Singular Value Decomposition

Geometric Algorithms Lecture 26

Introduction

Recap Problem (+ Course Evaluations)

Find an orthogonal diagonalization of $\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

https://www.bu.edu/courseeval

Answer

Objectives

- 1. Finish up our discussion of quadratic forms.
- 2. Introduce the singular value decomposition (probably the most important matrix decomposition for computer science).
- 3. Talk very briefly about what to do after this course if you want (or have to) to see more linear algebra.

Quadratic Forms (Finishing Up)

Quadratic Forms

Definition. A quadratic form is an function of variables $x_1, ..., x_n$ in which every term has degree two.

Examples:

Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented as

$$\mathbf{x}^T A \mathbf{x}$$

where A is <u>symmetric</u>.

Example:

Example: Computing the Quadratic Form for a Matrix

$$A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$$

This means, given a symmetric matrix A, we can compute its corresponding quadratic form:

Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say

$$\mathbf{x}^{T} A \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{i} x_{j} = \sum_{i=1}^{n} A_{ii} x_{i}^{2} + \sum_{i \neq j} (A_{ij} + A_{ji}) x_{i} x_{j}$$

Verify:

A Slightly more Complicated Example

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 0 \\ -1 & 0 & 5 \end{bmatrix}$$

Let's expand $\mathbf{x}^T A \mathbf{x}$:

Matrices from Quadratic Forms

$$Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$$

We can also go in the other direction. Let's express this as $\mathbf{x}^T A \mathbf{x}$:

How To: Matrices of Quadratic Forms

Problem. Given a quadratic form $Q(\mathbf{x})$, find the symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

Solution.

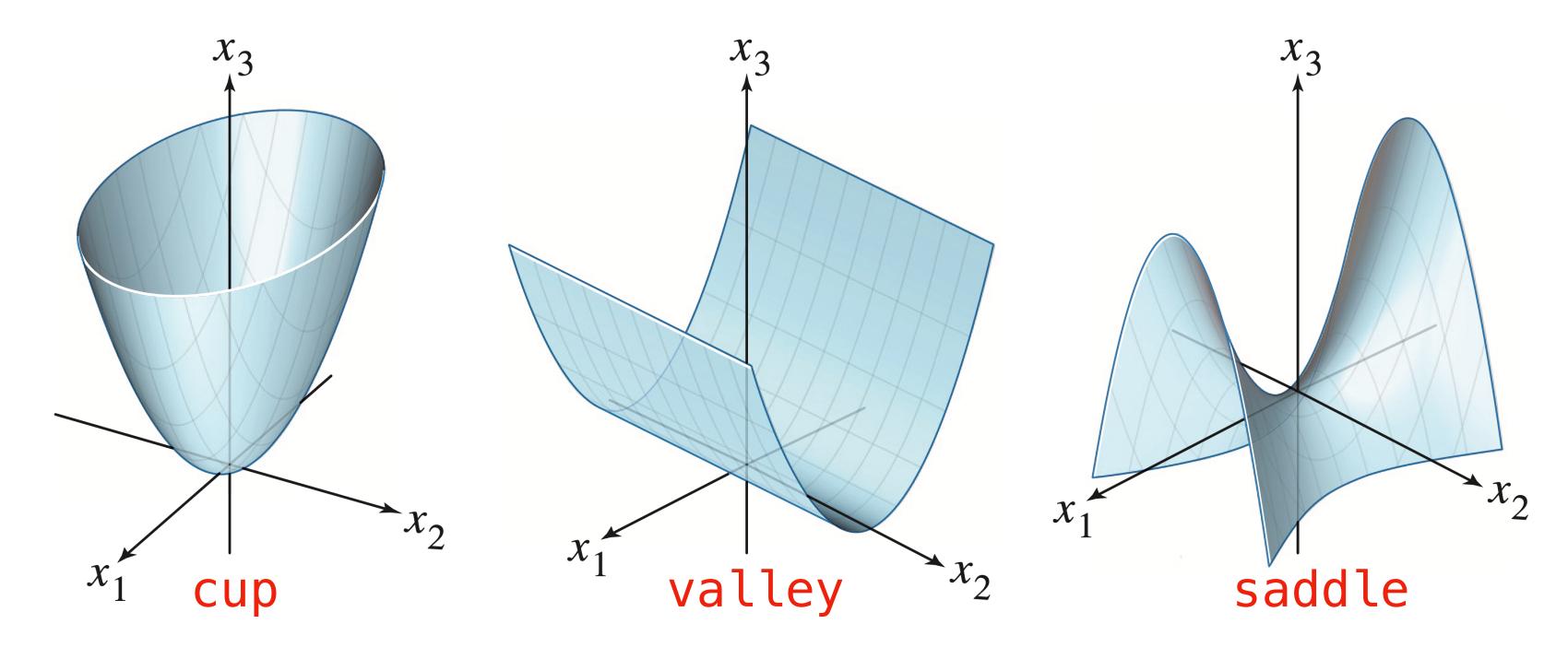
- » if $Q(\mathbf{x})$ has the term αx_i^2 then $A_{ii} = \alpha$
- » if $Q(\mathbf{x})$ has the term $\alpha x_i x_j$, then $A_{ij} = A_{ji} = \frac{\alpha}{2}$

Example

$$Q(x_1, x_2, x_3, x_4) = x_1^2 + 3x_2^2 - 2x_3x_4 - 6x_4^2 + 7x_1x_3$$

Find the symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

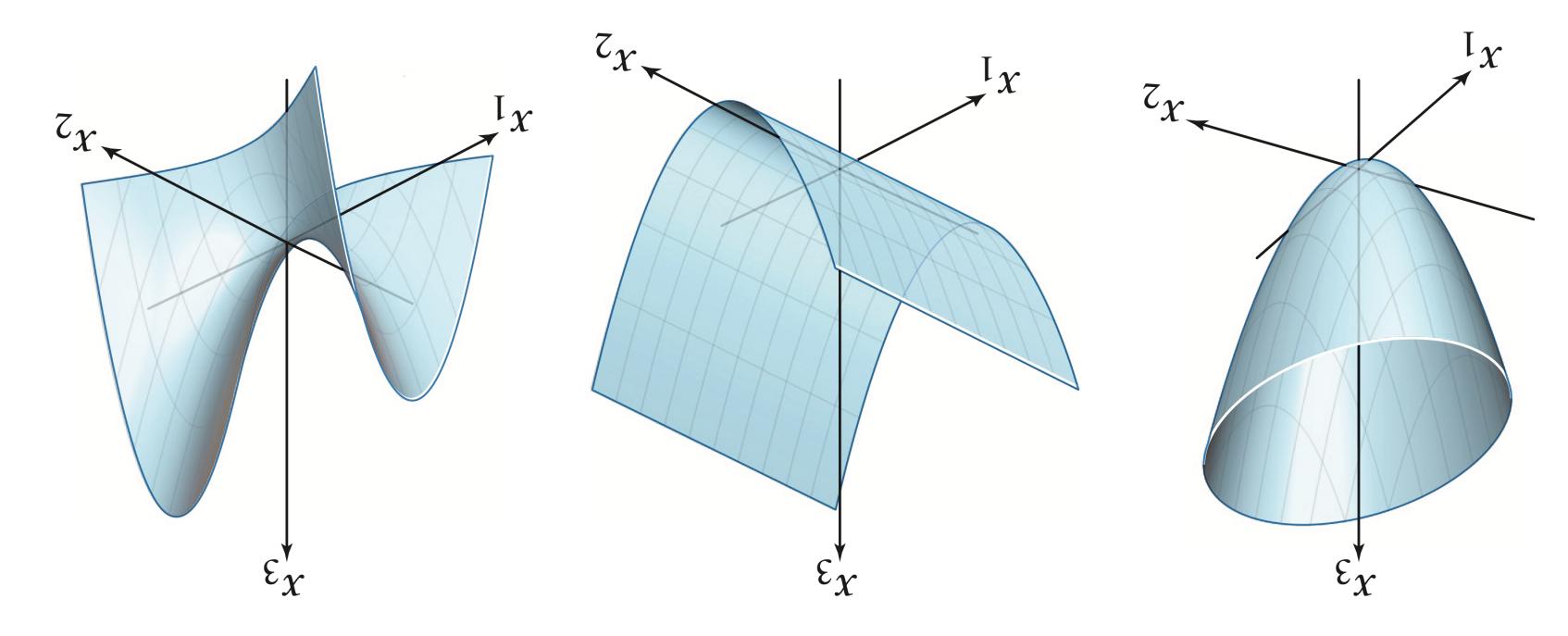
Shapes of of Quadratic Forms



There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

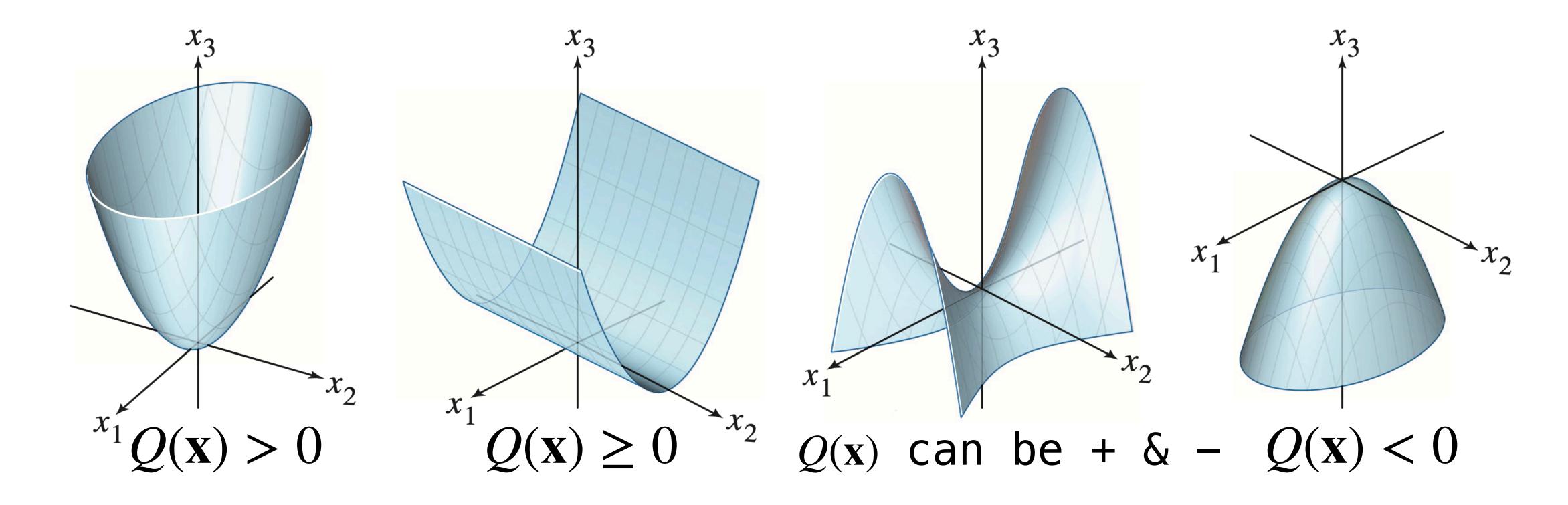
Shapes of of Quadratic Forms



There are essentially three possible shapes (six if you include the negations).

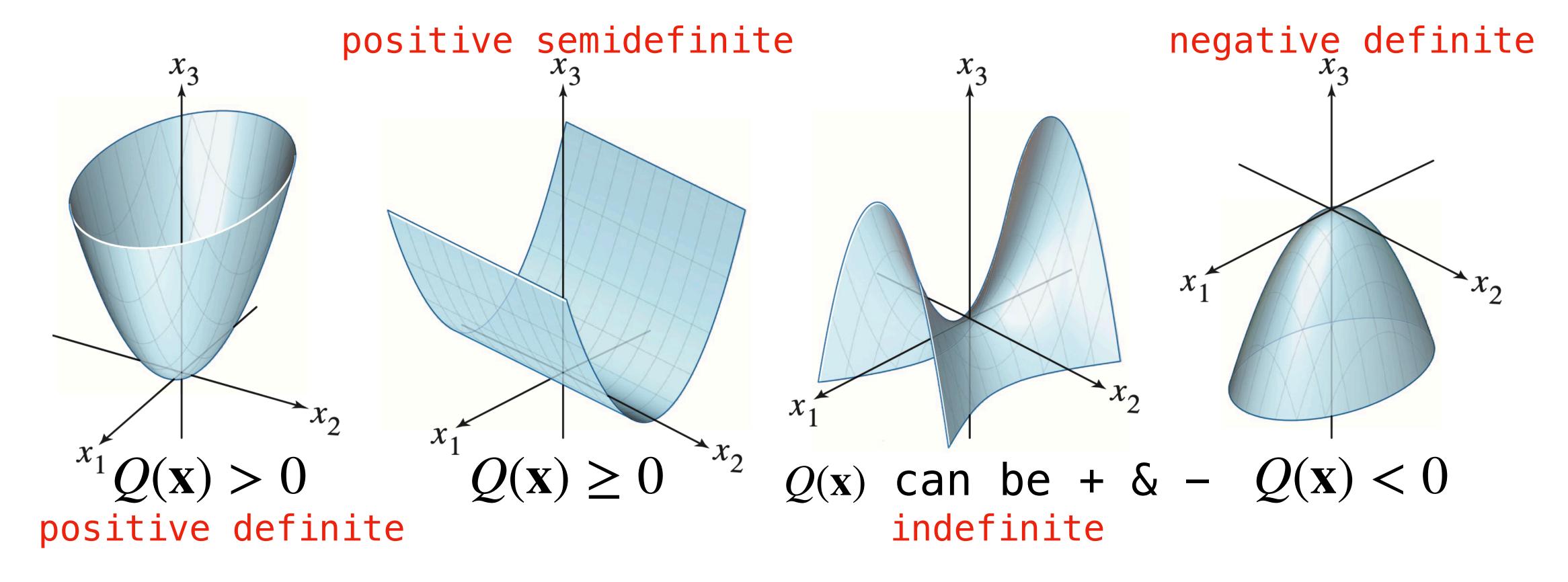
Can we determine what shape it will be mathematically?

Definiteness



For $x \neq 0$, each of the above graphs satisfy the associated properties.

Definiteness



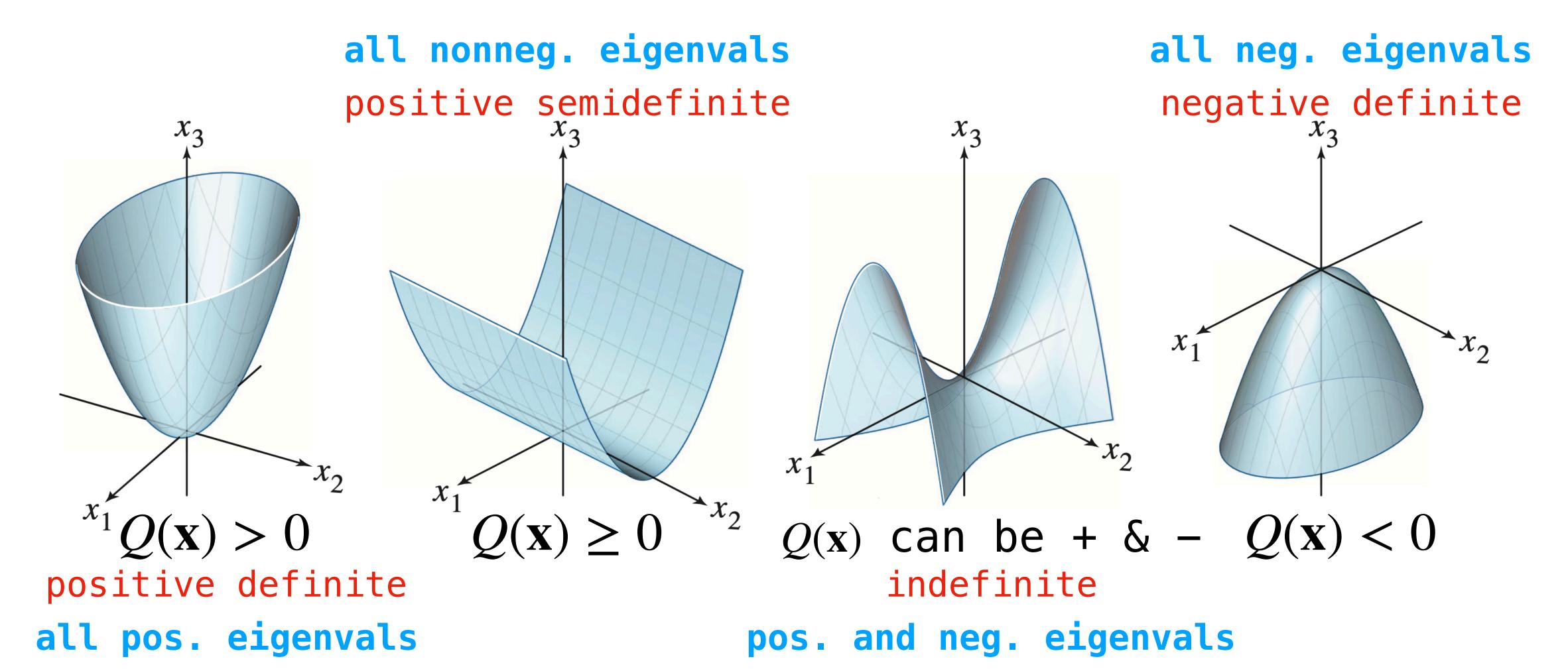
For $x \neq 0$, each of the above graphs satisfy the associated properties.

