
CAS CS 132

Symmetric Matrices
Geometric Algorithms 
Lecture 25



Introduction



Objectives

1. Finish up our discussion of linear models 
(actually define linear models). 

2. Talk briefly about symmetric matrices and 
eigenvalues. 

3. Describe an application to constrained 
optimization problems.
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Recall: General Regression

Regression is the process of 
estimating the relationships 
independent and dependent 
variables in a dataset.

What we are estimating is a 
mathematical function

We think of the environment 
has providing us a function 
from our independent variables 
to our dependent variables.

https://commons.wikimedia.org/wiki/File:Polyreg_scheffe.svg
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Recall: How To: Line of Best Fit

Problem. Find the least squares line for the 
dataset .{(x1, y1), …, (xn, yn)}
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Recall: How To: Line of Best Fit

Problem. Find the least squares line for the 
dataset .{(x1, y1), …, (xn, yn)}

Solution. Find the least squares solution to 
the above equation.
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1 x2
⋮ ⋮
1 xn

[β0

β1] =

y1
y2
⋮
yn
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Recall: "Vectors" of Generalization

1. What if we have more than one independent 
value?

2. What if our data is not exactly linear.

multiple regression, (hyper)plane of best fit

e.g., polynomial regression



Recall: Plane of Best Fit

Dataset:  
where  is an longitude and 
latitude and  is an altitude. 

Problem: Find  such that 

 

which minimizes 

{(x1, y1, z1), …, (xk, yk, zk)}
(xi, yi)

zi

β0, β1, β2

f(x, y) = β0 + β1x + β2y

k

∑
i=1

( f(xi, yi) − zi)2
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Recall: Plane of Best Fit

Dataset:  
where  is an longitude and 
latitude and  is an altitude. 

Problem: Find  such that 

 

which minimizes 

{(x1, y1, z1), …, (xk, yk, zk)}
(xi, yi)

zi

β0, β1, β2

f(x, y) = β0 + β1x + β2y

k

∑
i=1

( f(xi, yi) − zi)2

 is a good approximation of the altitude.f(x, y)

recall: planes are given by linear equations



Recall: Parabola of Best Fit

Dataset:  

Problem: Find  such 
that 
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Recall: Parabola of Best Fit

Dataset:  

Problem: Find  such 
that 

 

minimizes 

{(x1, y1), …, (xk, yk)}

β0, β1, β2

f(x) = β0 + β1x + β2x2

k

∑
i=1

( f(xi) − yi)2 Step 1: Set up an (almost 
assuredly inconsistent) system 
of linear equations in terms of 

the variables  β0, β1, β2

β0 + β1x1 + β2x2
1 = y1

β0 + β1x2 + β2x2
2 = y2

⋮
β0 + β1xk + β2x2

k = yk
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Dataset:  

Problem: Find  such 
that 

 

minimizes 

{(x1, y1), …, (xk, yk)}

β0, β1, β2

f(x) = β0 + β1x + β2x2

k

∑
i=1

( f(xi) − yi)2 Step 1: Set up an (almost 
assuredly inconsistent) system 
of linear equations in terms of 

the variables  β0, β1, β2

β0 + β1x1 + β2x2
1 = y1

β0 + β1x2 + β2x2
2 = y2

⋮
β0 + β1xk + β2x2

k = yk

This is still linear in the 'sβ



Recall: Parabola of Best Fit

Dataset:  

Problem: Find  such 
that 

 

minimizes 

{(x1, y1), …, (xk, yk)}

β0, β1, β2

f(x) = β0 + β1x + β2x2

k

∑
i=1

( f(xi) − yi)2

1 x1 x2
1

1 x2 x2
2

⋮ ⋮ ⋮
1 xk x2

k

β0

β1

β2

=

y1
y2
⋮
yk

Step 2: Rewrite the system as a 
matrix equation.

X ⃗β y



Recall: Parabola of Best Fit

Dataset:  

Problem: Find  such 
that 

 

minimizes 

{(x1, y1), …, (xk, yk)}

β0, β1, β2

f(x) = β0 + β1x + β2x2

k

∑
i=1

( f(xi) − yi)2

̂ ⃗β = (XTX)−1XTy
Step 3: Find the least squares 
solution of this system and use 
as the parameters of your model.



Recap Problem

Find the matrices  as in the previous example to 
find the least squares best fix parabola and the 
least squares best fit cubic for this dataset.

X

{(0,3), (1,1), (−1,1), (2,3)}



Answer



Design Matrices



The Takeaway

We can use non-linear modeling functions as 
long as they are linear in the parameters.



