.

**Dataset:**  $\{(x_1, y_1), \dots, (x_k, y_k)\}$ **Problem:** Find  $\beta_0, \beta_1, \beta_2$  such that

 $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$ 

minimizes



## $\hat{\vec{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$

**Step 3:** Find the least squares solution of this system and use as the parameters of your model.

## **Recap Problem** $\{(0,3), (1,1), (-1,1), (2,3)\}$

Find the matrices X as in the previous example to find the least squares best fix parabola <u>and the</u> <u>least squares best fit cubic</u> for this dataset.



## Design Matrices

## The Takeaway

## We can use non-linear modeling functions as long as they are <u>linear in the parameters</u>.

## Linear in Parameters

**parameters**  $\beta_1, \dots, \beta_k$  if it can be written as

for functions  $\phi_1, ..., \phi_k : \mathbb{R}^n \to \mathbb{R}$ Example:

## **Definition.** A function $f: \mathbb{R}^n \to \mathbb{R}$ is **linear in the**

### $f(\mathbf{x}) = \beta_1 \phi_1(\mathbf{x}) + \beta_2 \phi_2(\mathbf{x}) + \dots + \beta_k \phi_k(\mathbf{x})$



 $\mathbf{y} = X\vec{\beta} + \vec{\epsilon}$ 

So far, we have been considering *inconsistent* systems of the form  $\mathbf{y} = X\vec{\beta}$ .

 $\mathbf{y} = X\vec{\beta} + \vec{\epsilon}$ 

So far, we have been considering inconsistent systems of the form  $\mathbf{y} = X\vec{\beta}$ .

It is also common to make the system consistent by adding error terms (the  $\epsilon$ 's).

 $\mathbf{y} = X\vec{\beta} + \vec{\epsilon}$ 

So far, we have been considering inconsistent systems of the form  $\mathbf{y} = X\vec{\beta}$ .

It is also common to make the system consistent by adding error terms (the  $\epsilon$ 's).

(We won't use this view, this is mostly for your personal betterment, and because the notes use this notation occasionally.)

 $\mathbf{y} = X\vec{\beta} + \vec{\epsilon}$ 

## An Aside: Statistical Models (Another view) $\overset{\text{design matrix}}{\mathbf{y} = \mathbf{X} \vec{\beta} + \vec{\epsilon} }$

So far, we have been considering *inconsistent* systems of the form  $\mathbf{y} = X\vec{\beta}$ .

It is also common to make the system consistent by adding error terms (the  $\epsilon$ 's).

(We won't use this view, this is mostly for your personal betterment, and because the notes use this notation occasionally.)

## The Takeaway (Again)

### We can build <u>design matrices</u> for function which are linear in their parameters.
## Linear (Regression) Model

Definition. A linear model with parameters the parameters  $\beta_1, \ldots, \beta_k$ .

The model fitting problem is the problem of determining which parameters fit the data "best".

## $\beta_1, \dots, \beta_k$ is a function $f : \mathbb{R}^n \to \mathbb{R}$ which is linear in

**dataset:**  $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$  where  $\mathbf{x}_i \in \mathbb{R}^n$  and  $y_i \in \mathbb{R}$ 

**Problem.** Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is linear in the parameters  $\beta_1, ..., \beta_k$ , find values for  $\beta_1, ..., \beta_k$  which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$



https://ordination.okstate.edu/MULTIPLE.htm

**dataset:**  $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$  where  $\mathbf{x}_i \in \mathbb{R}^n$  and  $y_i \in \mathbb{R}$ 

**Problem.** Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is linear in the parameters  $\beta_1, \dots, \beta_k$ , find values for  $\beta_1, \dots, \beta_k$  which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$
  
Build a linear model which mice



#### inimizes the least-squares error.

https://ordination.okstate.edu/MULTIPLE.htm

**dataset:**  $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$  where  $\mathbf{x}_i \in \mathbb{R}^n$  and  $y_i \in \mathbb{R}$ 

**Problem.** Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is *linear* in the parameters  $\beta_1, \dots, \beta_k$ , find values for  $\beta_1, ..., \beta_k$  which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$

 $\beta_1 \phi_1(\mathbf{x}_1) + \ldots + \beta_k \phi_k(\mathbf{x}_1) = y_1$  $\beta_1 \phi_1(\mathbf{x}_2) + \ldots + \beta_k \phi_k(\mathbf{x}_2) = y_2$  $\beta_1 \phi_1(\mathbf{x}_2) + \ldots + \beta_k \phi_k(\mathbf{x}_2) = y_2$ 