Definiteness and Eigenvectors

Theorem. For a symmetric matrix A, the quadratic form $\mathbf{x}^T A \mathbf{x}$

- > positive definite \equiv all positive eigenvalues
- \Rightarrow positive semidefinite \equiv all <u>nonnegative</u> eigenvalues
- \Rightarrow indefinite \equiv positive and negative eigenvalues
- \Rightarrow negative definite \equiv all <u>negative</u> eigenvalues

Definiteness



Example

$$Q(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 4x_2x_3 + x_3^2$$

Let's determine which case this is:

Constrained Optimization

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for f over X is the problem of determining

$$\min_{\mathbf{v} \in X} f(\mathbf{v})$$

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for f over X is the problem of determining

$$\min_{\mathbf{v} \in X} f(\mathbf{v})$$

(analogously for maximization)

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for f over X is the problem of determining

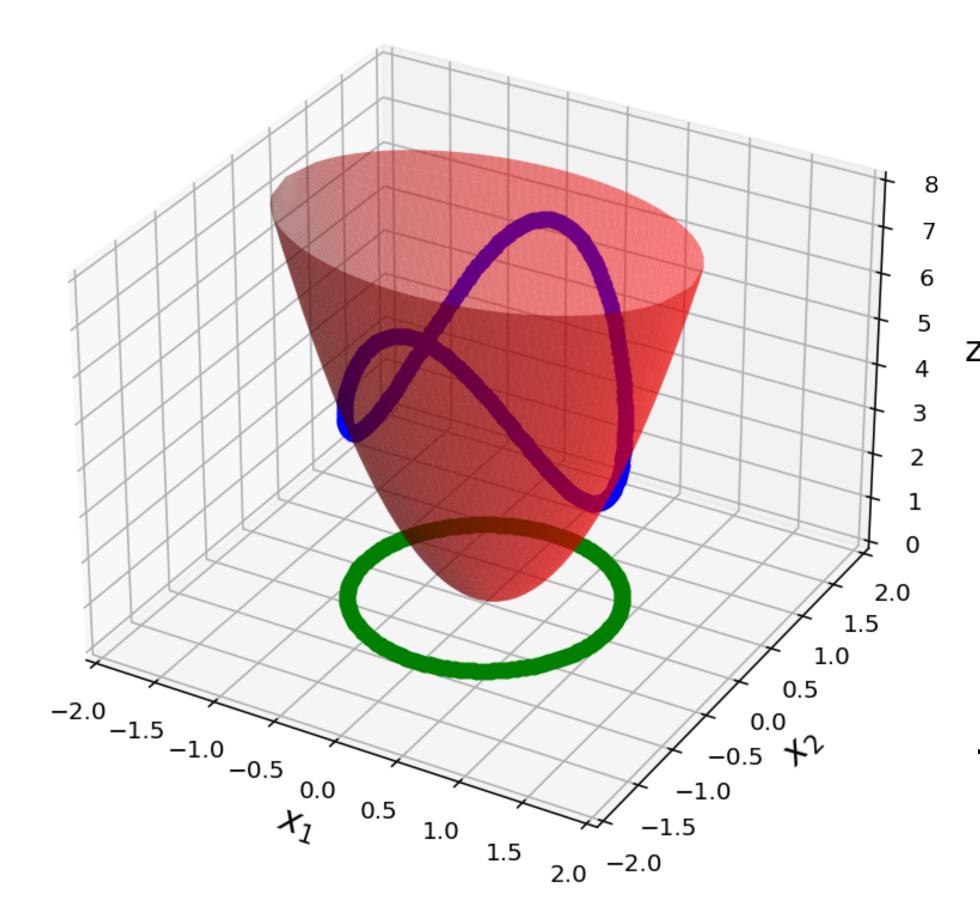
$$\min_{\mathbf{v} \in X} f(\mathbf{v})$$

(analogously for maximization)

Find the smallest value of $f(\mathbf{v})$ subject to choosing a vector in X

Constrained Optimization for Quadratic Forms and Unit Vectors

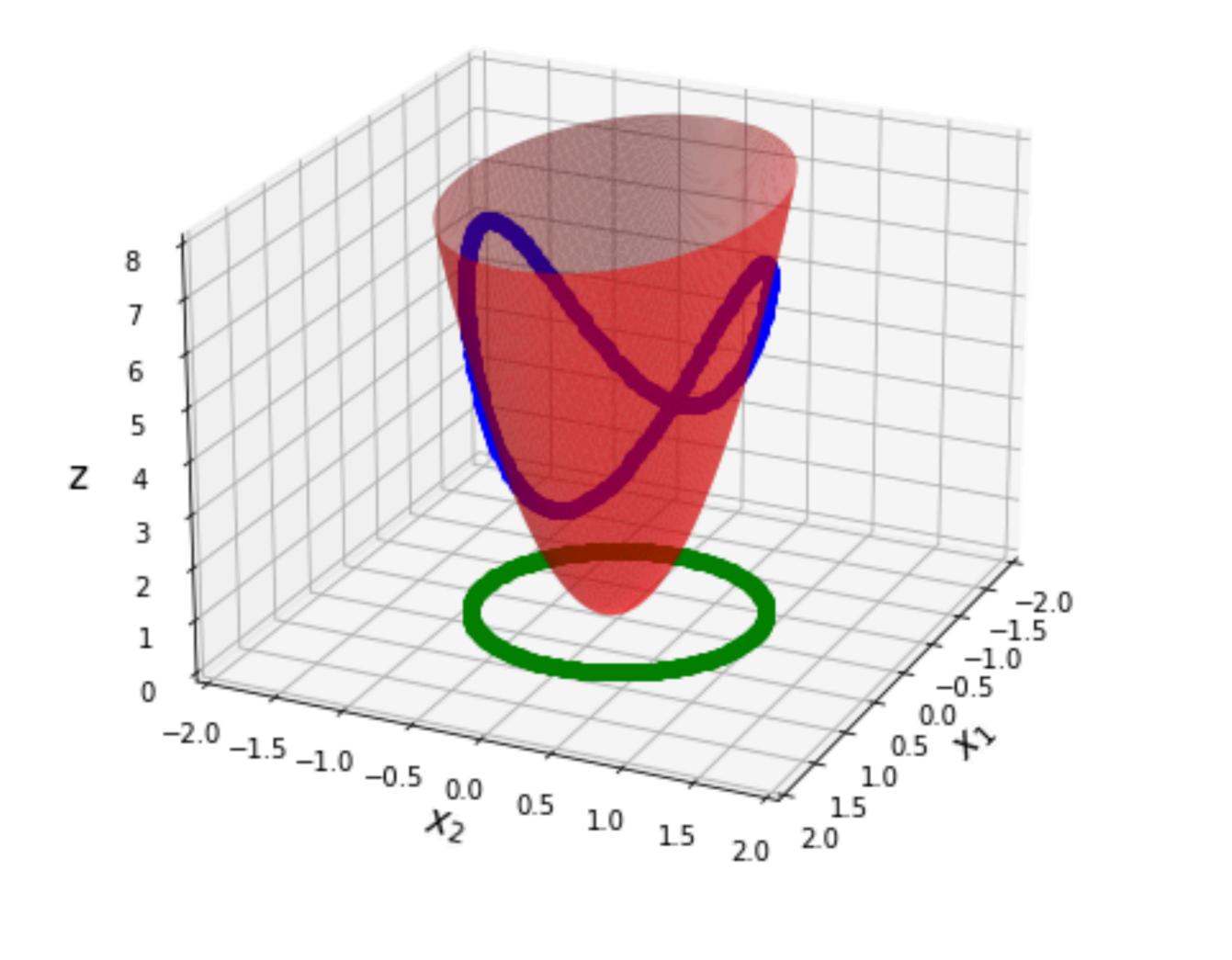
mini/maximize $\mathbf{x}^T A \mathbf{x}$ subject to $||\mathbf{x}|| = 1$



It's common to constraint to unit vectors.

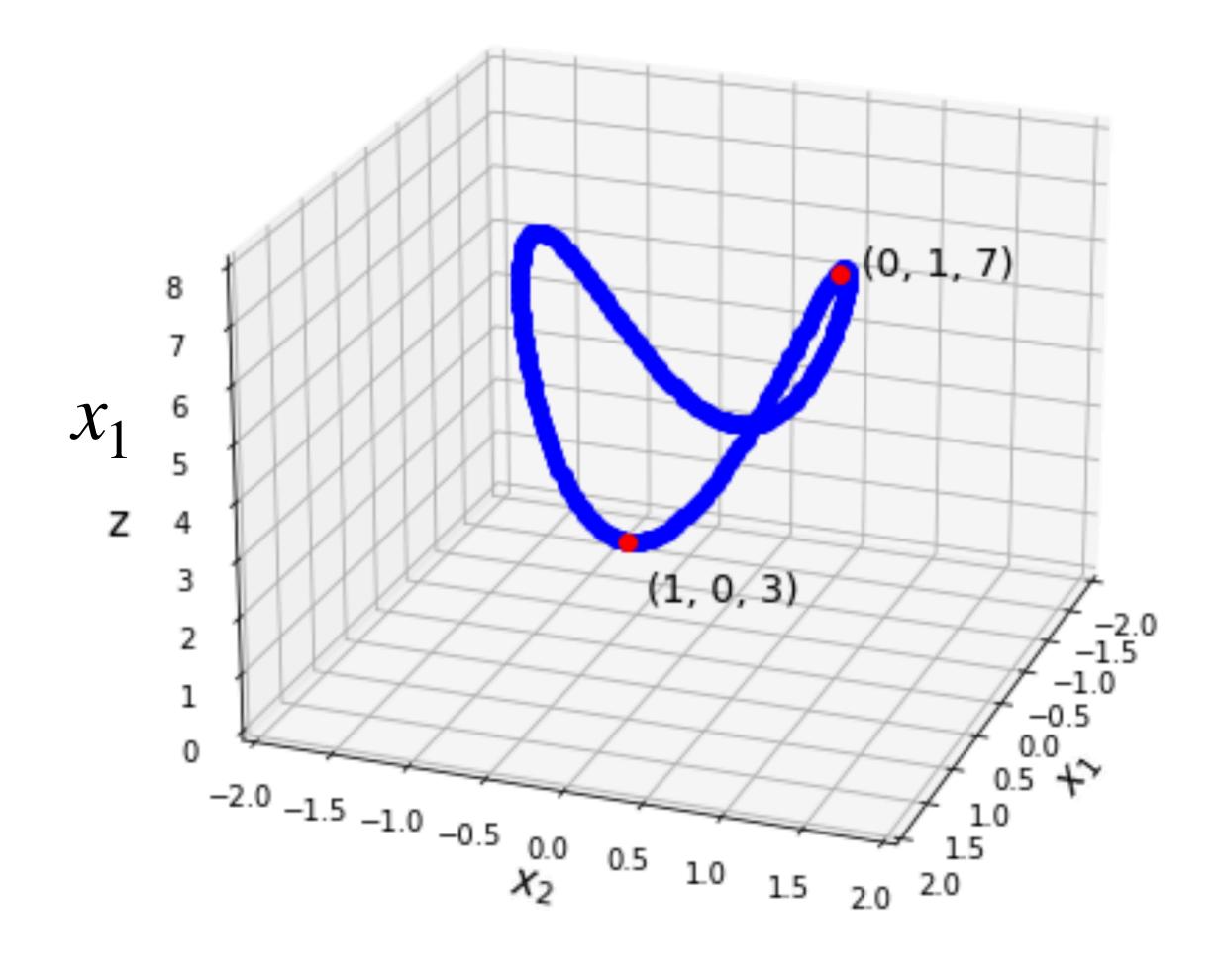
Example: $3x_1^2 + 7x_2^2$

What are the min/max values?:



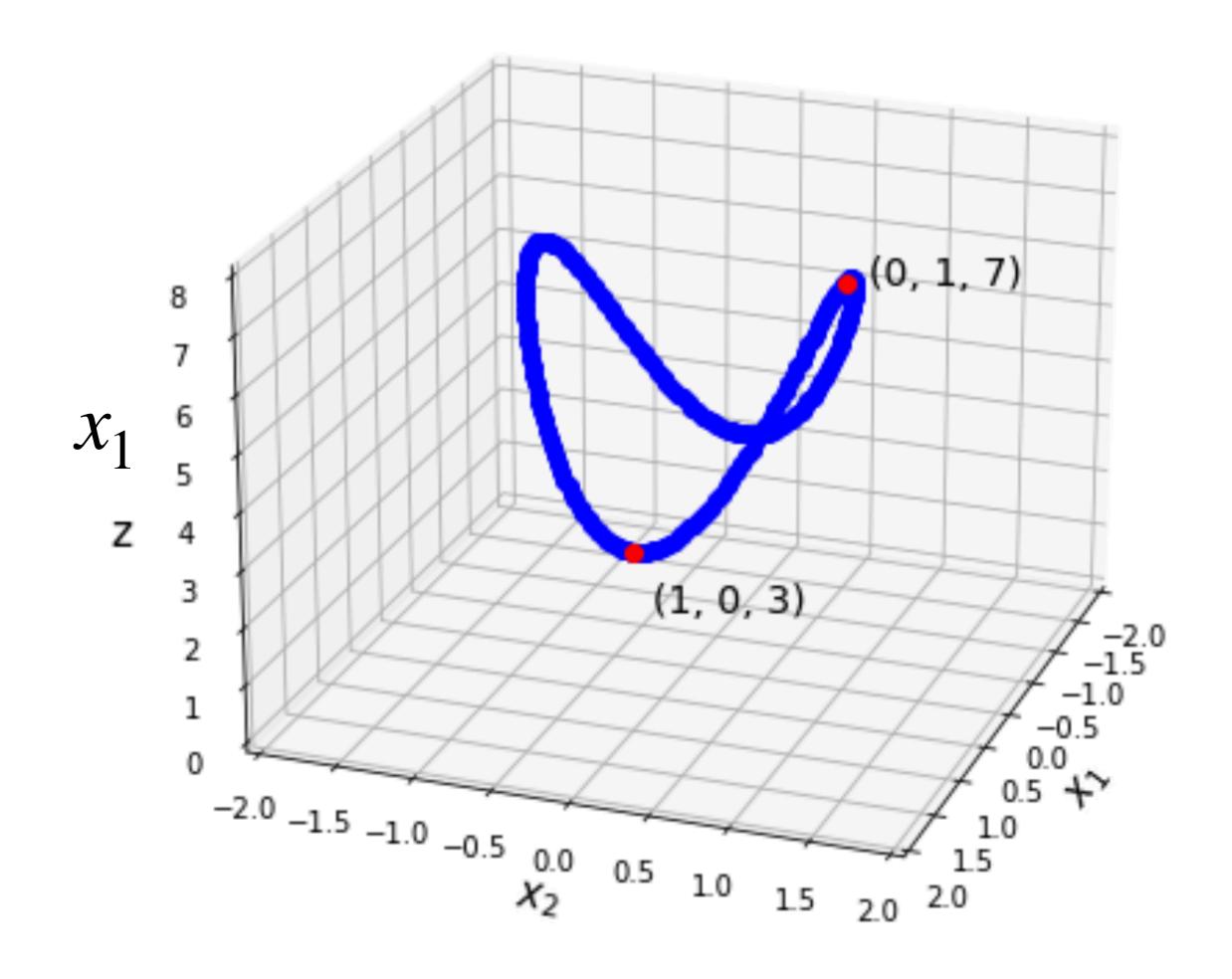
Example: $3x_1^2 + 7x_2^2$

The minimum and maximum values are attained when the "weight" of the vector is distributed all on x_1 or x_2 .



Example: $3x_1^2 + 7x_2^2$

What is the matrix?:



Constrained Optimization and Eigenvalues

Theorem. For a symmetric matrix A, with largest eigenvalue λ_1 and smallest eigenvalue λ_n

$$\max_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x} = \lambda_1 \qquad \min_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x} = \lambda_n$$

No matter the shape of A, this will hold.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$.

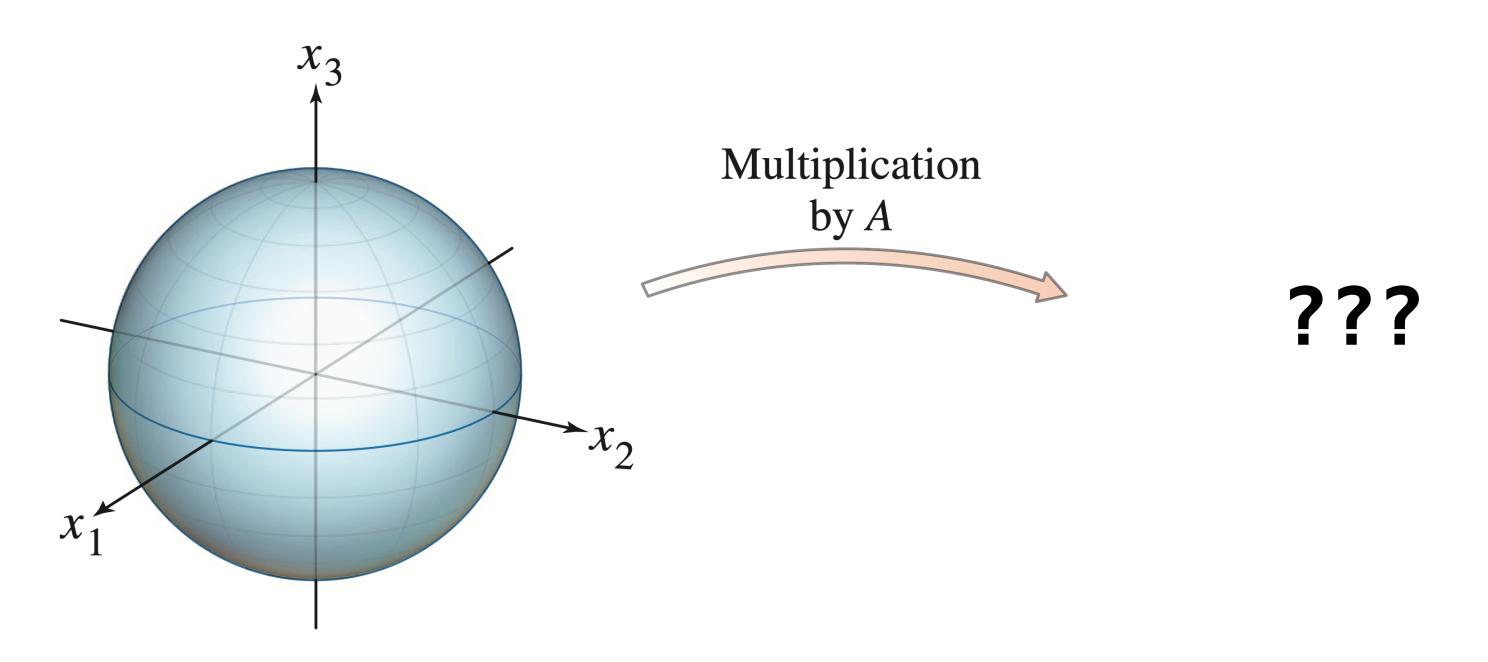
Solution. Find the largest eigenvalue of A, this will be the maximum value.

