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Introduction



Recap Problem (+ Course Evaluations)

Find an orthogonal diagonalization of .[1 3
3 1]

https://www.bu.edu/courseeval 



Answer



Objectives

1. Finish up our discussion of quadratic forms. 

2. Introduce the singular value decomposition 
(probably the most important matrix 
decomposition for computer science). 

3. Talk very briefly about what to do after 
this course if you want (or have to) to see 
more linear algebra.



Quadratic Forms (Finishing Up)



Quadratic Forms

Definition. A quadratic form is an function of 
variables  in which every term has degree two. 

Examples:

x1, …, xn



Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented 
as 

 
where  is symmetric. 

Example:

xT Ax
A



Example: Computing the Quadratic Form for a Matrix

This means, given a symmetric matrix , we can 
compute its corresponding quadratic form: 

A

A = [ 3 −2
−2 7 ]



Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say 

 

Verify:

xT Ax =
n

∑
i=1

n

∑
j=1

Aijxixj =
n

∑
i=1

Aiix2
i + ∑

i≠j
(Aij + Aji)xixj



A Slightly more Complicated Example

Let's expand :xT Ax

A = [
1 2 −1
2 3 0

−1 0 5 ]



Matrices from Quadratic Forms

We can also go in the other direction. Let's 
express this as :xT Ax

Q(x) = 5x2
1 + 3x2

2 + 2x2
3 − x1x2 + 8x2x3



How To: Matrices of Quadratic Forms

Problem. Given a quadratic form , find the 
symmetric matrix  such that . 

Solution. 

» if  has the term  then  

» if  has the term , then 

Q(x)
A Q(x) = xT Ax

Q(x) αx2
i Aii = α

Q(x) αxixj Aij = Aji = α
2



Example

Find the symmetric matrix  such that .A Q(x) = xT Ax

Q(x1, x2, x3, x4) = x2
1 + 3x2

2 − 2x3x4 − 6x2
4 + 7x1x3



Shapes of of Quadratic Forms

There are essentially three possible shapes (six if 
you include the negations). 

Can we determine what shape it will be 
mathematically?

cup valley saddle

Linear Algebra and its Applications, Lay, Lay, McDonald
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Definiteness

For , each of the above graphs satisfy the 
associated properties.

x ≠ 0

Q(x) > 0 Q(x) ≥ 0  can be + & -Q(x) Q(x) < 0



Definiteness

For , each of the above graphs satisfy the 
associated properties.

x ≠ 0

Q(x) > 0 Q(x) ≥ 0  can be + & -Q(x) Q(x) < 0
positive definite

positive semidefinite

indefinite

negative definite



Definiteness and Eigenvectors

Theorem. For a symmetric matrix , the 
quadratic form  
» positive definite      all positive eigenvalues 

» positive semidefinite  all nonnegative eigenvalues 

» indefinite             positive and negative eigenvalues 

» negative definite      all negative eigenvalues

A
xT Ax

≡

≡

≡

≡



Definiteness

Q(x) > 0 Q(x) ≥ 0  can be + & -Q(x) Q(x) < 0
positive definite

positive semidefinite

indefinite

negative definite

all pos. eigenvals

all nonneg. eigenvals

pos. and neg. eigenvals

all neg. eigenvals



Example

Let's determine which case this is:

Q(x1, x2, x3) = 3x2
1 + x2

2 + 4x2x3 + x2
3



Constrained Optimization



In General



In General

Given a function  and a set of vectors  
from  the constrained minimization problem for  
over  is the problem of determining

f : ℝn → ℝ X
ℝn f
X

min
v∈X

f(v)
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In General

Given a function  and a set of vectors  
from  the constrained minimization problem for  
over  is the problem of determining

f : ℝn → ℝ X
ℝn f
X

min
v∈X

f(v)

(analogously for maximization)

Find the smallest value of  subject to choosing a 
vector in 

f(v)
X



Constrained Optimization for Quadratic Forms and Unit Vectors

It's common to constraint 
to unit vectors.

mini/maximize  subject to xT Ax ∥x∥ = 1



Example: 3x2
1 + 7x2

2

What are the min/max 
values?:



Example: 3x2
1 + 7x2

2

The minimum and 
maximum values are 
attained when the 
"weight" of the 
vector is distributed 
all on  or .x1 x2

x1



Example: 3x2
1 + 7x2

2

What is the matrix?:

x1



Constrained Optimization and Eigenvalues

Theorem. For a symmetric matrix , with largest 
eigenvalue  and smallest eigenvalue  

 

No matter the shape of , this will hold.

A
λ1 λn

max
∥x∥=1

xT Ax = λ1 min
∥x∥=1

xT Ax = λn

A



How To: Constrained Optimization



How To: Constrained Optimization

Problem. Find the maximum value of  subject 
to .

xT Ax
∥x∥ = 1



How To: Constrained Optimization

Problem. Find the maximum value of  subject 
to .

xT Ax
∥x∥ = 1

Solution. Find the largest eigenvalue of , 
this will be the maximum value.

A



How To: Constrained Optimization

Problem. Find the maximum value of  subject 
to .

xT Ax
∥x∥ = 1

Solution. Find the largest eigenvalue of , 
this will be the maximum value.