Linear in Parameters

Definition. A function  is linear in the 
parameters  if it can be written as 

 

for functions  

Example:

f : ℝn → ℝ
β1, …, βk

f(x) = β1ϕ1(x) + β2ϕ2(x) + … + βkϕk(x)

ϕ1, …, ϕk : ℝn → ℝ



An Aside: Statistical Models (Another view)
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adding error terms (the 's).ϵ

(We won't use this view, this is mostly for your 
personal betterment, and because the notes use this 
notation occasionally.)

y = X ⃗β + ⃗ϵ



An Aside: Statistical Models (Another view)

So far, we have been considering inconsistent 
systems of the form .y = X ⃗β

It is also common to make the system consistent by 
adding error terms (the 's).ϵ

(We won't use this view, this is mostly for your 
personal betterment, and because the notes use this 
notation occasionally.)

y = X ⃗β + ⃗ϵ
design matrix



The Takeaway (Again)

We can build design matrices for function 
which are linear in their parameters.



Linear (Regression) Model

Definition. A linear model with parameters 
 is a function  which is linear in 

the parameters . 

The model fitting problem is the problem of 
determining which parameters fit the data 
"best".

β1, …, βk f : ℝn → ℝ
β1, …, βk



General Linear Regression

dataset:  where 
 and  

Problem. Given a function  

 

which is linear in the 
parameters , find values 
for  which minimize 

 

{(x1, y1), …, (xm, ym)}
xi ∈ ℝn yi ∈ ℝ

fβ1,…,βk
: ℝn → ℝ

β1, …βk
β1, …, βk

k

∑
i=1

( fβ1,…,βk
(xi) − yi)2
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General Linear Regression

dataset:  where 
 and  

Problem. Given a function  

 

which is linear in the 
parameters , find values 
for  which minimize 

 

{(x1, y1), …, (xm, ym)}
xi ∈ ℝn yi ∈ ℝ

fβ1,…,βk
: ℝn → ℝ

β1, …βk
β1, …, βk

k

∑
i=1

( fβ1,…,βk
(xi) − yi)2

https://ordination.okstate.edu/MULTIPLE.htm

Build a linear model which minimizes the least-squares error.



General Linear Regression

dataset:  where 
 and  

Problem. Given a function  
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assuredly inconsistent) system 
of linear equations in terms of 

the variables  β1, …, βk
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General Linear Regression

dataset:  where 
 and  

Problem. Given a function  

 

which is linear in the 
parameters , find values 
for  which minimize 

 

{(x1, y1), …, (xm, ym)}
xi ∈ ℝn yi ∈ ℝ

fβ1,…,βk
: ℝn → ℝ

β1, …βk
β1, …, βk

k

∑
i=1

( fβ1,…,βk
(xi) − yi)2

ϕ1(x1) ϕ2(x1) … ϕk(x1)
ϕ1(x2) ϕ2(x2) … ϕk(x2)

⋮ ⋮ ⋱ ⋮
ϕ1(xm) ϕ2(xm) … ϕk(xm)

β1

β2

⋮ βk

=

y1
y2
⋮
yk

Step 2: Rewrite the system as a 
matrix equation.

X ⃗β y
design matrix



General Linear Regression

dataset:  where 
 and  

Problem. Given a function  

 

which is linear in the 
parameters , find values 
for  which minimize 

 

{(x1, y1), …, (xm, ym)}
xi ∈ ℝn yi ∈ ℝ

fβ1,…,βk
: ℝn → ℝ

β1, …βk
β1, …, βk

k

∑
i=1

( fβ1,…,βk
(xi) − yi)2

̂ ⃗β = (XTX)−1XTy
Step 3: Find the least squares 
solution of this system and use 
as the parameters of your model.
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How To: Design Matrices

Problem. Find the design matrix for least squares regression 
with the function  in terms of the parameters  given 
the dataset .

f β1, β2, …, βk
{(x1, y1), …, (xm, ym)}



How To: Design Matrices

Problem. Find the design matrix for least squares regression 
with the function  in terms of the parameters  given 
the dataset .

f β1, β2, …, βk
{(x1, y1), …, (xm, ym)}

Solution. First write  as  where  are 
potentially non-linear functions. Then build the matrix:

f(x) β1ϕ1(x) + … + βkϕ(x) ϕ1, …, ϕk

ϕ1(x1) ϕ2(x1) … ϕk(x1)
ϕ1(x2) ϕ2(x2) … ϕk(x2)

⋮ ⋮ ⋱ ⋮
ϕ1(xm) ϕ2(xm) … ϕk(xm)



Question

Find the design matrix for the least squares 
regression with the function 

  

for the dataset 

 

x1
x2
x3

↦ β1 cos(x1) + β2e−x1x2 − β1x3 + β3

x1 = (0,0,0) y1 = 5
x2 = (π,3,1) y2 = 3



Answer: [ 1 1 1
−2 e−3π 1]
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Practical Considerations

Many functions require large design matrices, e.g. 
multivariate polynomials have a lot of possible 
terms.