(Use NumPy)

Singular Value Decomposition

Question

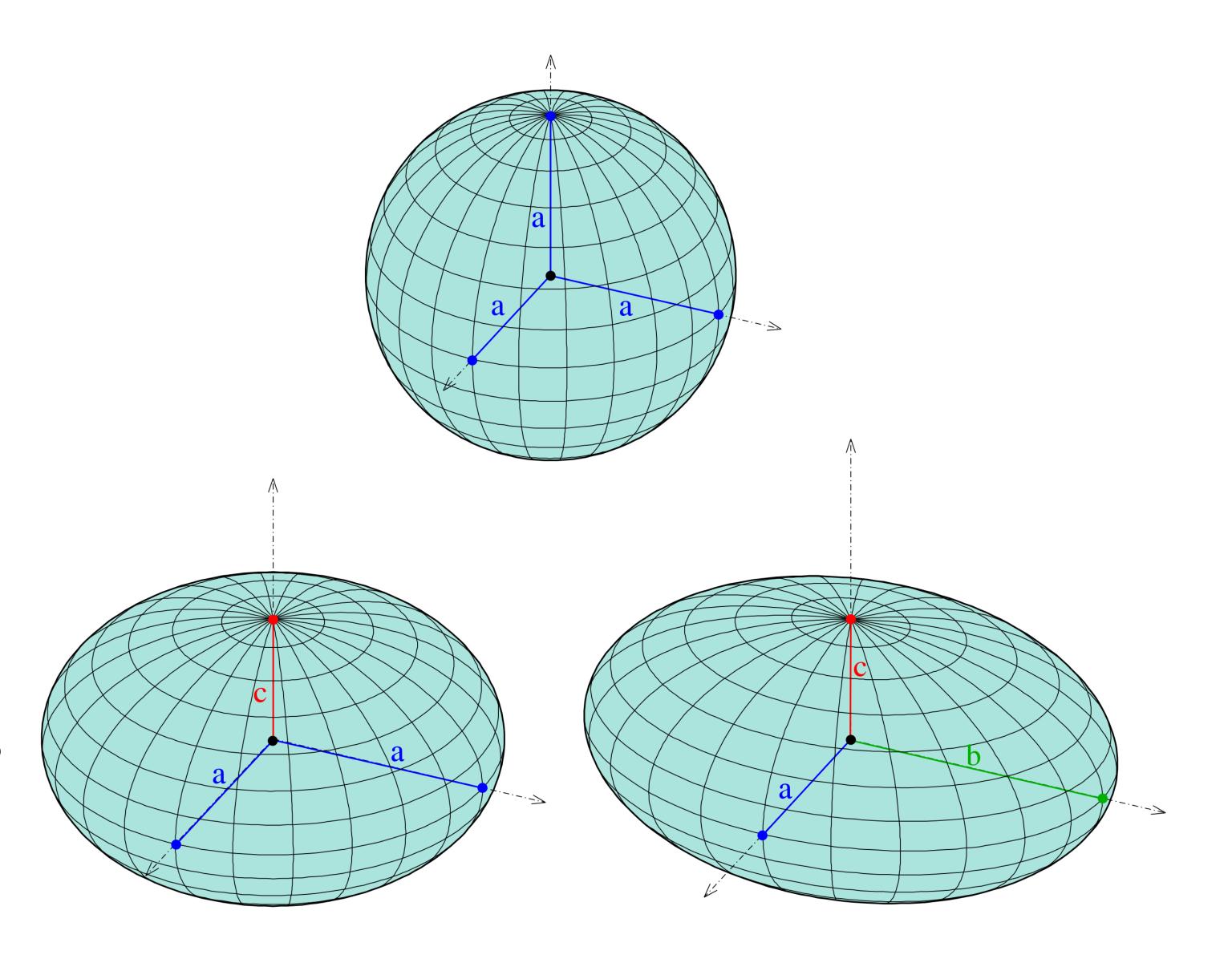
What shape is a the unit sphere after a linear transformation?



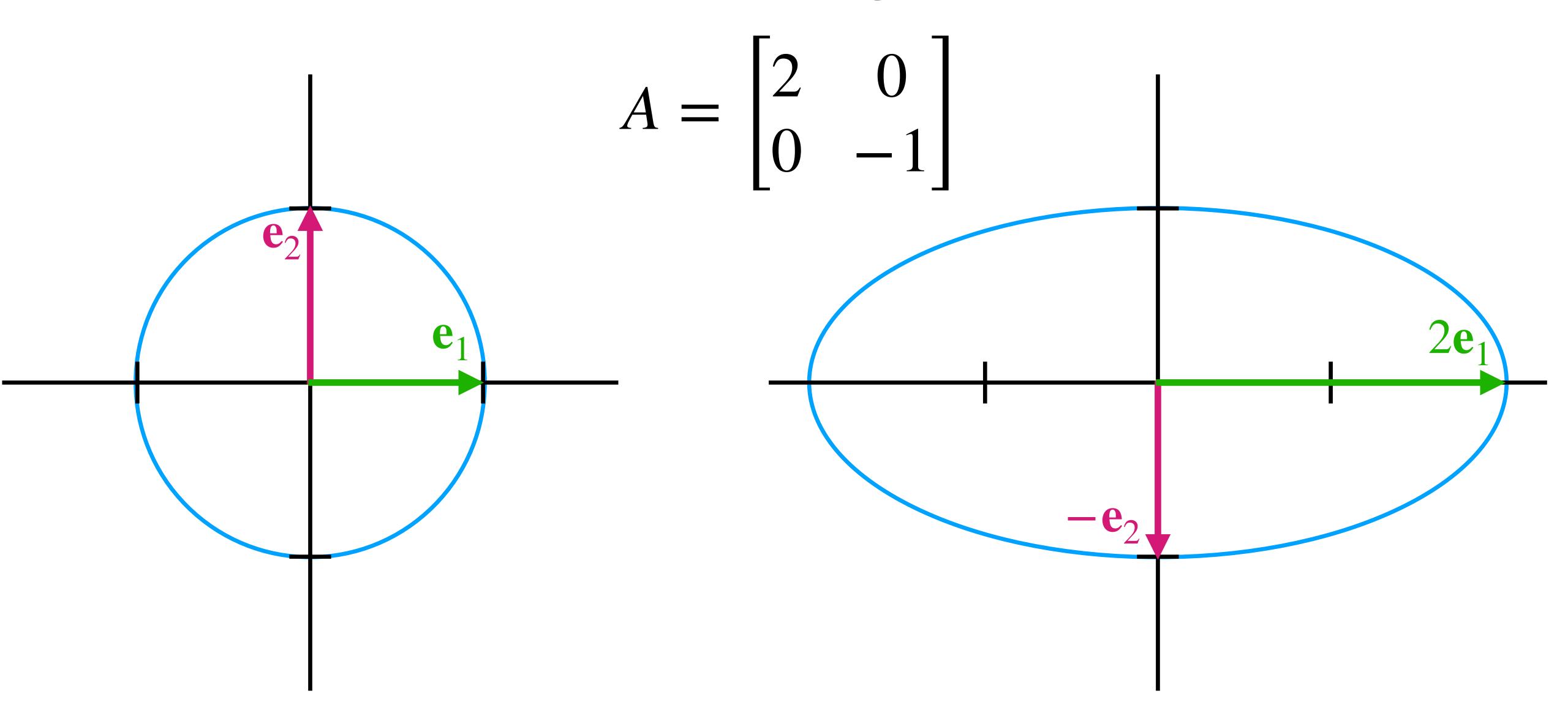
Ellipsoids

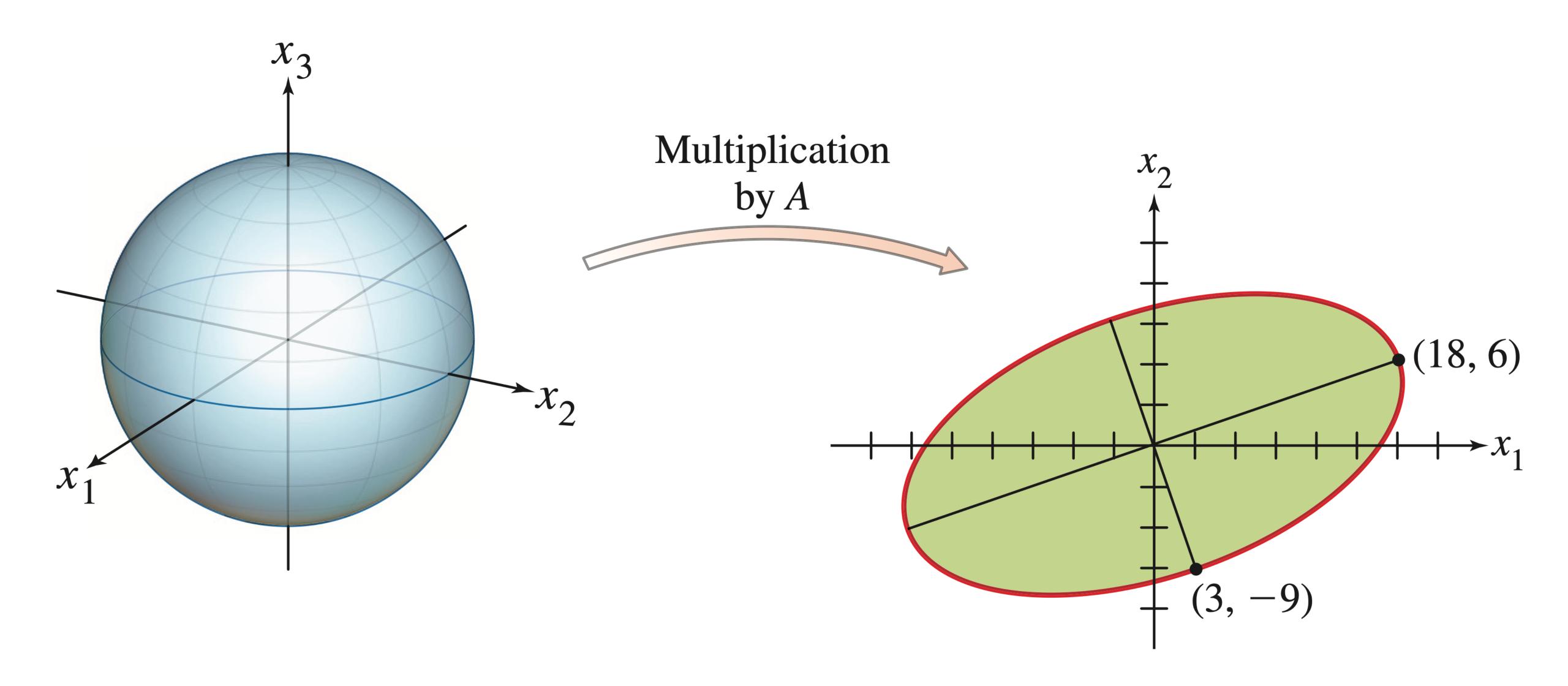
Ellipsoids are spheres
"stretched" in orthogonal
directions called the
axes of symmetry or the
principle axes.

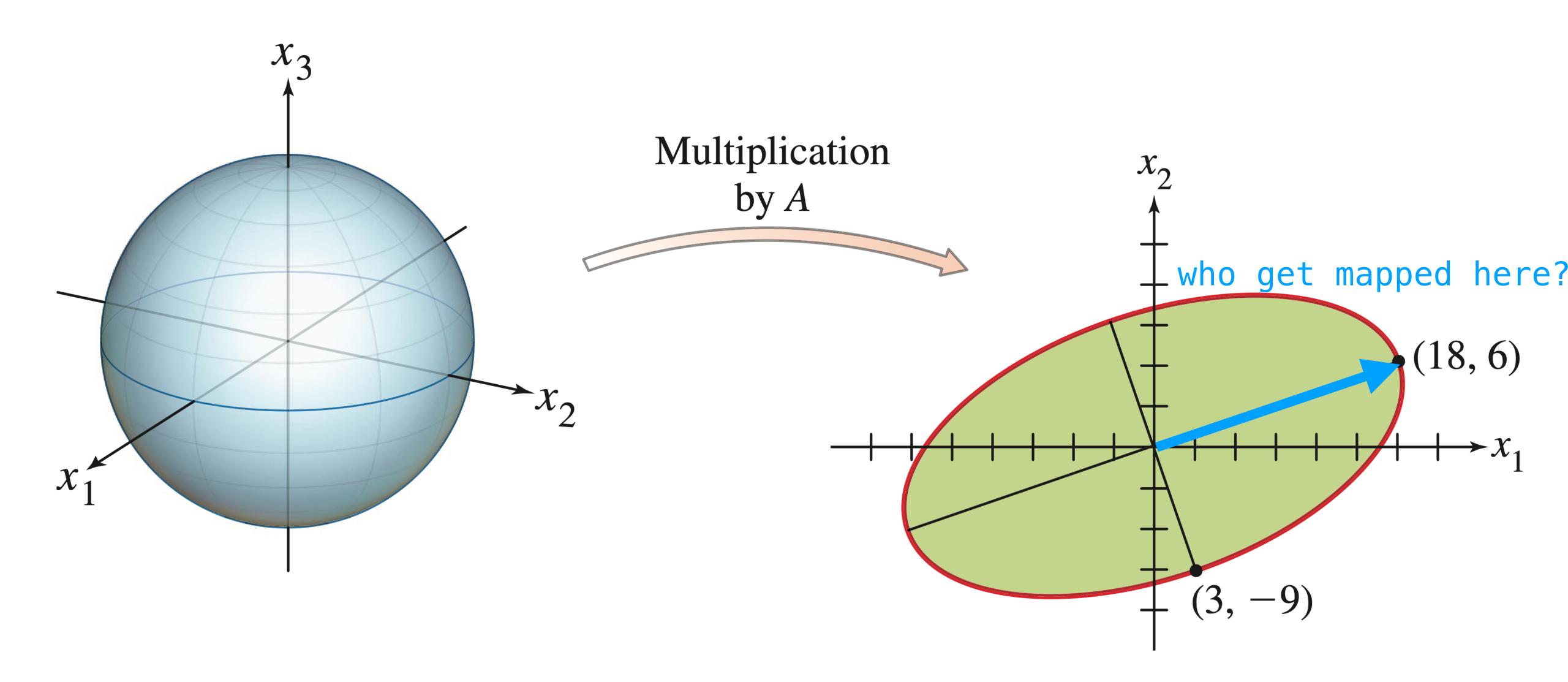
Linear transformations maps spheres to ellipsoids.