A

(Use NumPy)



Singular Value Decomposition



Question

What shape is a the unit sphere after a linear 
transformation?

???



Ellipsoids

Ellipsoids are spheres 
"stretched" in orthogonal 
directions called the 
axes of symmetry or the 
principle axes. 

Linear transformations maps 
spheres to ellipsoids.

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg



Simple Example : Scaling Matrices

A = [2 0
0 −1]

e1 2e1

e2

−e2



The Picture



The Picture

who get mapped here?



The Picture

∥x∥ = 1

∥Ax∥ = max
∥y∥=1

∥Ay∥

The longest end of the ellipse is the solution to 
a constrained optimization problem 



The Picture

∥Ax∥ = max
∥y∥=1

∥Ay∥

This is not a quadratic form...



The Picture

∥Ax∥ = max
∥y∥=1

∥Ay∥

This is not a quadratic form...

22

But this is.



A Quadratic Form

What does  look like?:∥Ax∥2



The Picture

∥Av1∥ = λ1

 solves the constrained optimization problem. v1

The largest 
eigenvector of AT A

v1

AT Av1 = λ1v1



The "Influence" of A

 is "most affected" by  and  is "least affected"v1 A v2

v1v2

Av1
Av2



Properties of AT A



Properties of AT A

» It's symmetric.
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Properties of AT A

» It's symmetric.

» So its orthogonally diagonalizable.

» There is an orthogonal basis of eigenvectors.

» It's eigenvalues are nonnegative.

» It's positive semidefinite.



Singular Values

Definition. For an  matrix , the singular 
values of  are the  values 

 

where  and  is an eigenvalue of .

m × n A
A n

σ1 ≥ σ2… ≥ σn ≥ 0

σi = λi λi AT A



Another picture

∥Av1∥ = λ1 = σ1

∥Av2∥ = λ2 = σ2

∥Av3∥ = λ3 = σ3

The singular values are the lengths of 
the axes of symmetry of the ellipsoid 
after transforming the unit sphere.

 are the 
eigenvectors of  

v1, v2, v3
AT A

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg



Every  matrix transforms the 
unit -sphere into an -ellipsoid.

m × n
m n



So every  matrix has 
 singular values.

m × n
n



What else can we say?

Let  be an orthogonal eigenbasis of  
for  and suppose  has  nonzero singular 
values. 

Theorem.  is an orthogonal basis of 
.

v1, …, vn ℝn

AT A A r

Av1, …, Avr
*+,(A)



What else can we say?

Let  be an orthogonal eigenbasis of  
for  and suppose  has  nonzero singular 
values. 

Theorem.  is an orthogonal basis of 
.

v1, …, vn ℝn

AT A A r

Av1, …, Avr
*+,(A)

This is the most important theorem for SVD.



Verifying it

Let's show  are linearly independent:Av1, …, Avr



Verifying it

Let's show  span :Av1, …, Avr *+,(A)



v1v2

Av1
Av2Putting it all together



v1v2

Av1
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Let  be an  matrix of rank .A m × n r
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v1v2

Av1
Av2Putting it all together

Let  be an  matrix of rank .A m × n r

What we know:

» We can find orthonormal vectors  in  such that 
 in  form an orthogonal basis for .

v1, …, vr ℝn

Av1, …, Avr ℝm *+,(A)



v1v2

Av1
Av2Putting it all together

Let  be an  matrix of rank .A m × n r

What we know:

» We can find orthonormal vectors  in  such that 
 in  form an orthogonal basis for .

v1, …, vr ℝn

Av1, …, Avr ℝm *+,(A)

» So if we take , we get an orthonormal basis of ui = Avi

∥Avi∥
*+,(A)



v1v2

Av1
Av2Putting it all together

Let  be an  matrix of rank .A m × n r

What we know:

» We can find orthonormal vectors  in  such that 
 in  form an orthogonal basis for .

v1, …, vr ℝn

Av1, …, Avr ℝm *+,(A)

» So if we take , we get an orthonormal basis of ui = Avi

∥Avi∥
*+,(A)

» And we can extend this to  an orthonormal basis of 
 (via Gram-Schmidt).

u1, …, um
ℝm



High Level View of the Decomposition

VT

VT

recall: Orthogonal 
matrices preserves 
lengths and angles

https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg



The Important Equality

Avi = ∥Avi∥ui = σiui

ui = Avi

∥Avi∥



The Important Equality

Remember that  is the singular value, 
which is the length .

σi = λi
∥Avi∥

Avi = ∥Avi∥ui = σiui

ui = Avi

∥Avi∥



The Important Equality

Remember that  is the singular value, 
which is the length .

σi = λi
∥Avi∥

What happens when we write this in matrix form?

Avi = ∥Avi∥ui = σiui

ui = Avi

∥Avi∥



The Important Equality

Remember that  is the singular value, 
which is the length .

σi = λi
∥Avi∥

A[v1 … vn] = [σ1u1 …σnun]
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Remember that  is the singular value, 
which is the length .