We haven't actually talked about which modeling 
functions to use.

Again, is least-squares error really what we want? 
What if we want to minimize something else?

Concerns for another class.



One Last Thing

Read though the extended example in the notes 
on "Multiple Regression in Practice." 

It should be useful for Homework 12.



Symmetric Matrices



Recall: Symmetric Matrices

Definition. A square matrix  is symmetric if 
. 

Example:

A
AT = A



Orthogonal Eigenvectors

Theorem. For a symmetric matrix , if  and  
are eigenvectors for distinct eigenvalues, then 
 and  are orthogonal. 

Verify:

A u v

u v
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Recall: Diagonalizable Matrices

Definition. A matrix  is diagonalizable if it 
is similar to a diagonal matrix.

A

There is an invertible matrix  and diagonal 
matrix  such that .

P
D A = PDP−1

Diagonalizable matrices are the same as scaling 
matrices up to a change of basis.



Recall: The Picture

b1 = (−1,1)
b2 = (0,1)

(−1,2)
b1 + b2

λ = 1

λ = 2

b1 = (−1,1)

2b2 = (0,2)

b1 + 2b2λ = 1

λ = 2

A = PDP−1

[ 2 0
−1 1] = [−1 0

1 1] [1 0
0 2] [−1 0

1 1]
−1

PP−1

D



Recall: The Diagonalization Theorem

A = PDP−1
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eigenbasis.
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The idea:

A = PDP−1



Recall: The Diagonalization Theorem
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Theorem.  is diagonalizable if and only if it has an 
eigenbasis.
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The idea:

The columns of  form an eigenbasis for .P A
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Recall: The Diagonalization Theorem

Theorem.  is diagonalizable if and only if it has an 
eigenbasis.

A

The idea:

The columns of  form an eigenbasis for .P A

The diagonal of  are the eigenvalues for each column of .D P

The matrix  is a change of basis to this eigenbasis of .P−1 A

A = PDP−1eigenbasis

eigenvalues



The Spectral Theorem

Theorem. If  is symmetric, then it has an 
orthonormal eigenbasis. 
(we won't prove this) 

Symmetric matrices are diagonalizable. 

But more than that, we can choose  to be 
orthogonal.

A

P



Recall: Orthonormal Matrices

Definition. A matrix is orthonormal if its 
columns form an orthonormal set. 

The notes call a square orthonormal matrix an 
orthogonal matrix.



Recall: Inverses of Orthogonal Matrices

Theorem. If an  matrix  is orthogonal 
(square orthonormal) then it is invertible and 

 
Verify:

n × n U

U−1 = UT



Orthogonal Diagonalizability

Definition. A matrix  is orthogonally 
diagonalizable if there is a diagonal matrix  
and matrix  such that 

 
 must be an orthogonal matrix.

A
D

P

A = PDPT = PDP−1

P
Symmetric matrices are 

orthogonally diagonalizable



Orthogonal Diagonalizability and Symmetry

Fact. All orthogonally diagonalizable matrices 
are symmetric. 

Verify:



Orthogonal Diagonalizability and Symmetry

Theorem. A matrix is orthogonally 
diagonalizable if and only if it is symmetric. 

(You won't need to construct an orthogonal 
diagonalization, we'll just use NumPy.) 



Quadratic Forms



Quadratic Forms

Definition. A quadratic form is an function of 
variables  in which every term has degree two: 

 

Quadratic forms are the quadratic versions the 
left-hand-sides of linear equations.

x1, …, xn

n

∑
i=1

n

∑
j=1

αijxixj



Examples



Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented 
as 

 
where  is symmetric. 

Example:

xT Ax
A



Example: Computing the Quadratic Form for a Matrix

This means, given a symmetric matrix , we can 
compute its corresponding quadratic form: 

A

A = [ 3 −2
−2 7 ]



Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say 

 

Verify:

xT Ax =
n

∑
i=1

n

∑
j=1

Aijxixj



A Slightly more Complicated Example

Let's expand :xT Ax

A = [
1 2 −1
2 3 0

−1 0 5 ]



Matrices from Quadratic Forms

We can also go in the other direction. Let's 
express this as :xT Ax

Q(x) = 5x2
1 + 3x2

2 + 2x2
3 − x1x2 + 8x2x3



How To: Matrices of Quadratic Forms

Problem. Given a quadratic form , find the 
symmetric matrix  such that . 