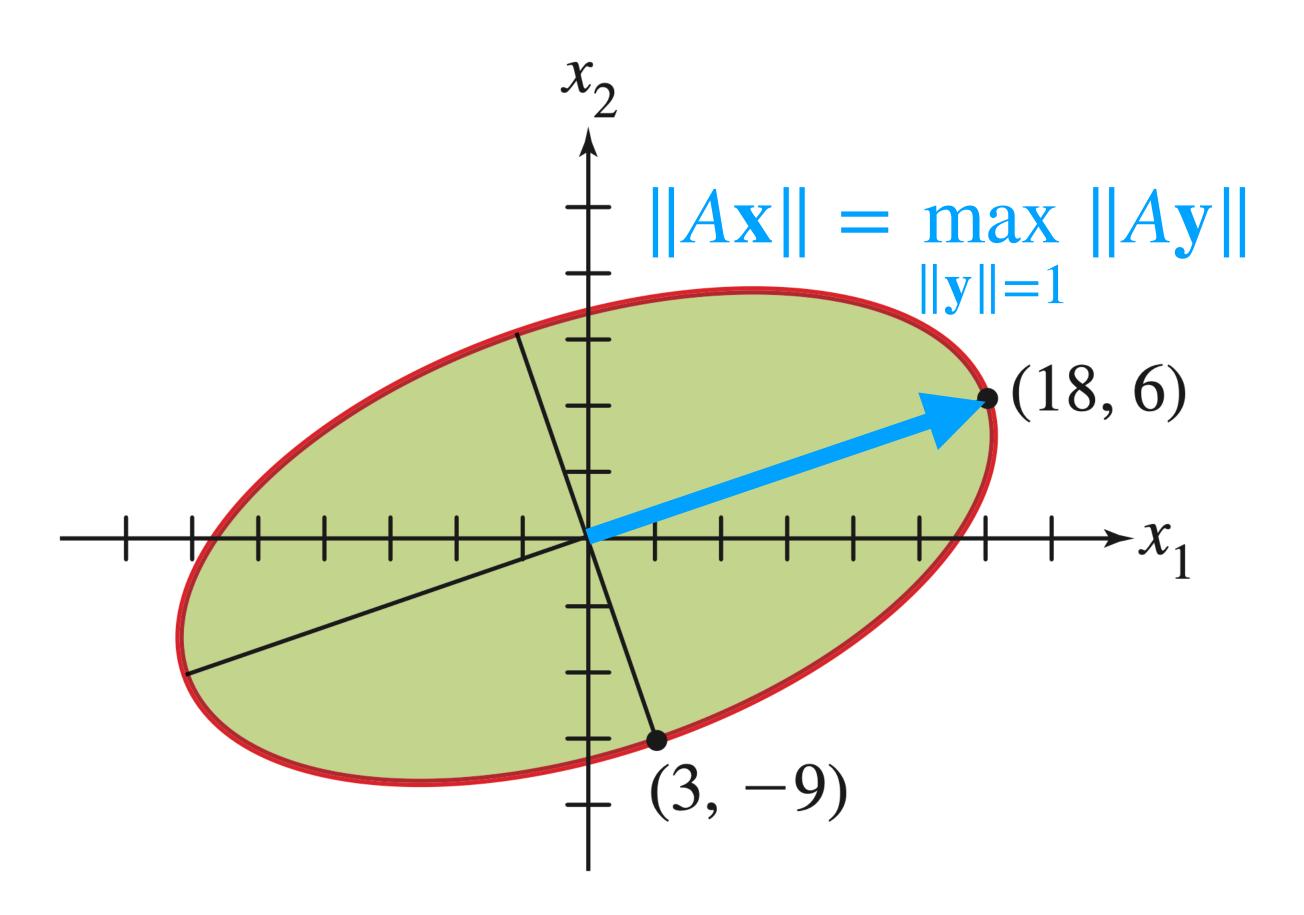
Simple Example: Scaling Matrices



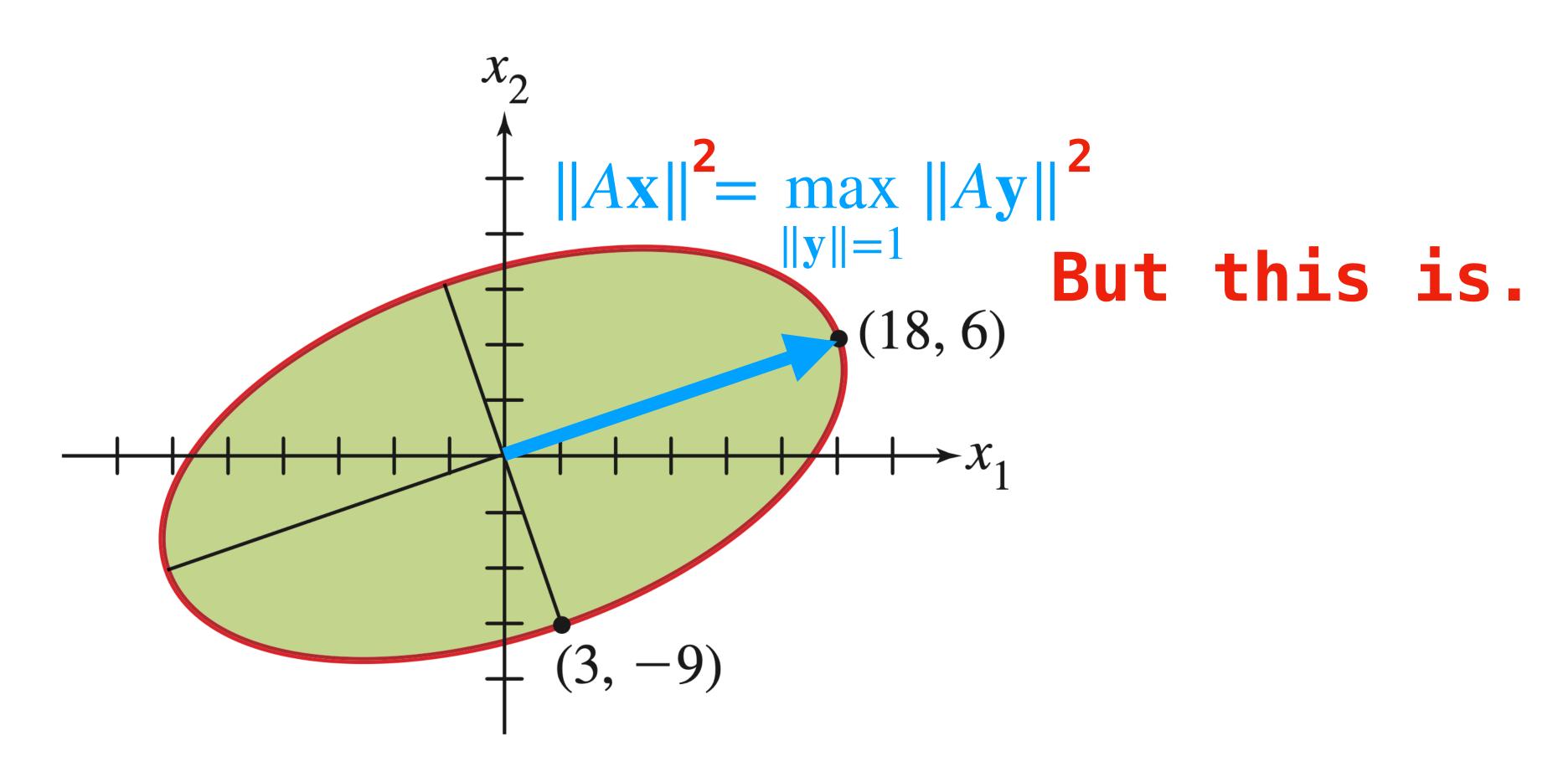








This is not a quadratic form...



This is not a quadratic form...

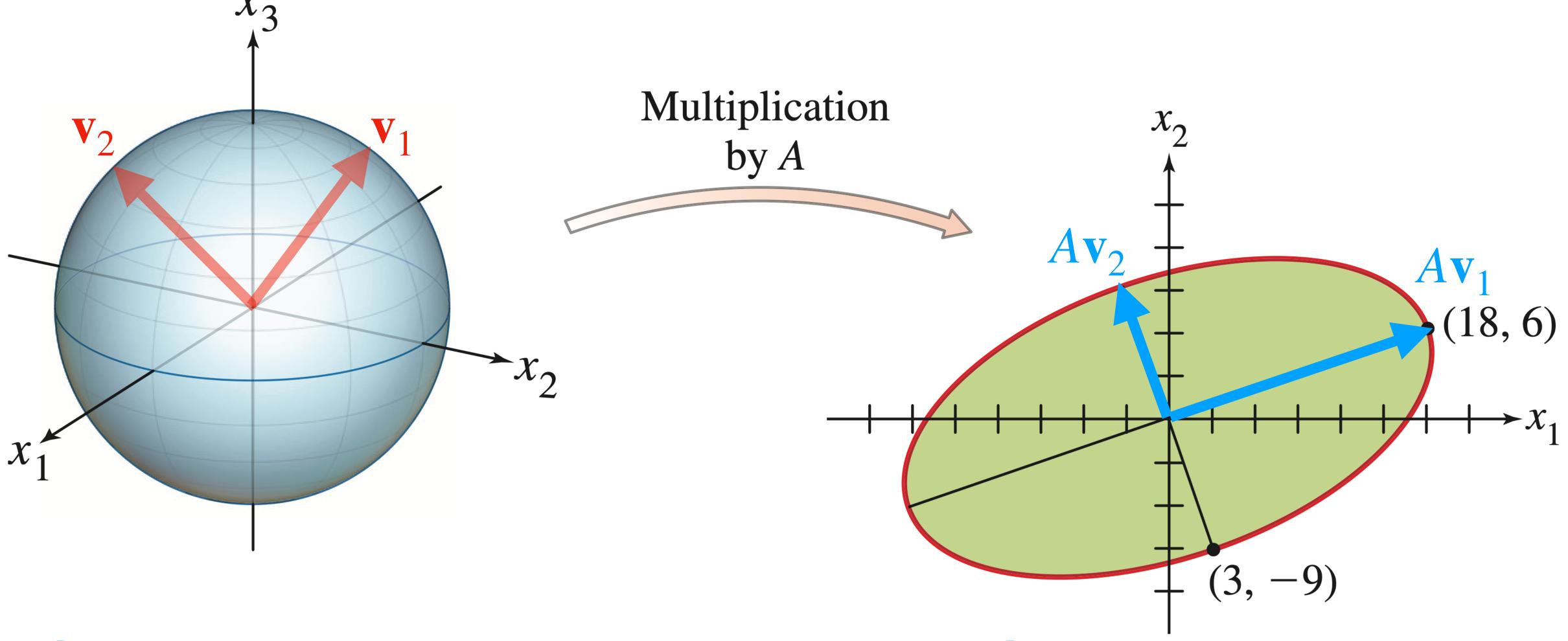
A Quadratic Form

What does $||A\mathbf{x}||^2$ look like?:

The Picture X₃ The The largest eigenvector of A^TA Multiplication by A $A^T A \mathbf{v}_1 = \lambda_1 \mathbf{v}_1$ (18, 6) x_2

 \mathbf{v}_1 solves the constrained optimization problem.

The "Influence" of A



 \mathbf{v}_1 is "most affected" by A and \mathbf{v}_2 is "least affected"

» It's symmetric.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.
- » There is an orthogonal basis of eigenvectors.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.
- » There is an orthogonal basis of eigenvectors.
- » It's eigenvalues are nonnegative.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.
- » There is an orthogonal basis of eigenvectors.
- » It's eigenvalues are nonnegative.
- » It's positive semidefinite.

Singular Values

Definition. For an $m \times n$ matrix A, the **singular values** of A are the n values

$$\sigma_1 \geq \sigma_2 \dots \geq \sigma_n \geq 0$$

where $\sigma_i = \sqrt{\lambda_i}$ and λ_i is an eigenvalue of A^TA .

Another picture

 $||A\mathbf{v}_3|| = \sqrt{\lambda_3} = \sigma_3$ $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are the eigenvectors of A^TA $||A\mathbf{v}_1|| = \sqrt{\lambda_1} = \sigma_1$ $||A\mathbf{v}_2|| = \sqrt{\lambda_2} = \sigma_2 \, \mathbf{v}$

The **singular values** are the <u>lengths</u> of the *axes of symmetry* of the ellipsoid after transforming the unit sphere.

Every $m \times n$ matrix transforms the unit m-sphere into an n-ellipsoid.

So <u>every</u> $m \times n$ matrix has n singular values.

What else can we say?

Let $\mathbf{v}_1, ..., \mathbf{v}_n$ be an **orthogonal** eigenbasis of \mathbb{R}^n for A^TA and suppose A has r <u>nonzero</u> singular values.

Theorem. $A\mathbf{v}_1,...,A\mathbf{v}_r$ is an orthogonal basis of $\mathrm{Col}(A)$.

What else can we say?

Let $\mathbf{v}_1, ..., \mathbf{v}_n$ be an **orthogonal** eigenbasis of \mathbb{R}^n for A^TA and suppose A has r <u>nonzero</u> singular values.

Theorem. $A\mathbf{v}_1,...,A\mathbf{v}_r$ is an orthogonal basis of $\mathrm{Col}(A)$.

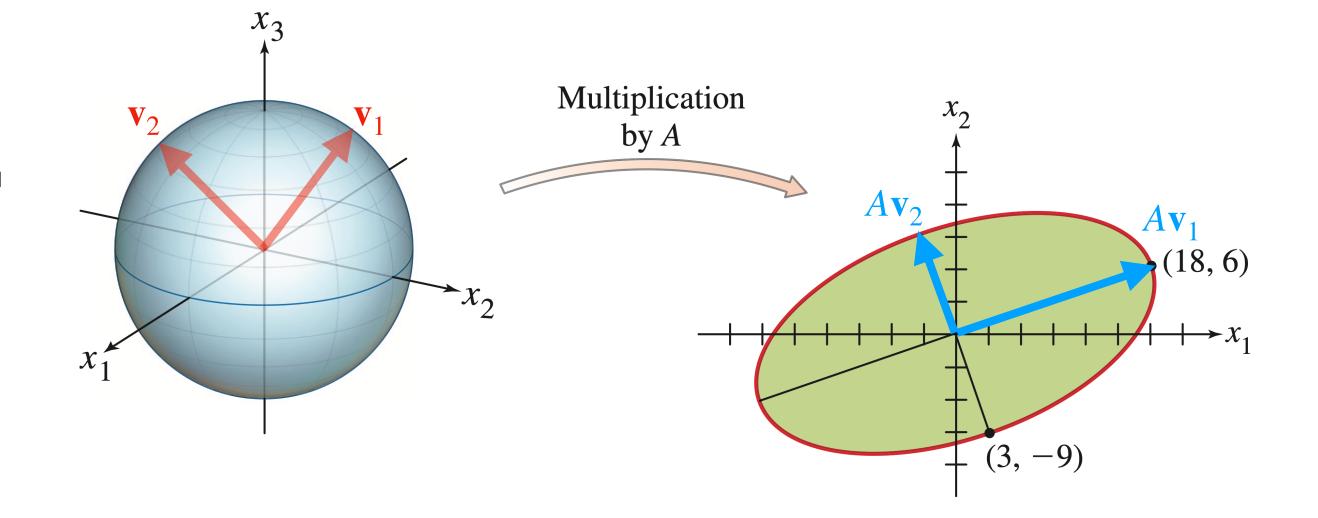
This is the most important theorem for SVD.

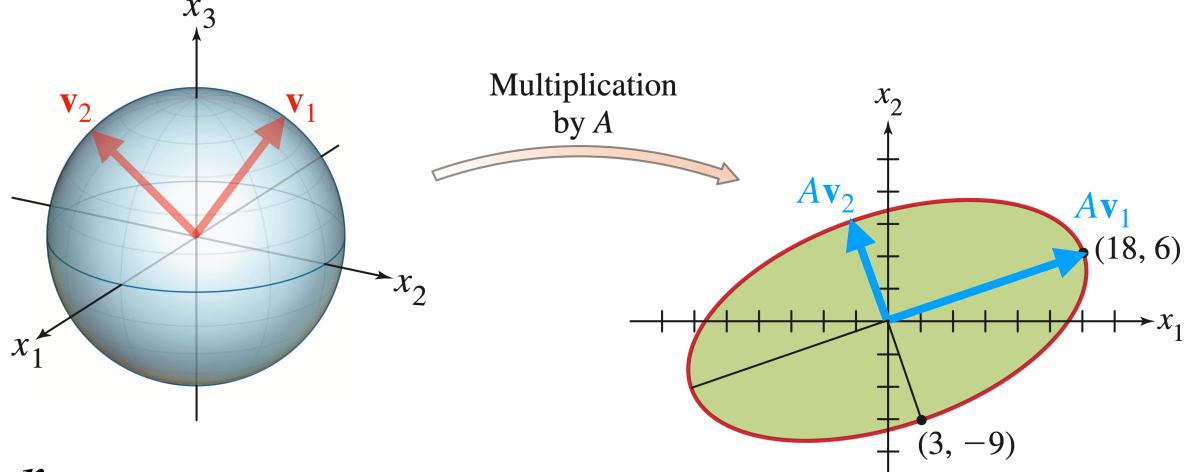
Verifying it

Let's show $Av_1, ..., Av_r$ are linearly independent:

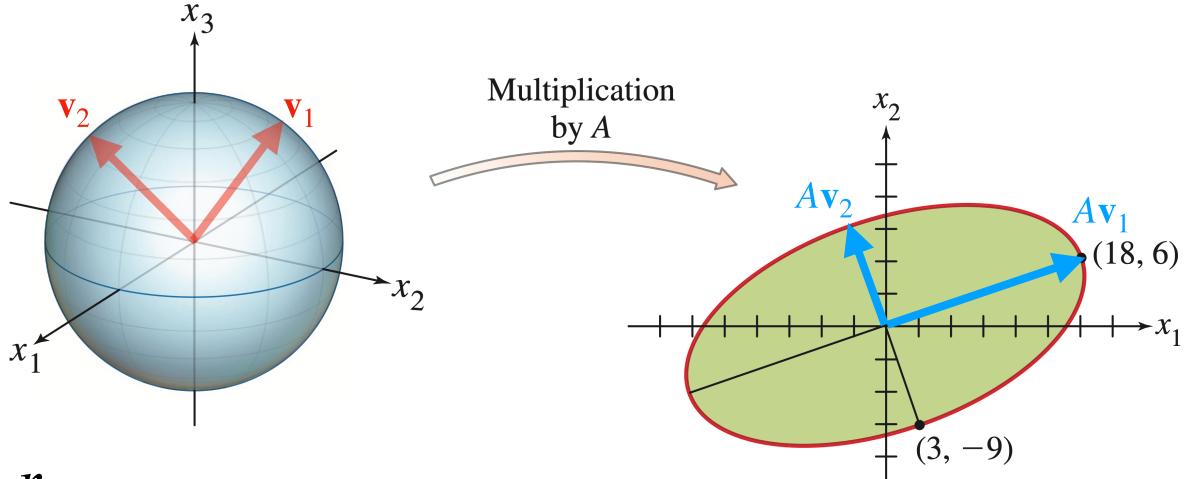
Verifying it

Let's show $A\mathbf{v}_1, ..., A\mathbf{v}_r$ span Col(A):



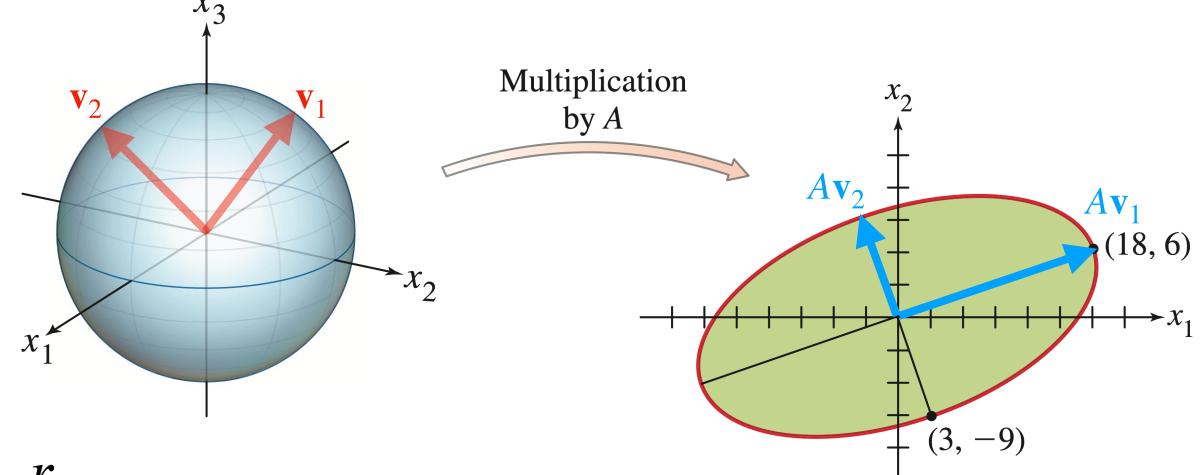


Let A be an $m \times n$ matrix of rank r.