**Step 1:** Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables  $\beta_1, ..., \beta_k$ 





#### **General Linear Regression** This is still linear in the $\beta$ 's

**dataset:**  $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$  where  $\mathbf{x}_i \in \mathbb{R}^n$  and  $y_i \in \mathbb{R}$ 

**Problem.** Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is *linear* in the parameters  $\beta_1, \dots, \beta_k$ , find values for  $\beta_1, \ldots, \beta_k$  which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$

 $\beta_1 \phi_1(\mathbf{x}_1) + \ldots + \beta_k \phi_k(\mathbf{x}_1) = y_1$  $\beta_1 \phi_1(\mathbf{x}_2) + \ldots + \beta_k \phi_k(\mathbf{x}_2) = y_2$  $\beta_1 \phi_1(\mathbf{x}_2) + \ldots + \beta_k \phi_k(\mathbf{x}_2) = y_2$ 

**Step 1:** Set up an (almost assuredly inconsistent) system of linear equations in terms of the variables  $\beta_1, ..., \beta_k$ 





**dataset:**  $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$  where  $\mathbf{x}_i \in \mathbb{R}^n$  and  $y_i \in \mathbb{R}$ 

**Problem.** Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is *linear* in the parameters  $\beta_1, \dots, \beta_k$ , find values for  $\beta_1, \ldots, \beta_k$  which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$



Step 2: Rewrite the system as a matrix equation.



**dataset:**  $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$  where  $\mathbf{x}_i \in \mathbb{R}^n$  and  $y_i \in \mathbb{R}$ 

**Problem.** Given a function

$$f_{\beta_1,\ldots,\beta_k}:\mathbb{R}^n\to\mathbb{R}$$

which is linear in the parameters  $\beta_1, ..., \beta_k$ , find values for  $\beta_1, ..., \beta_k$  which minimize

$$\sum_{i=1}^{k} (f_{\beta_1,\ldots,\beta_k}(\mathbf{x}_i) - y_i)^2$$

# $\hat{\vec{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$

**Step 3:** Find the least squares solution of this system and use as the parameters of your model.

### How To: Design Matrices

### How To: Design Matrices

**Problem.** Find the design matrix for least squares regression with the function f in terms of the parameters  $\beta_1, \beta_2, ..., \beta_k$  given the dataset  $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$ .

### How To: Design Matrices

**Problem.** Find the design matrix for least squares regression with the function f in terms of the parameters  $\beta_1, \beta_2, ..., \beta_k$  given the dataset  $\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$ .

**Solution.** First write  $f(\mathbf{x})$  as  $\beta_1\phi_1(\mathbf{x}) + ... + \beta_k\phi(\mathbf{x})$  where  $\phi_1, ..., \phi_k$  are potentially non-linear functions. Then build the matrix:

$$\begin{bmatrix} \phi_1(\mathbf{x}_1) & \phi_2 \\ \phi_1(\mathbf{x}_2) & \phi_2 \\ \vdots \\ \phi_1(\mathbf{x}_m) & \phi_2 \end{bmatrix}$$

 $\begin{array}{ccc} \mathbf{x}_{1} & \dots & \phi_{k}(\mathbf{x}_{1}) \\ \mathbf{x}_{2}(\mathbf{x}_{2}) & \dots & \phi_{k}(\mathbf{x}_{2}) \end{array}$  $(\mathbf{x}_m) \quad \ldots \quad \boldsymbol{\phi}_k(\mathbf{x}_m)$ 

#### Question

#### Find the design matrix for the least squares regression with the function

# $\begin{vmatrix} x_1 \\ x_2 \\ x_2 \\ x_3 \end{vmatrix} \mapsto \beta_1 \cos(x_1) + \beta_2 e^{-x_1 x_2} - \beta_1 x_3 + \beta_3$

for the dataset

 $\mathbf{x}_1 = (0,0,0)$   $y_1 = 5$  $\mathbf{x}_2 = (\pi, 3, 1)$   $y_2 = 3$ 

**Answer:**  $\begin{bmatrix} 1 & 1 & 1 \\ -2 & e^{-3\pi} & 1 \end{bmatrix}$ 



terms.

#### Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible

terms.

We haven't actually talked about which modeling functions to use.

#### Many functions require large design matrices, e.g. multivariate polynomials have a lot of possible

Many functions require large design matrices, e.g. multivariate polynomials have *a lot* of possible terms.

We haven't actually talked about *which* modeling functions to use.

Again, is least-squares error really what we want? What if we want to minimize something else?

Many functions require large design matrices, e.g. multivariate polynomials have *a lot* of possible terms.

We haven't actually talked about *which* modeling functions to use.