Solution. 

» if  has the term  then  

» if  has the term , then 

Q(x)
A Q(x) = xT Ax

Q(x) αx2
i Aii = α

Q(x) αxixj Aij = Aji =
α
2



Question

Find the symmetric matrix  such that .A Q(x) = xT Ax

Q(x1, x2, x3, x4) = x2
1 + 3x2

2 − 2x3x4 − 6x2
4 + 7x1x3



Answer



Shapes of of Quadratic Forms in ℝ3

There are essentially three possible shapes (six if 
you include the negations). 

Can we determine what shape it will be 
mathematically?

cup valley saddle

Linear Algebra and its Applications, Lay, Lay, McDonald



Shapes of of Quadratic Forms in ℝ3

There are essentially three possible shapes (six if 
you include the negations). 

Can we determine what shape it will be 
mathematically?

Linear Algebra and its Applications, Lay, Lay, McDonald



Definiteness

For , each of the above graphs satisfy the 
associated properties.

x ≠ 0

Q(x) > 0 Q(x) ≥ 0  can be + & -Q(x) Q(x) < 0



Definiteness

For , each of the above graphs satisfy the 
associated properties.

x ≠ 0

Q(x) > 0 Q(x) ≥ 0  can be + & -Q(x) Q(x) < 0
positive definite

positive semidefinite

indefinite

negative definite



Definiteness and Eigenvectors

Theorem. For a symmetric matrix , the 
quadratic form  
» positive definite      all positive eigenvalues 

» positive semidefinite  all nonnegative eigenvalues 

» indefinite             positive and negative eigenvalues 

» negative definite      all negative eigenvalues

A
xT Ax

≡

≡

≡

≡



Definiteness

Q(x) > 0 Q(x) ≥ 0  can be + & -Q(x) Q(x) < 0
positive definite

positive semidefinite

indefinite

negative definite

all pos. eigenvals

all nonneg. eigenvals

pos. and neg. eigenvals

all neg. eigenvals



Positive Definite Case
Let's think why this is for the positive definite case:



Example

Let's determine which case this is:

Q(x1, x2, x3) = 3x2
1 + x2

2 + 4x2x3 + x2
3



Constrained Optimization



In General



In General

Given a function  and a set of vectors  
from  the constrained minimization problem for  
over  is the problem of determining

f : ℝn → ℝ X
ℝn f
X

min
v∈X

f(v)
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In General

Given a function  and a set of vectors  
from  the constrained minimization problem for  
over  is the problem of determining

f : ℝn → ℝ X
ℝn f
X

min
v∈X

f(v)

(analogously for maximization)

Find the smallest value of  subject to choosing a 
vector in 

f(v)
X



Constrained Optimization for Quadratic Forms and Unit Vectors

It's common to constraint 
to unit vectors.

mini/maximize  subject to xT Ax ∥x∥ = 1



Example: 3x2
1 + 7x2

2

What are the min/max 
values?:



Example: 3x2
1 + 7x2

2

The minimum and 
maximum values are 
attained when the 
"weight" of the 
vector is distributed 
all on  or .x1 x2

x1



Example: 3x2
1 + 7x2

2

What is the matrix?:

x1



Constrained Optimization and Eigenvalues

Theorem. For a symmetric matrix , with largest 
eigenvalue  and smallest eigenvalue  

 

No matter the shape of , this will hold.

A
λ1 λn

max
∥x∥=1

xT Ax = λ1 min
∥x∥=1

xT Ax = λn

A



How To: Constrained Optimization



How To: Constrained Optimization

Problem. Find the maximum value of  subject 
to .

xT Ax
∥x∥ = 1



How To: Constrained Optimization

Problem. Find the maximum value of  subject 
to .

xT Ax
∥x∥ = 1

Solution. Find the largest eigenvalue of , 
this will be the maximum value.

A



How To: Constrained Optimization

Problem. Find the maximum value of  subject 
to .

xT Ax
∥x∥ = 1

Solution. Find the largest eigenvalue of , 
this will be the maximum value.

A

(Use NumPy)



Summary

We can build models which are nonlinear 
functions if those functions are linear in 
their parameters. 

We can solve constrained optimization problems 
using eigenvalues.