Let A be an $m \times n$ matrix of rank r.

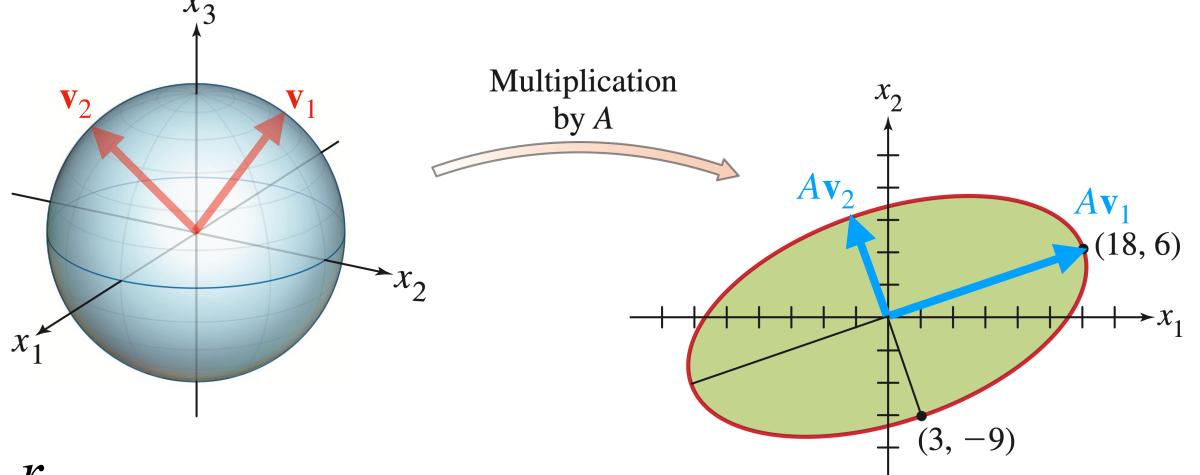
What we know:



Let A be an $m \times n$ matrix of rank r.

What we know:

» We can find orthonormal vectors $\mathbf{v}_1,...,\mathbf{v}_r$ in \mathbb{R}^n such that $A\mathbf{v}_1,...,A\mathbf{v}_r$ in \mathbb{R}^m form an orthogonal basis for Col(A).

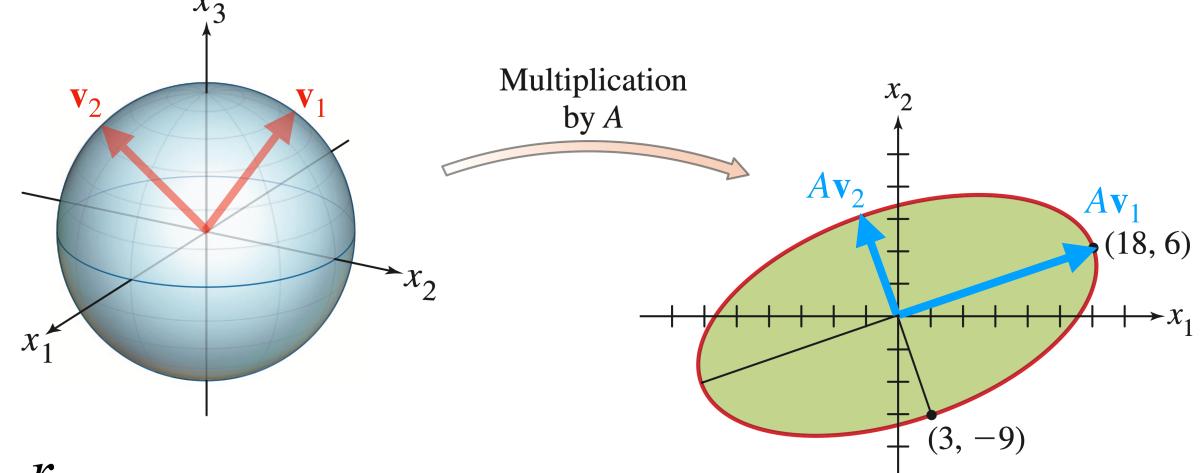


Let A be an $m \times n$ matrix of rank r.

What we know:

» We can find orthonormal vectors $\mathbf{v}_1,...,\mathbf{v}_r$ in \mathbb{R}^n such that $A\mathbf{v}_1,...,A\mathbf{v}_r$ in \mathbb{R}^m form an orthogonal basis for $\mathrm{Col}(A)$.

» So if we take $\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|}$, we get an **orthonormal** basis of $\mathrm{Col}(A)$



Let A be an $m \times n$ matrix of rank r.

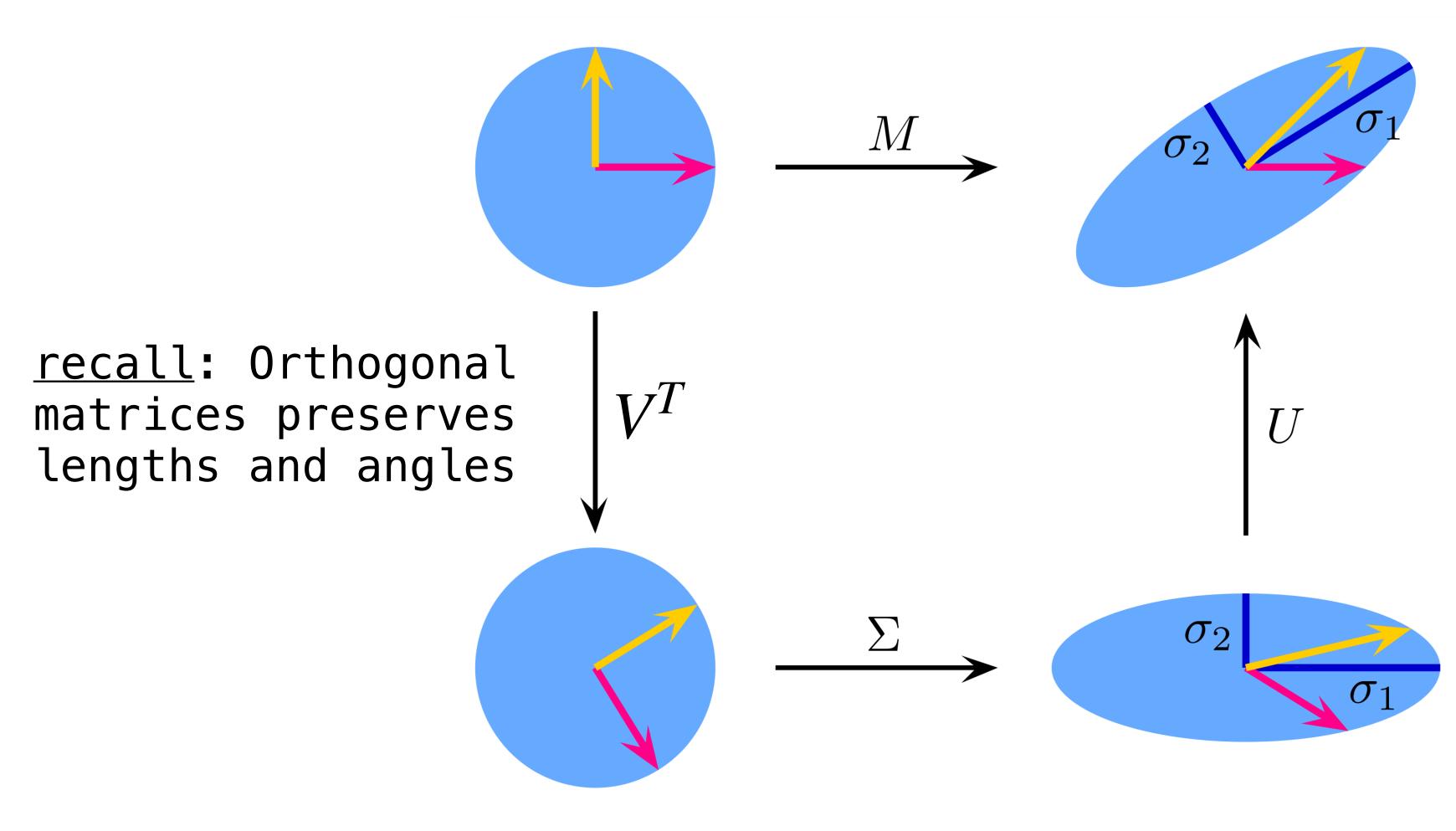
What we know:

» We can find orthonormal vectors $\mathbf{v}_1,...,\mathbf{v}_r$ in \mathbb{R}^n such that $A\mathbf{v}_1,...,A\mathbf{v}_r$ in \mathbb{R}^m form an orthogonal basis for Col(A).

» So if we take $\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|}$, we get an **orthonormal** basis of $\mathrm{Col}(A)$

» And we can extend this to $\mathbf{u}_1,...,\mathbf{u}_m$ an orthonormal basis of \mathbb{R}^m (via Gram-Schmidt).

High Level View of the Decomposition



$$M = U \cdot \Sigma \cdot V^T$$

$$\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|}$$

$$A\mathbf{v}_i = ||A\mathbf{v}_i||\mathbf{u}_i = \sigma_i \mathbf{u}_i$$

$$\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|}$$

$$A\mathbf{v}_i = ||A\mathbf{v}_i||\mathbf{u}_i = \sigma_i \mathbf{u}_i$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

$$\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|}$$

$$A\mathbf{v}_i = ||A\mathbf{v}_i||\mathbf{u}_i = \sigma_i \mathbf{u}_i$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

What happens when we write this in matrix form?

$$A[\mathbf{v}_1 \dots \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \dots \sigma_n \mathbf{u}_n]$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

$$A[\mathbf{v}_1 \dots \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \dots \sigma_n \mathbf{u}_n]$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and

$$A[\mathbf{v}_1 \dots \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \dots \sigma_n \mathbf{u}_n]$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and

$$\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$$

$$A[\mathbf{v}_1 \dots \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \dots \sigma_n \mathbf{u}_n]$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

Let's take
$$V = [\mathbf{v}_1 \ ... \ \mathbf{v}_n]$$
 and $U = [\mathbf{u}_1 \ ... \ \mathbf{u}_m]$ and $m > n$ remember: U is orthonormal

$$\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

Let's take $V = [\mathbf{v}_1 \ ... \ \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \ ... \ \mathbf{u}_m]$ and m > n remember: U is orthonormal

$$\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$$

$$\overset{m \times n}{A} \overset{m \times m}{\underbrace{U}} \overset{m \times m}{\underbrace{\sum_{m \times n}} }$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and m > n remember: U is orthonormal

$$\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$$

$$AVV^T = U\Sigma V^T$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and m > n remember: U is orthonormal

$$\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$$

$$A = U \Sigma V^T$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

Let's take $V = [\mathbf{v}_1 \ ... \ \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \ ... \ \mathbf{u}_m]$ and m > n remember: U is orthonormal

$$\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$$

singular value decomposition

$$A = U \Sigma V^T$$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||Av_i||$.

Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and

Singular Value Decomposition

Theorem. For a $m \times n$ matrix A, there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U \sum_{m \times n}^{m \times m} V^{T}$$

where diagonal entries* of Σ are $\sigma_1, \ldots, \sigma_n$ the singular values of A.

* these are diagonal entries in a <u>non-square</u> matrix.

Singular Value Decomposition

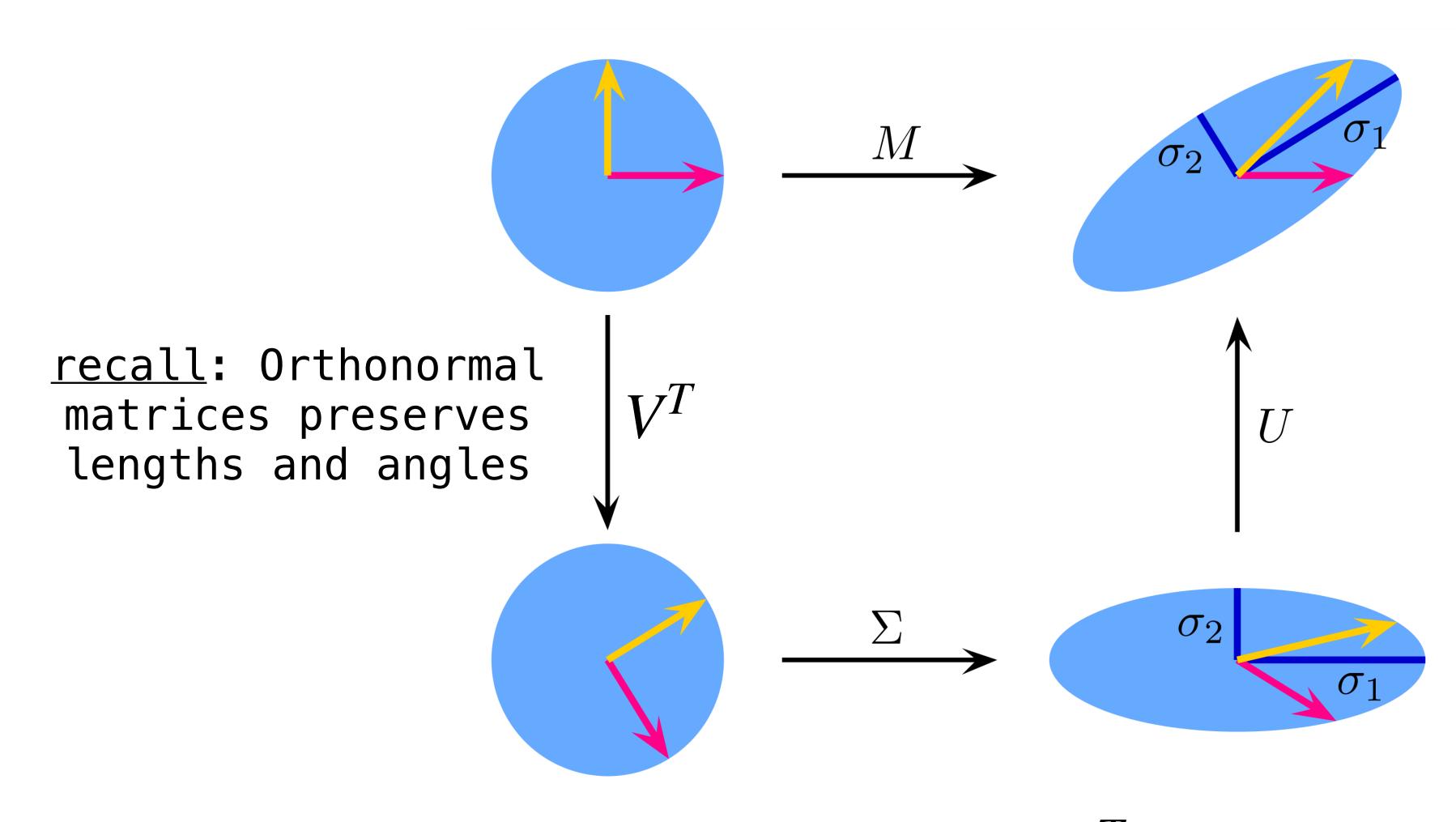
Theorem. For a $m \times n$ matrix A, there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that left singular vectors

$$A = U \sum_{m \times n}^{m \times m} V^{T}$$

where diagonal entries* of Σ are $\sigma_1, \ldots, \sigma_n$ the singular values of A.

* these are diagonal entries in a <u>non-square</u> matrix.