Again, is least-squares error really what we want? What if we want to minimize something else? Concerns for another class.

### **One Last Thing**

Read though the extended example in the notes on "Multiple Regression in Practice." It should be useful for Homework 12.

Symmetric Matrices



### **Recall: Symmetric Matrices**

 $A^T = A$ 

Example:

#### **Definition.** A square matrix A is symmetric if

### **Orthogonal Eigenvectors**

**Theorem.** For a symmetric are eigenvectors for *di u* and *v* are orthogonal. Verify:

# **Theorem.** For a symmetric matrix A, if u and v are eigenvectors for *distinct* eigenvalues, then

# **Definition.** A matrix A is **diagonalizable** if it is similar to a diagonal matrix.

is similar to a diagonal matrix.

There is an invertible matrix P and <u>diagonal</u> matrix D such that  $A = PDP^{-1}$ .

# **Definition.** A matrix A is **diagonalizable** if it

is similar to a diagonal matrix.

There is an invertible matrix P and <u>diagonal</u> matrix D such that  $A = PDP^{-1}$ .

Diagonalizable matrices are the same as scaling matrices up to a change of basis.

# **Definition.** A matrix A is **diagonalizable** if it

#### **Recall: The Picture**











|       | _ | - |
|-------|---|---|
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
| <br>- | _ | - |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       |   |   |
|       | L |   |
|       |   |   |



 $A = PDP^{-1}$ 



#### **Theorem.** A is diagonalizable if and only if it has an eigenbasis.

## $A = PDP^{-1}$



**Theorem.** A is diagonalizable if and only if it has an eigenbasis.

The idea:

## $A = PDP^{-1}$



**Theorem.** A is diagonalizable if and only if it has an eigenbasis.

#### The idea:

The columns of P form an <u>eigenbasis</u> for A.

eigenbasis A = PDP-1



- **Theorem.** A is diagonalizable if and only if it has an eigenbasis.
- The idea:
- The columns of P form an <u>eigenbasis</u> for  $A_{\bullet}$
- The diagonal of D are the eigenvalues for each column of P.



**Theorem.** A is diagonalizable if and only if it has an eigenbasis.

#### The idea:

- The columns of P form an <u>eigenbasis</u> for A.
- The diagonal of D are the eigenvalues for each column of  $P_{\bullet}$
- The matrix  $P^{-1}$  is a change of basis to this eigenbasis of A.

### The Spectral Theorem

# **Theorem.** If A is symmetric, then it has an *orthonormal* eigenbasis.

(we won't prove this)

Symmetric matrices are <u>diagonalizable</u>.

But more than that, we can choose *P* to be *orthogonal*.

#### <u>diagonalizable</u>. can choose *P* to be

#### **Recall: Orthonormal Matrices**

**Definition.** A matrix is **orthonormal** if its columns form an orthonormal set.

The notes call a square orthonormal matrix an orthogonal matrix.

#### **Recall: Inverses of Orthogonal Matrices**

## **Theorem.** If an $n \times n$ matrix U is orthogonal

Verify:

- (square orthonormal) then it is invertible and
  - $U^{-1} = U^T$

### **Orthogonal Diagonalizability**

#### **Definition.** A matrix A is orthogonally **diagonalizable** if there is a diagonal matrix D and matrix *P* such that

## $A = PDP^T = PDP^{-1}$

P must be an <u>orthogonal matrix</u>.

Symmetric matrices are orthogonally diagonalizable
### **Orthogonal Diagonalizability and Symmetry**

Fact. All orthogonally
are symmetric.

Verify:

#### Fact. All orthogonally diagonalizable matrices

### **Orthogonal Diagonalizability and Symmetry**

**Theorem.** A matrix is orthogonally diagonalizable if and only if it is symmetric.

(You won't need to construct an orthogonal diagonalization, we'll just use NumPy.)

# Quadratic Forms

#### **Quadratic Forms**

#### Definition. A quadratic form is an function of variables $x_1, \ldots, x_n$ in which every term has degree two:



Quadratic forms are the quadratic versions the left-hand-sides of linear equations.



#### Examples

#### **Quadratic Forms and Symmetric Matrices**

# Fact. Every quadratic form can be represented as

#### where A is <u>symmetric</u>. Example:

 $\mathbf{x}^T A \mathbf{x}$ 

#### **Example: Computing the Quadratic Form for a Matrix**



- $A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$
- This means, given a symmetric matrix A, we can

#### **Quadratic forms and Symmetric Matrices (Again)**

#### Furthermore, we can generally say

Verify:





### A Slightly more Complicated Example

#### Let's expand $\mathbf{x}^T A \mathbf{x}$ :

 $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 0 \\ -1 & 0 & 5 \end{bmatrix}$ 

#### **Matrices from Quadratic Forms**

#### $Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$

# We can also go in the other direction. Let's express this as $\mathbf{x}^T A \mathbf{x}$ :

#### How To: Matrices of Quadratic Forms

symmetric matrix A such that  $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ . Solution.