σi = λi
∥Avi∥
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Let's take  and  andV = [v1 … vn] U = [u1 … um]

 or  or Σ =

σ1 … 0
⋮ ⋱ ⋮
0 … σn
0 … 0
⋮ ⋱ ⋮
0 … 0

Σ =
σ1 … 0 0 … 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 … σm 0 … 0
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σ1 … 0
⋮ ⋱ ⋮
0 … σn

The Important Equality

Remember that  is the singular value, 
which is the length .

σi = λi
∥Avi∥

A[v1 … vn] = [σ1u1 …σnun]

m > n
m < n m = n
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The Important Equality

A = UΣVT
singular value decomposition

Remember that  is the singular value, 
which is the length .

σi = λi
∥Avi∥

Let's take  and  and 

 or  or 

V = [v1 … vn] U = [u1 … um]

Σ =

σ1 … 0
⋮ ⋱ ⋮
0 … σn
0 … 0
⋮ ⋱ ⋮
0 … 0

Σ =
σ1 … 0 0 … 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 … σm 0 … 0

Σ =
σ1 … 0
⋮ ⋱ ⋮
0 … σn

remember:  is orthonormalUm > n
m < n m = n



Singular Value Decomposition

Theorem. For a  matrix , there are 
orthogonal matrices  and  such 
that  

 
where diagonal entries  of  are  the 
singular values of .

m × n A
U ∈ ℝm×m V ∈ ℝn×n

A = U Σ VT

* Σ σ1, …, σn
A

m × m

m × n

n × n

 these are diagonal entries in a non-square matrix.*



Singular Value Decomposition

Theorem. For a  matrix , there are 
orthogonal matrices  and  such 
that  

 
where diagonal entries  of  are  the 
singular values of .

m × n A
U ∈ ℝm×m V ∈ ℝn×n

A = U Σ VT

* Σ σ1, …, σn
A

m × m

m × n

n × n

 these are diagonal entries in a non-square matrix.*

left singular vectors right singular vectors



The Picture (Again)

VT

VT

recall: Orthonormal 
matrices preserves 
lengths and angles

https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg



What's next? 
A couple final thoughts



Applications of SVD image compression

document 
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• Replacing small singular values with zero 
in  gives a good approximation to .Σ A

• This is used for image compression

• Principle Component Analysis

• Large singular vectors are "most 
affected."

image compression

document 
classification



Applications of SVD
• Reduced SVD, pseudoinverses and least 
squares

• If , then  is a least 
squares solution of minimum length

A+ = VΣ−1UT A+b

• Low Rank Approximation and Data Compression

• Replacing small singular values with zero 
in  gives a good approximation to .Σ A

• This is used for image compression

• Principle Component Analysis

• Large singular vectors are "most 
affected."

• These are good vectors to look at for 
classifying data

image compression

document 
classification



Neural Networks (Non-Linearity)

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
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Neural Networks (Non-Linearity)
Neural networks are models of 
artificial neurons bundles.
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Neural Networks (Non-Linearity)
Neural networks are models of 
artificial neurons bundles.

Given an input vector , it is 
transformed into a hidden  vector 
 by a linear transformation, and 

then an activation function  is 
applied to the result.

x

Ax
f
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Neural Networks (Non-Linearity)
Neural networks are models of 
artificial neurons bundles.

Given an input vector , it is 
transformed into a hidden  vector 
 by a linear transformation, and 

then an activation function  is 
applied to the result.

x

Ax
f

Neural networks are just matrix 
multiplications with intermediate 
calls to a nonlinear function .f
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Neural Networks (Non-Linearity)
Neural networks are models of 
artificial neurons bundles.

Given an input vector , it is 
transformed into a hidden  vector 
 by a linear transformation, and 

then an activation function  is 
applied to the result.

x

Ax
f

Neural networks are just matrix 
multiplications with intermediate 
calls to a nonlinear function .f

00(x) = f(Ak( f(Ak−1…f(A1x))
https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png

https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
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Spectral/Algebraic Graph Theory
Graphs can be viewed as 
matrices. 

The finding eigenvalues 
in graphs can gives use 
better clustering and 
cutting algorithms.

https://medium.com/@n.rajadhyaksha/a-gentle-introduction-to-graph-spectral-filtering-df03ddc9d3f7



Abstract Algebra

There's a lot of beautiful structure in the 
algebra we've done in this course. 

And there are lots of directions to go from here 
(infinite dimensional spaces, less restrictive 
settings like groups and modules,...)

U
01,( f ) ≅ 34567( f )

fU V

U/01,( f )



Course List
•CS 365 Foundations of Data Science 
•CS 440 Intro to Artificial Intelligence 
•CS 480 Intro to Computer Graphics 
•CS 505 Intro to Natural Language Processing 
•CS 506 Tools for Data Science 
•CS 507 Intro to Optimization in ML 
•CS 523 Deep Learning 
•CS 530 Advanced Algorithms 
•CS 531 Advanced Optimization Algorithms 
•CS 542 Machine Learning 
•CS 565 Algorithmic Data Mining 
•CS 581 Computational Fabrication 
•CS 583 Audio Computation

Some of these may not exist anymore...
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