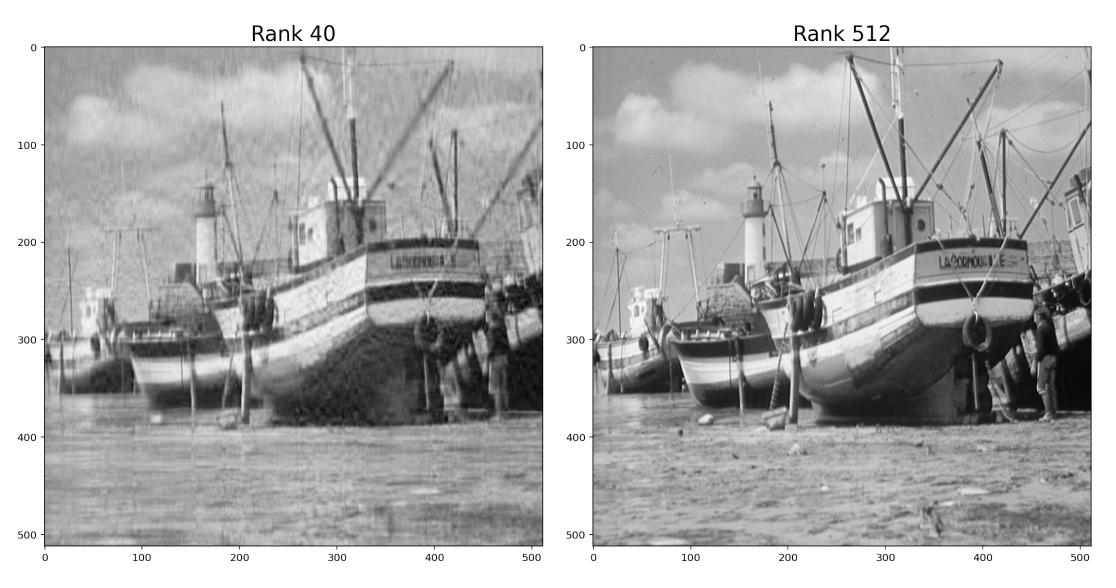
The Picture (Again)

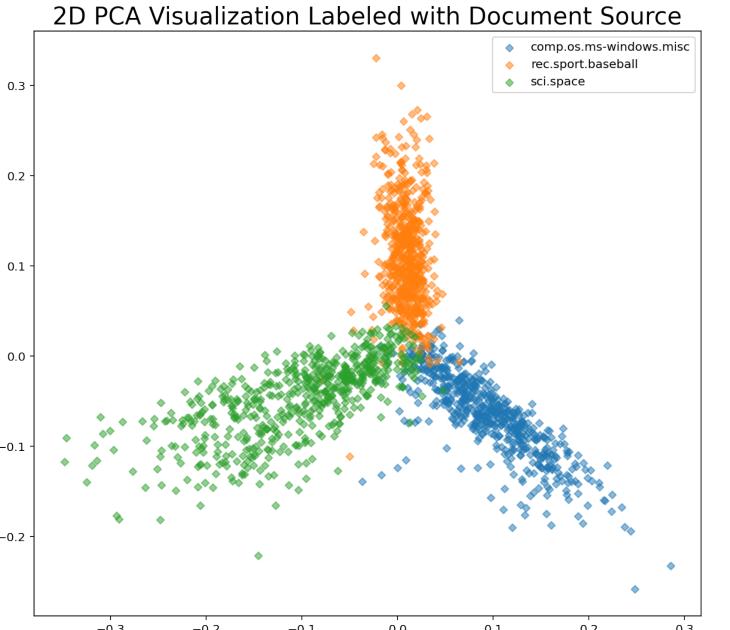


$$M = U \cdot \Sigma \cdot V^T$$

What's next? A couple final thoughts

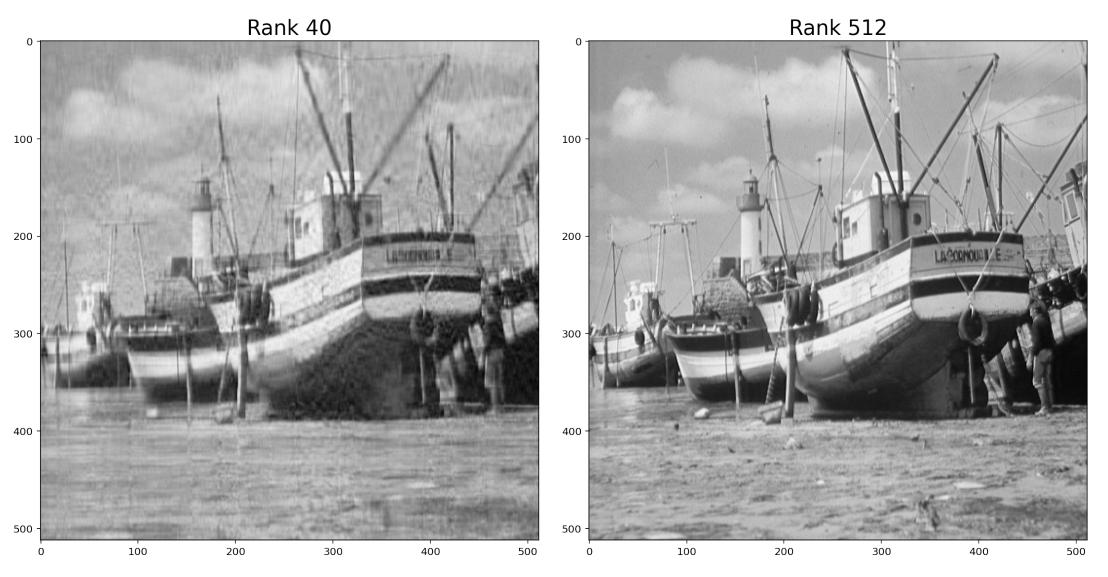
image compression

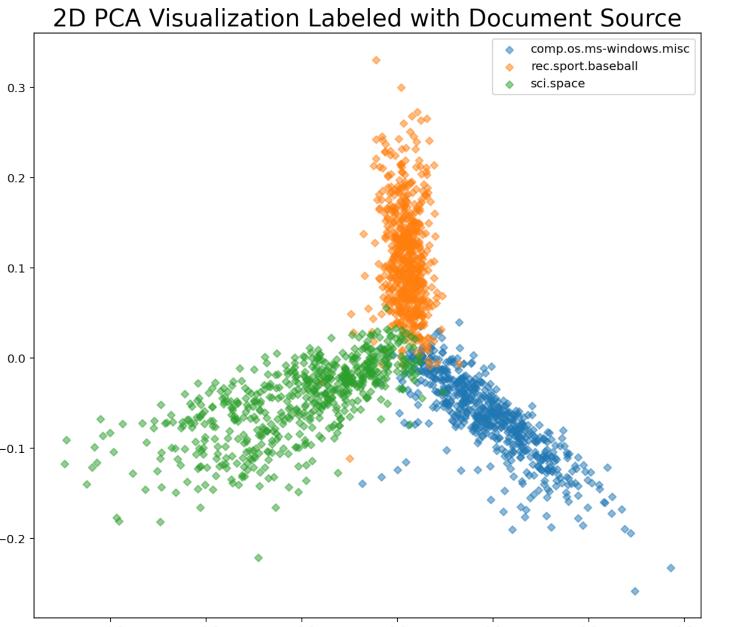




 Reduced SVD, pseudoinverses and least squares

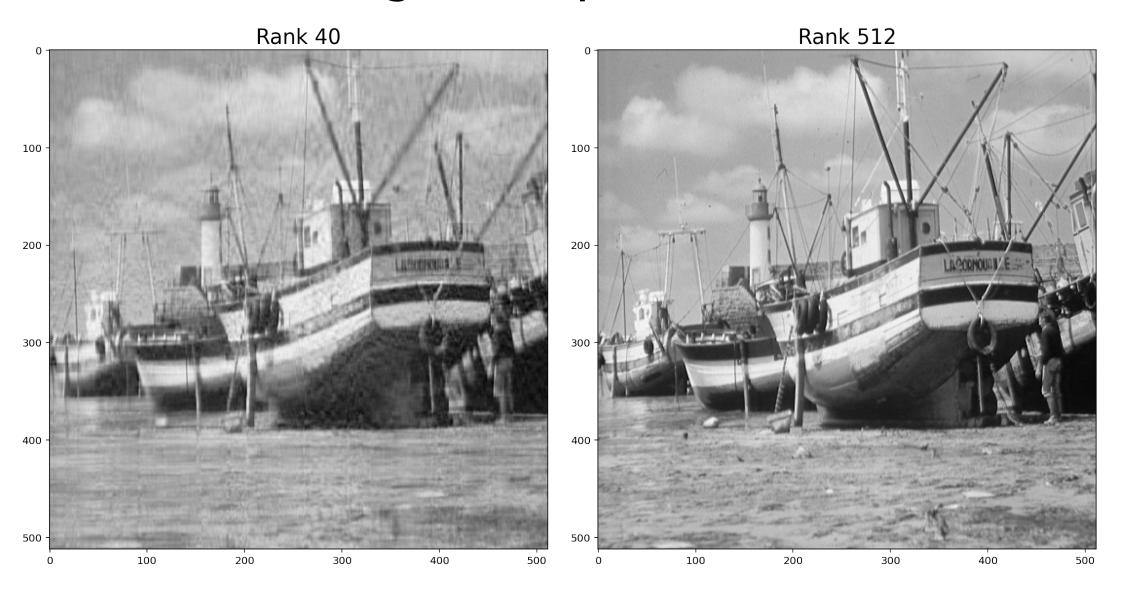
image compression

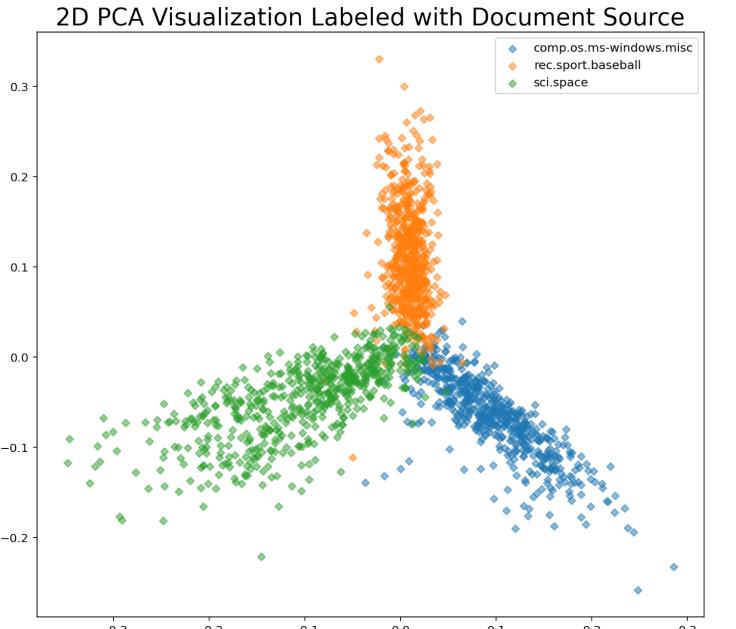




- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V \Sigma^{-1} U^T$, then $A^+ \mathbf{b}$ is a least squares solution of minimum length

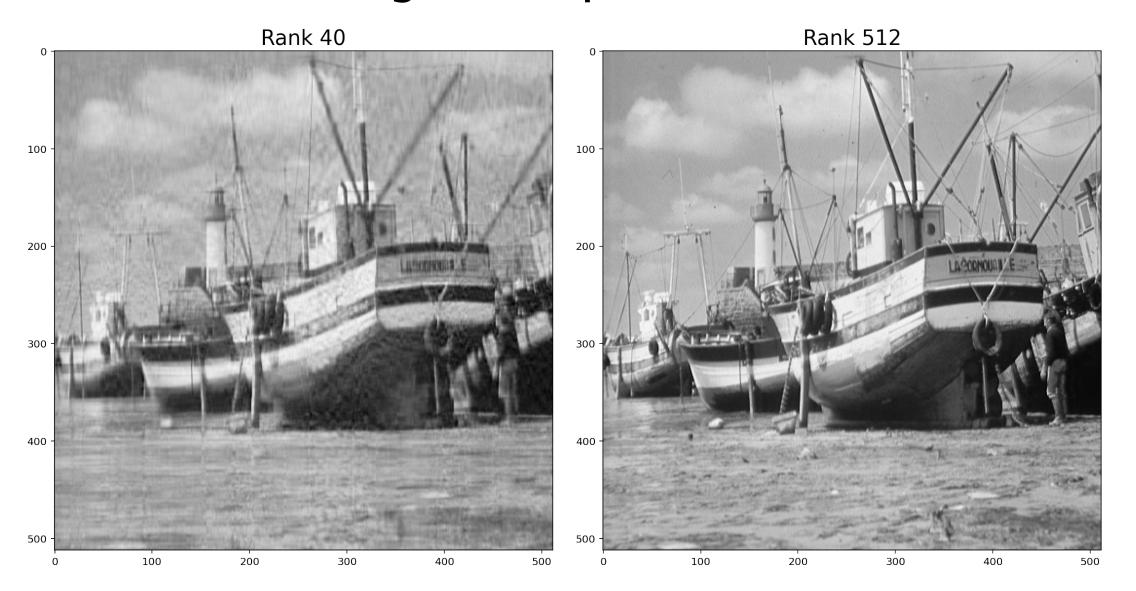
image compression





- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V \Sigma^{-1} U^T$, then $A^+ \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression

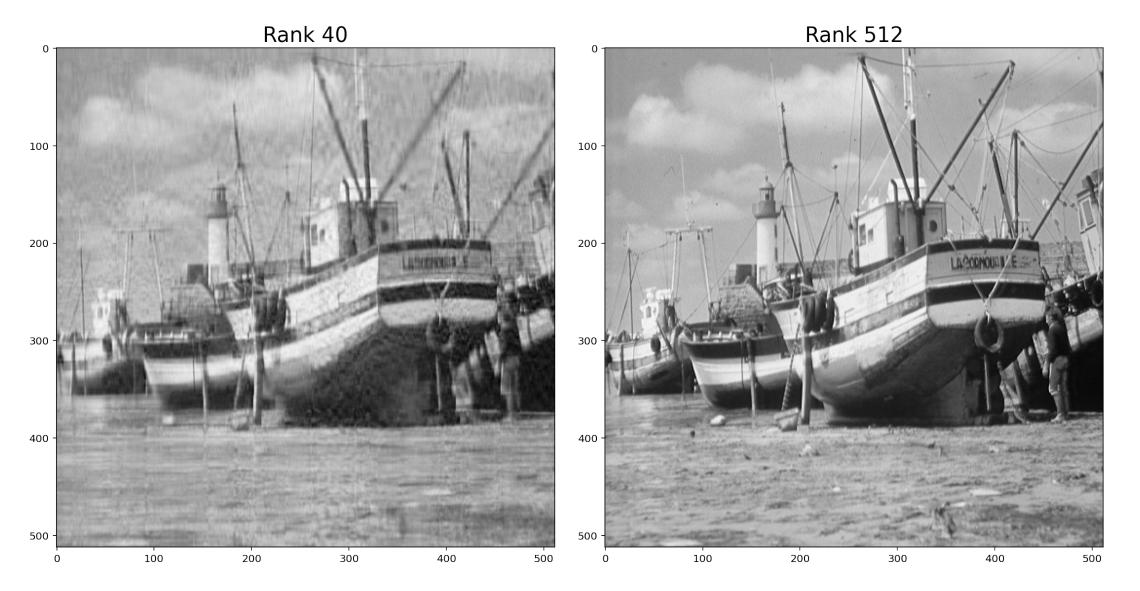
image compression

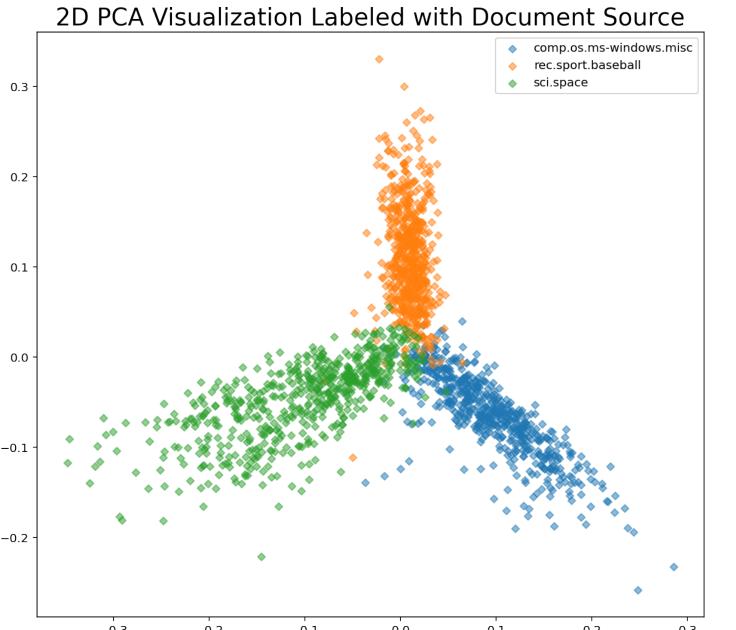




- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V \Sigma^{-1} U^T$, then $A^+ \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A.