» if  $Q(\mathbf{x})$  has the term

» if  $Q(\mathbf{x})$  has the term

# **Problem.** Given a quadratic form $Q(\mathbf{x})$ , find the

$$\alpha x_i^2$$
 then  $A_{ii} = \alpha$   
 $\alpha x_i x_j$ , then  $A_{ij} = A_{ji} = \frac{\alpha}{2}$ 

#### Question

#### Find the symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ .

 $Q(x_1, x_2, x_3, x_4) = x_1^2 + 3x_2^2 - 2x_3x_4 - 6x_4^2 + 7x_1x_3$ 



#### **Shapes of of Quadratic Forms in** $\mathbb{R}^3$



There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

Linear Algebra and its Applications, Lay, Lay, McDonald



### **Shapes of of Quadratic Forms in** $\mathbb{R}^3$



# you include the negations).

Can we determine what shape it will be mathematically?

There are essentially three possible shapes (six if

Linear Algebra and its Applications, Lay, Lay, McDonald



#### Definiteness



For  $x \neq 0$ , each of the a associated properties.

#### For $x \neq 0$ , each of the above graphs satisfy the

#### Definiteness



associated properties.

#### For $x \neq 0$ , each of the above graphs satisfy the

#### $Q(\mathbf{x})$ can be + & - $Q(\mathbf{x}) < 0$ indefinite



#### **Definiteness and Eigenvectors**

- **Theorem.** For a symmetric matrix A, the quadratic form  $\mathbf{x}^T A \mathbf{x}$
- » positive definite  $\equiv$  all positive eigenvalues
- » **positive semidefinite**  $\equiv$  all <u>nonnegative</u> eigenvalues
- » indefinite  $\equiv$  positive and negative eigenvalues
- » **negative definite**  $\equiv$  all <u>negative</u> eigenvalues

#### Definiteness



all pos. eigenvals

#### **Positive Definite Case**

#### Let's think why this is for the positive definite case:

# Example

Let's determine which case this is:

 $Q(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 4x_2x_3 + x_3^2$ 

# **Constrained Optimization**

#### Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from $\mathbb{R}^n$ the constrained minimization problem for fover X is the problem of determining

 $minf(\mathbf{v})$  $\mathbf{v} \in X$ 

#### Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from $\mathbb{R}^n$ the constrained minimization problem for fover X is the problem of determining

(analogously for maximization)

 $\min f(\mathbf{v})$  $\mathbf{v} \in X$ 

#### Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from $\mathbb{R}^n$ the constrained minimization problem for fover X is the problem of determining

(analogously for maximization) Find the smallest value of  $f(\mathbf{v})$  subject to choosing a vector in X

 $\min f(\mathbf{v})$ v  $\in X$ 



## **Constrained Optimization for Quadratic Forms and Unit Vectors** mini/maximize $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$





**Example:**  $3x_1^2 + 7x_2^2$ 

What are the min/max values?:



Z

### **Example:** $3x_1^2 + 7x_2^2$

The minimum and maximum values are attained when the "weight" of the vector is distributed all on  $x_1$  or  $x_2$ .



**Example:**  $3x_1^2 + 7x_2^2$ 

What is the matrix?:



#### **Constrained Optimization and Eigenvalues**

# eigenvalue $\lambda_1$ and smallest eigenvalue $\lambda_n$

 $\max \mathbf{x}^T A \mathbf{x} = \lambda_1$  $\|\mathbf{x}\| = 1$ 

No matter the shape of A, this will hold.

**Theorem.** For a symmetric matrix A, with largest

$$\min_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x} = \lambda_n$$

**Problem.** Find the maximum to  $\|\mathbf{x}\| = 1$ .

#### **Problem.** Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject

to ||x|| = 1.

**Solution.** Find the largest eigenvalue of A, this will be the maximum value.

#### **Problem.** Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject

to  $||\mathbf{x}|| = 1$ .

**Solution.** Find the largest eigenvalue of A, this will be the maximum value.

(Use NumPy)

#### **Problem.** Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject

#### Summary

#### We can build models which are <u>nonlinear</u> functions if those functions are linear in their parameters.

We can solve constrained optimization problems using <u>eigenvalues</u>.