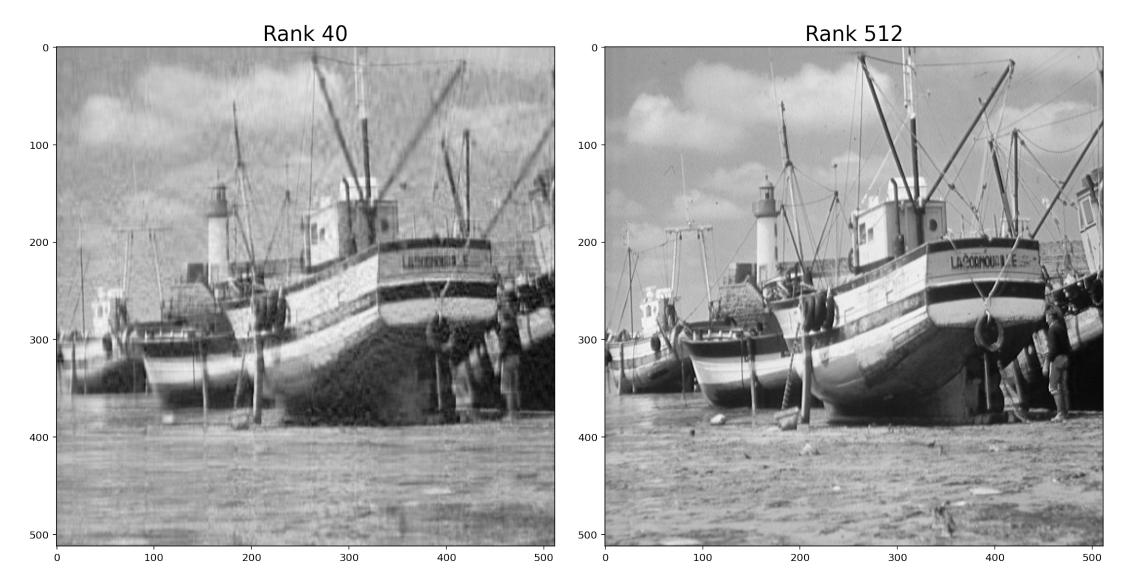
image compression

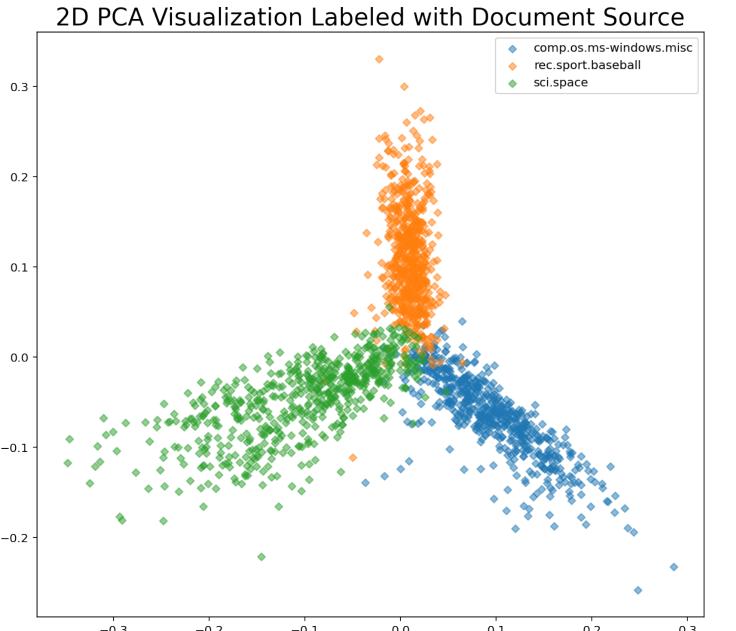




- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V \Sigma^{-1} U^T$, then $A^+ \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A.
 - This is used for image compression

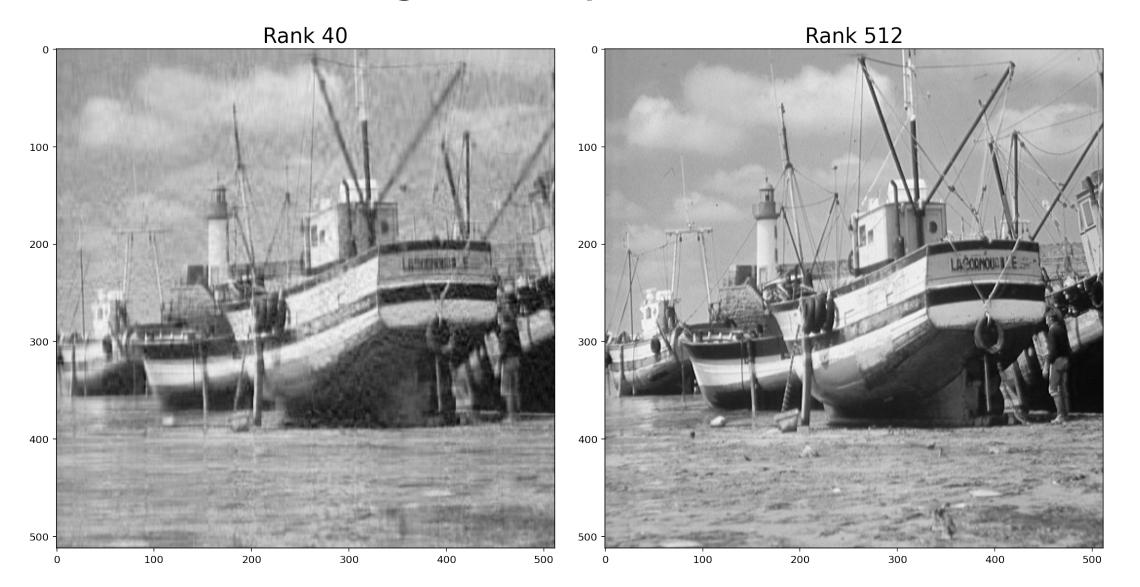
image compression

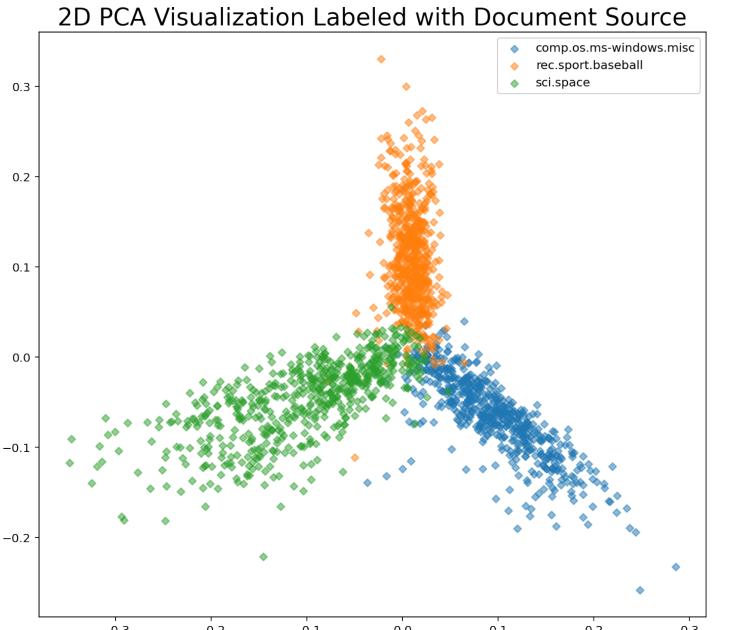




- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V \Sigma^{-1} U^T$, then $A^+ \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A.
 - This is used for image compression
- Principle Component Analysis

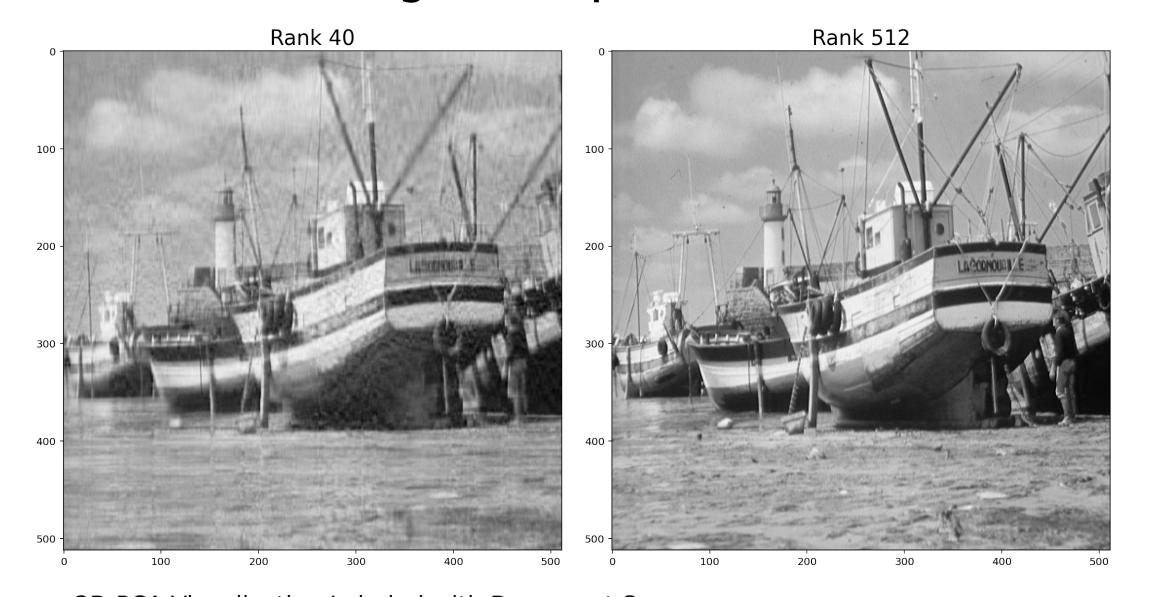
image compression

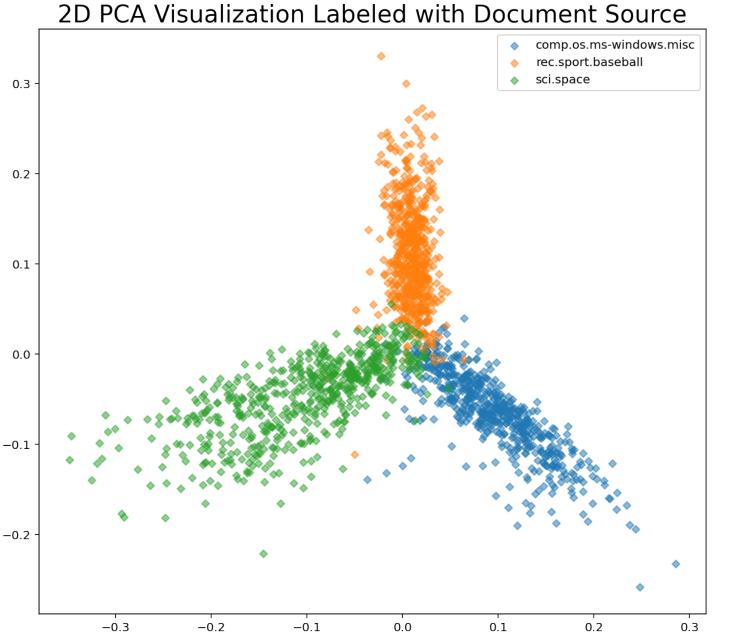




- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V \Sigma^{-1} U^T$, then $A^+ \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A.
 - This is used for image compression
- Principle Component Analysis
 - Large singular vectors are "most affected."

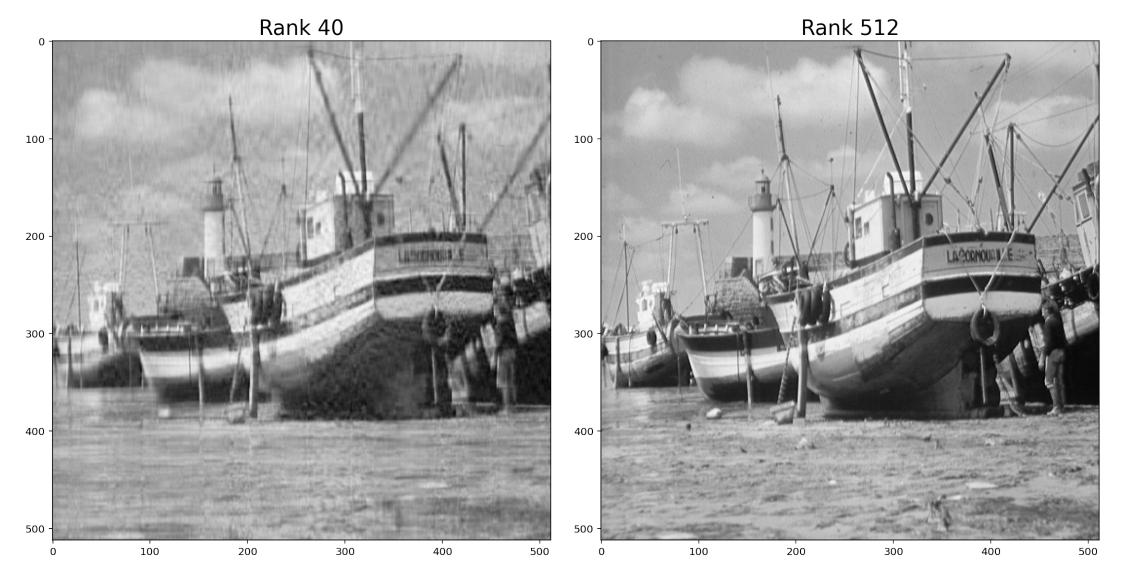
image compression

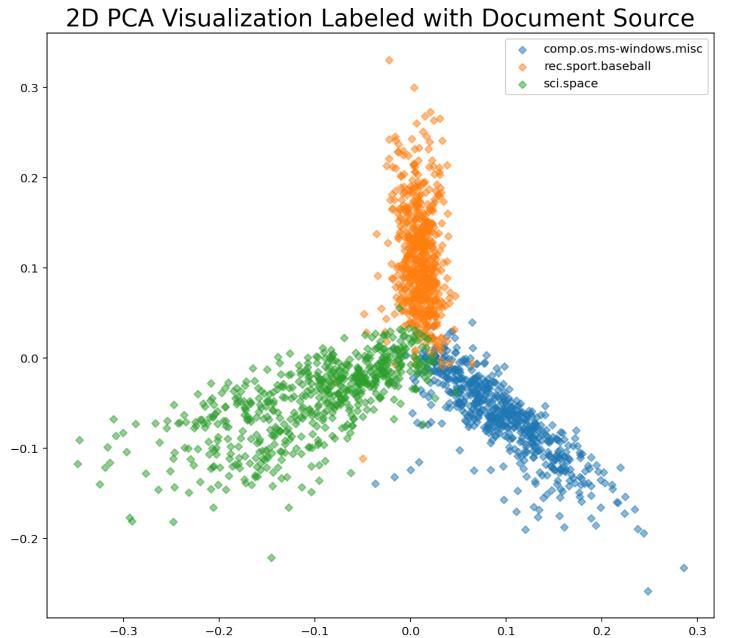


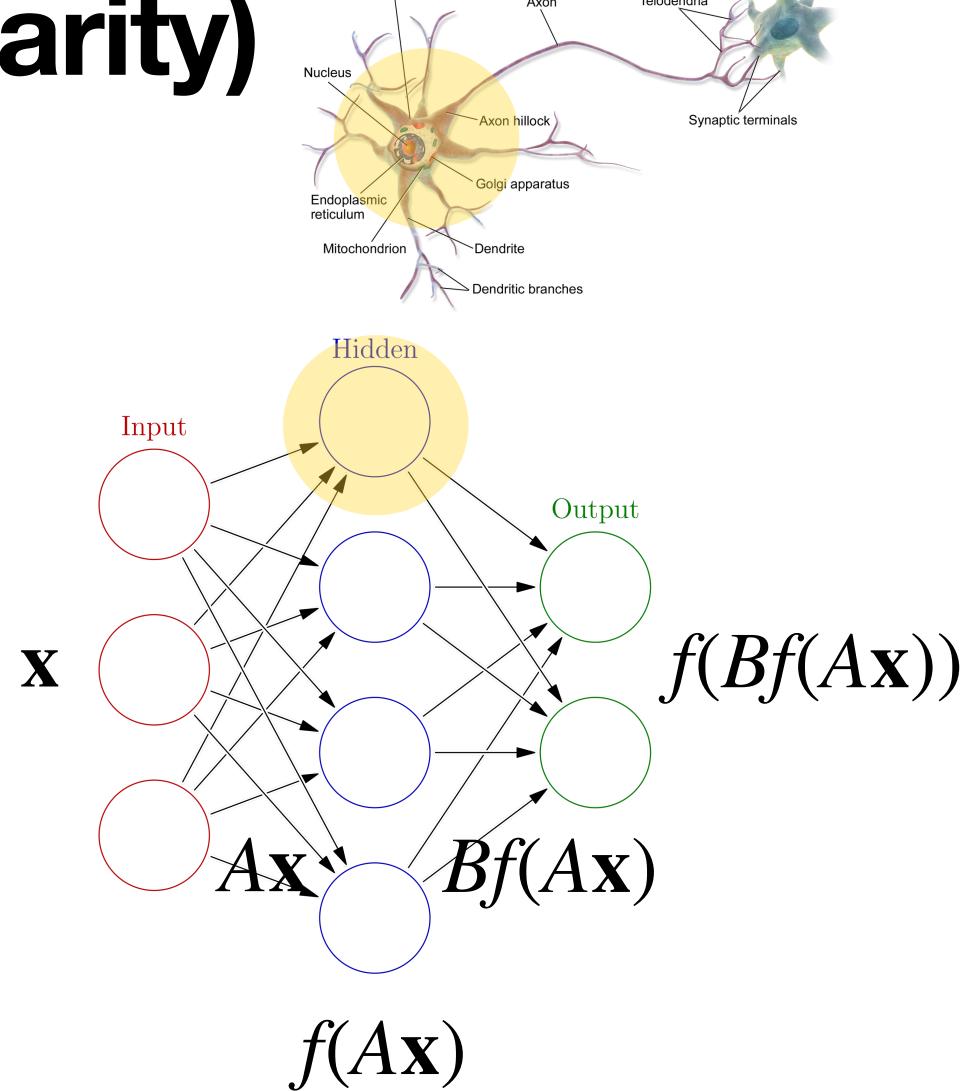


- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V \Sigma^{-1} U^T$, then $A^+ \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A.
 - This is used for image compression
- Principle Component Analysis
 - Large singular vectors are "most affected."
 - These are good vectors to look at for classifying data

image compression

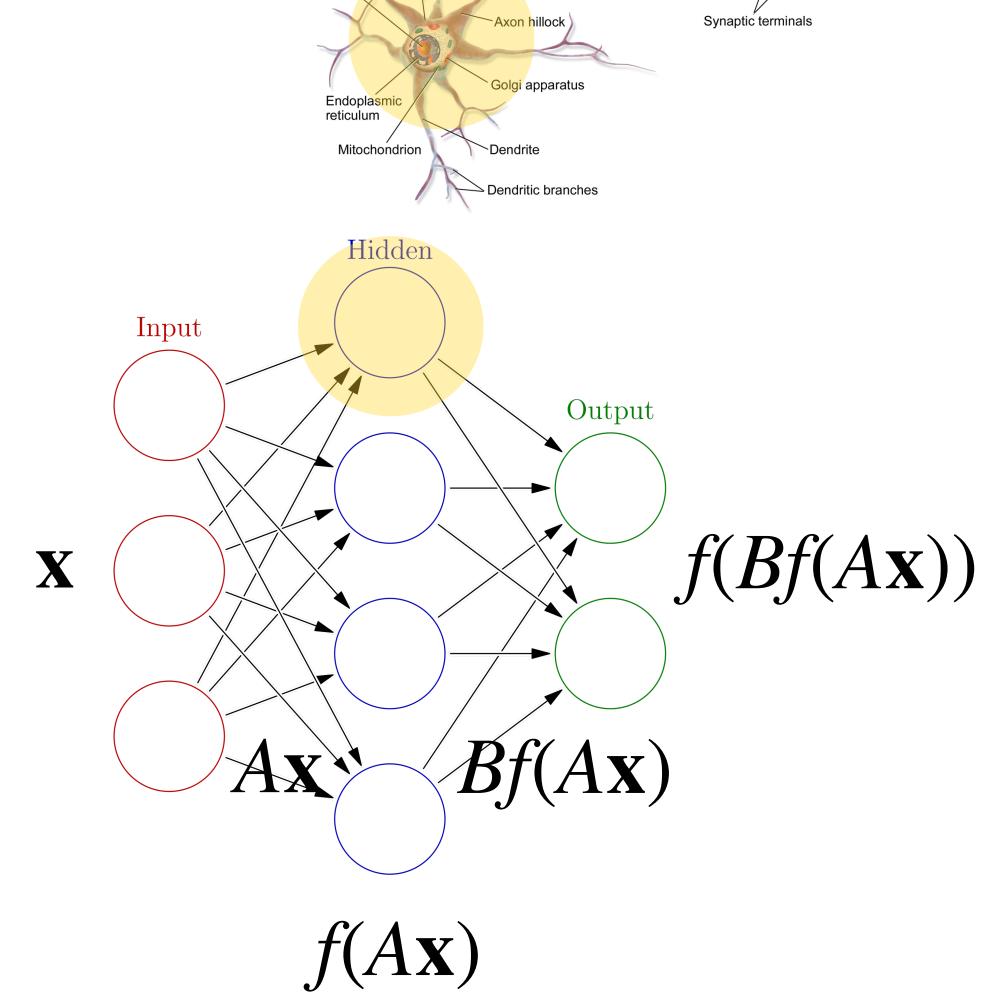






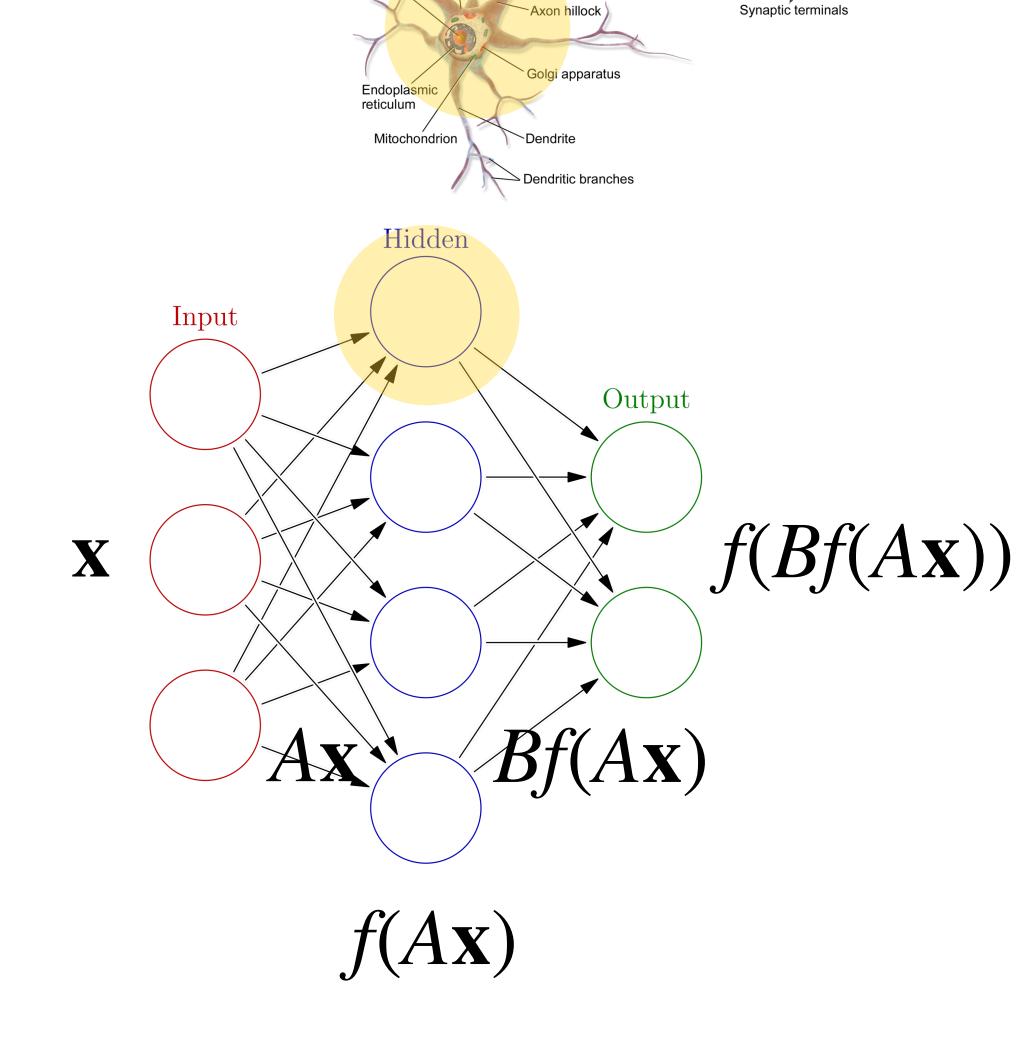
https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg

Neural networks are models of artificial neurons bundles.



Neural networks are models of artificial neurons bundles.

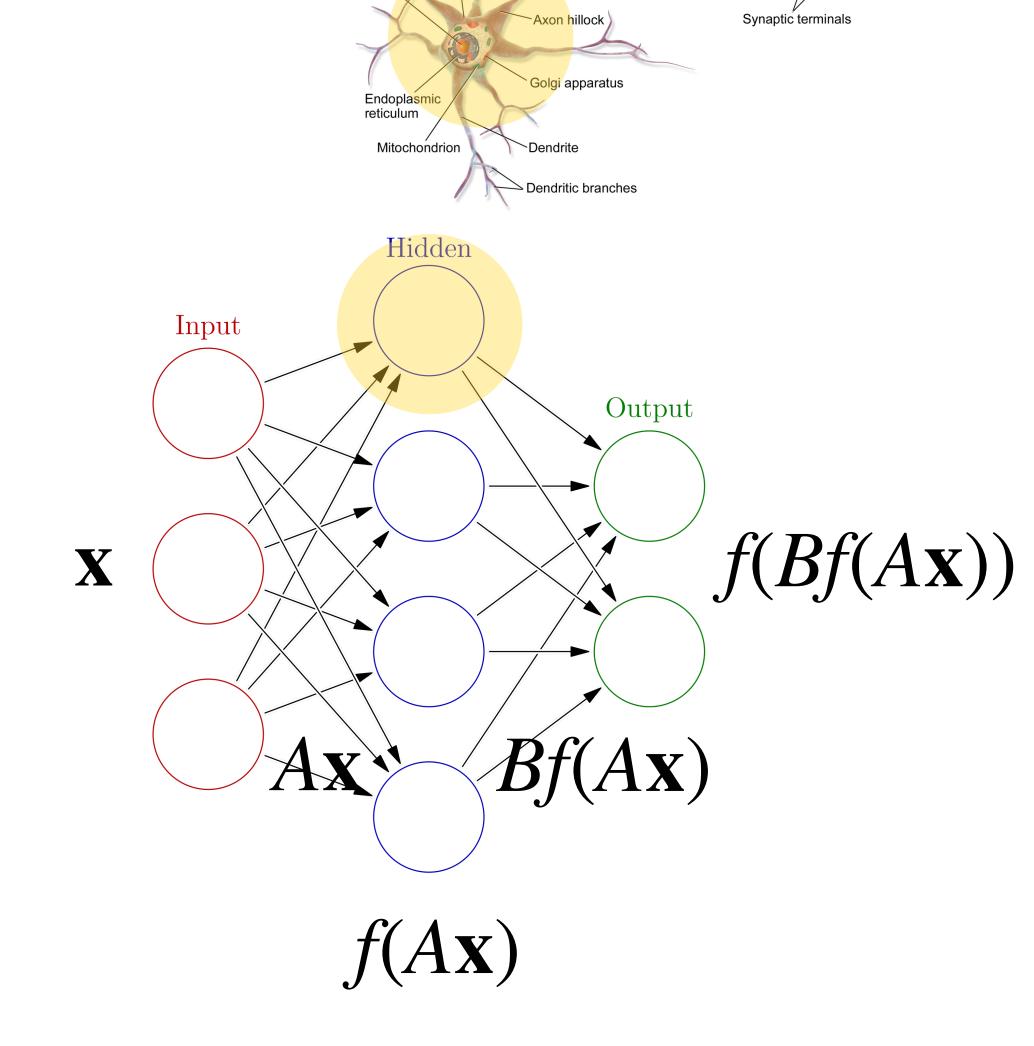
Given an input vector \mathbf{x} , it is transformed into a *hidden* vector $A\mathbf{x}$ by a linear transformation, and then an *activation function f* is applied to the result.



Neural networks are models of artificial neurons bundles.

Given an input vector \mathbf{x} , it is transformed into a *hidden* vector $A\mathbf{x}$ by a linear transformation, and then an *activation function f* is applied to the result.

Neural networks are just matrix multiplications with intermediate calls to a nonlinear function f.

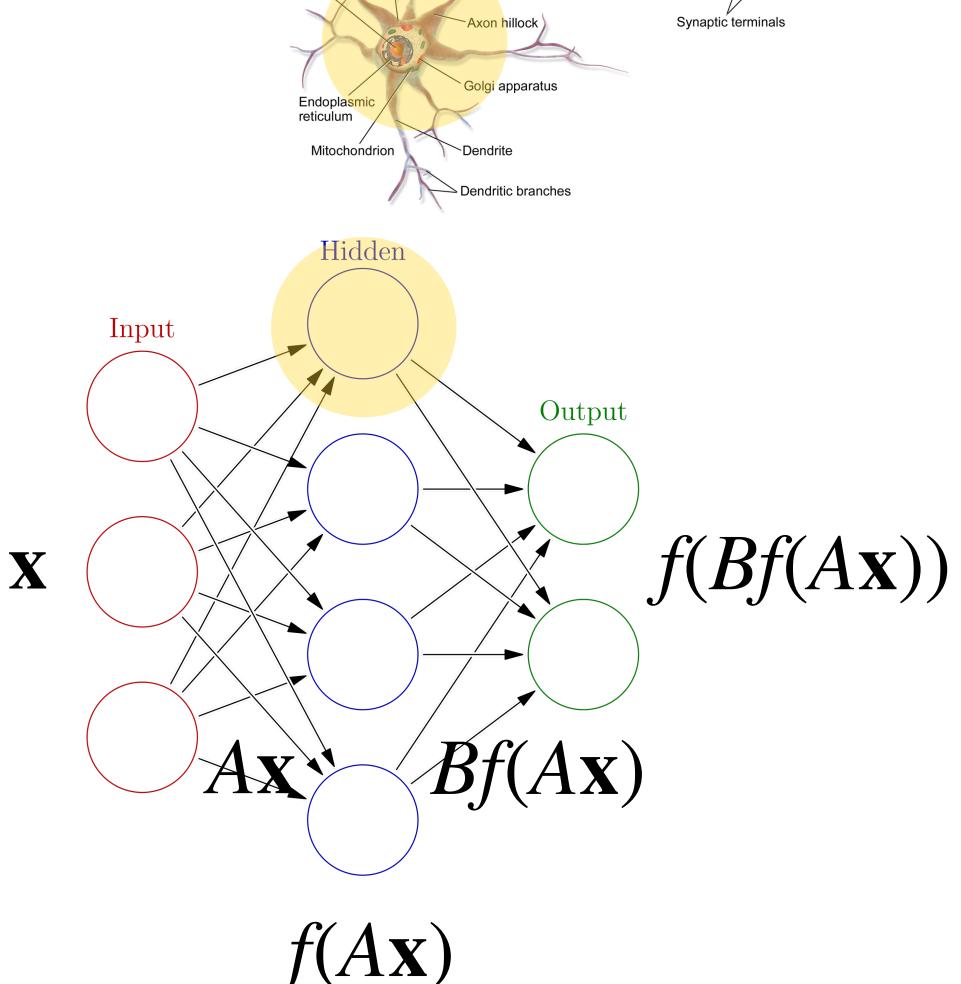


Neural networks are models of artificial neurons bundles.

Given an input vector \mathbf{x} , it is transformed into a *hidden* vector $A\mathbf{x}$ by a linear transformation, and then an *activation function f* is applied to the result.

Neural networks are just matrix multiplications with intermediate calls to a nonlinear function f.

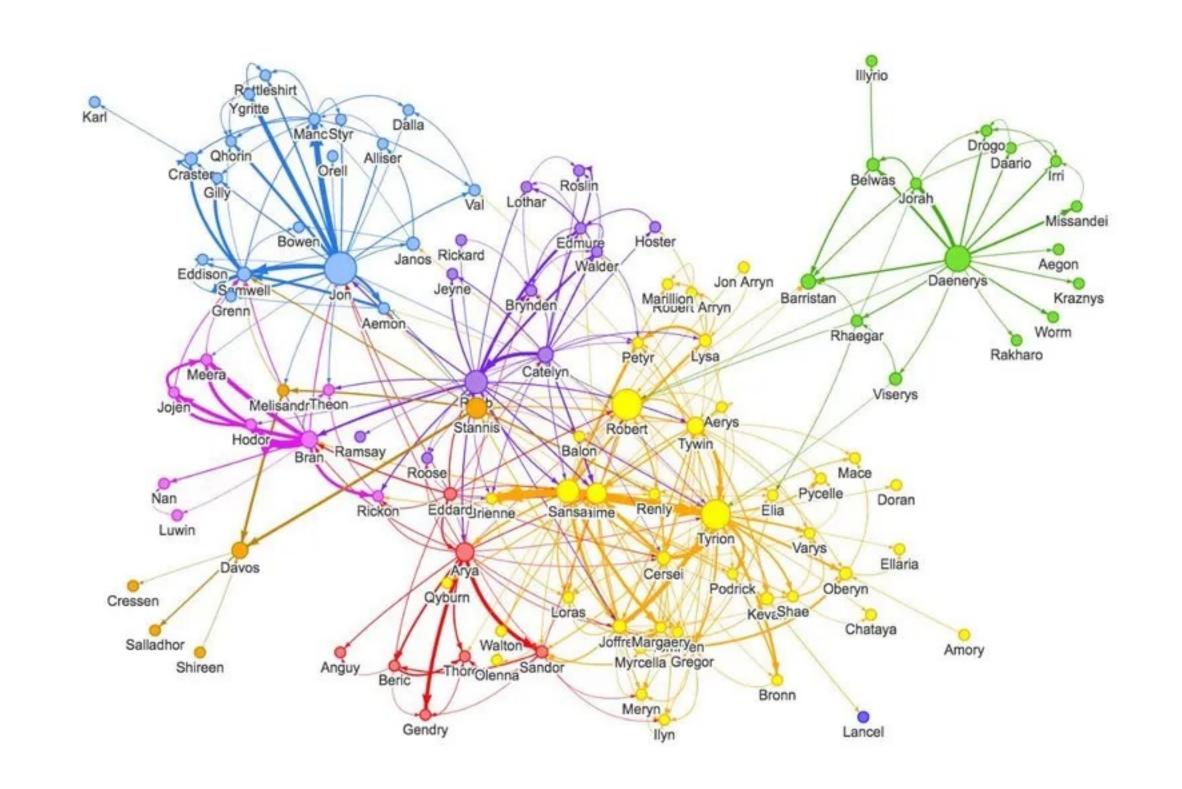
$$NN(\mathbf{x}) = f(A_k(f(A_{k-1}...f(A_1\mathbf{x})))$$



Spectral/Algebraic Graph Theory

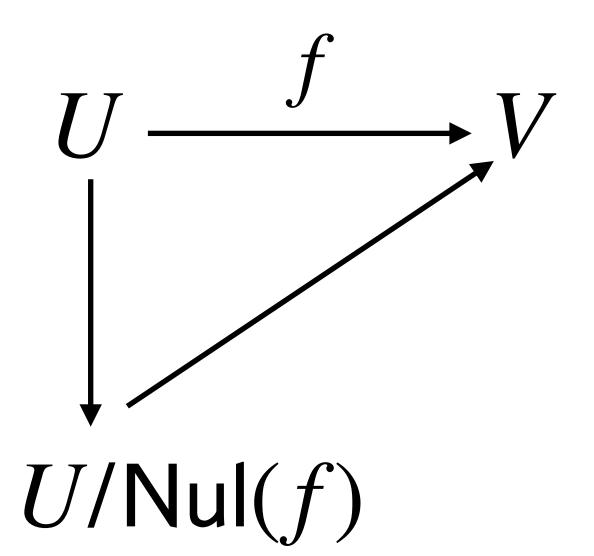
Graphs can be viewed as matrices.

The finding eigenvalues in graphs can gives use better clustering and cutting algorithms.



Abstract Algebra

$$\frac{U}{\mathsf{Nul}(f)} \cong \mathsf{Range}(f)$$



There's a lot of beautiful structure in the algebra we've done in this course.

And there are lots of directions to go from here (infinite dimensional spaces, less restrictive settings like groups and modules,...)

Course List

•CS 583 Audio Computation

```
•CS 365 Foundations of Data Science
•CS 440 Intro to Artificial Intelligence
•CS 480 Intro to Computer Graphics
•CS 505 Intro to Natural Language Processing
•CS 506 Tools for Data Science
•CS 507 Intro to Optimization in ML
•CS 523 Deep Learning
•CS 530 Advanced Algorithms
•CS 531 Advanced Optimization Algorithms
•CS 542 Machine Learning
•CS 565 Algorithmic Data Mining
•CS 581 Computational Fabrication
```

Some of these may not exist anymore...

Appreciations

The Course Staff

I'd like to thank:

Rahul Mitra, Ryan Yu, Vishesh Jain, Jincheng Zhang, Reshab Chhabra, Rachel Du, Yi Du, Eugene Jung, Chris Min, Ieva Sagaitis, Aparna Singh, Kevin Wrenn

If you see them around you should thank them as well.

The CS Department Staff

If you're ever in the CS Department office, be kind to the people who work there. They work very hard to keep all our courses running.

The Students of CS132

Thanks for sticking with it.

For giving feedback.

For adjusting and re-adjusting.

fin