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Introduction



Recap Problem (+ Course Evaluations)

Find an orthogonal diagonalization of’[é ?l.

https://www.bu.edu/courseeval



https://www.bu.edu/courseeval

Answer



Objectives

1. Finish up our discussion of quadratic forms.

2. Introduce the singular value decomposition
(probably the most important matrix
decomposition for computer science).

3. Talk very briefly about what to do after
this course if you want (or have to) to see

more Llinear algebra.



Quadratic Forms (Finishing Up)



Quadratic Forms

Definition. A quadratic form is an function of
variables x,,...,x, 1n which every term has degree two.

Examp Lles:



Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented
as

x! Ax

where A 1s symmetric.

Examp Le:



Example: Computing the Quadratic Form for a Matrix

3 =2
A=
S
This means, given a symmetric matrix A, we can
compute 1ts corresponding quadratic form:



Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say

x!Ax = Z ZAl]xlx = ZA” X7+ Z (A +A)xx;

=1 j=1 7]

Verify:



A Slightly more Complicated Example

1 2 -1
A=12 3 0
-1 0 5
Let's expand x!Ax:



Matrices from Quadratic Forms
O(x) = 5xi + 3x; + 2x§ — XXy + 8XrX3

We can also go 1n the other direction. Let's
express this as x'Ax:



How To: Matrices of Quadratic Forms

Problem. Given a quadratic form QO(x), find the
symmetric matrix A such that Ox) = x'Ax.

Solution.

» if Q(x) has the term ax’ then A .=«



Example
O(x1, Xy, X3, X)) = x12 + 3x22 — 2X3Xy — 6xf + 7XxX3

Find the symmetric matrix A such that QO®x) = x'Ax.



Shapes of of Quadratic Forms

X1

cup

There are essentially three possible shapes (six if
you include the negations).

Can we determine what shape 1t will be
mathematically?

Linear Algebra and its Applications, Lay, Lay, McDonald



Shapes of of Quadratic Forms
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There are essentially three possible shapes (six if
you include the negations).

Can we determine what shape 1t will be
mathematically?

Linear Algebra and its Applications, Lay, Lay, McDonald



Definiteness

O(x) can be + & - 0Ox) <0

1Ox) >0 10m) 20

For x#0, each of the above graphs satisfy the
assoclated properties.



Definiteness

positive semidefinite negative definite
A3 A3 A3 3

X9

le(X) > () B Ox) >0 O(x) ca be + & - 0OX) <0

positive definite indefinite

X9

For x#0, each of the above graphs satisfy the
assoclated properties.



Definiteness and Eigenvectors

Theorem. For a symmetric matrix A, the
quadratic form x'Ax

» poslitive definite

all positive eigenvalues

» positive semidefinite = all nonnegative eigenvalues

» 1ndefinite

positive and negative eigenvalues

» negative definite all negative eigenvalues




Definiteness

all nonneg. eigenvals all neg. eigenvals
positive semidefinite negative definite
3 3 3

O
~ ‘\\
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4P)

le(X) > () B Ox) >0 O(x) can be + & - 0OX) <0

positive definite indefinite
all pos. eigenvals pos. and neg. eigenvals

X



Example
O(x(, X5, X3) = 3x7 + x5 + 4x,x3 + x32

Let's determine which case this 1s:



Constrained Optimization



In General



In General

Given a function f:R"—> R and a set of vectors X
from R” the constrained minimization problem for f
over X 1s the problem of determining

min f(v)

veX
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In General

Given a function f:R"—> R and a set of vectors X
from R” the constrained minimization problem for f
over X 1s the problem of determining

min f(v)

veX

(analogously for maximization)

Find the smallest value of f(v) subject to choosing a
vector 1n X




Constrained Optimization for Quadratic Forms and Unit Vectors

mini/maximize x'Ax subject to |x|| =1

Tt's common to constraint
to unit vectors.




Example: 3x” + 7x;

What are the min/max
values?:




Example: 3x7 + 7x3

The minimum and

maximum values are 8
attained when the 7
"weight" of the Xp o
vector 1s distributed z;;

(0, 1, 7)

(1,0, 3)

all on x;, or x,.




Example: 3x” + 7x;

What 1s the matrix?:

(0,1, 7)

(1,0, 3)




Constrained Optimization and Eigenvalues

Theorem. For a symmetric matrix A, with largest
elgenvalue A, and smallest eigenvalue 1,

max X' AX = A, min X’ AX = A
Ix]|=1 Ix]|=1

n

No matter the shape of A, this will hold.



How To: Constrained Optimization



How To: Constrained Optimization

Problem. Find the maximum value of x'Ax subject
to |Ix|| =1.



How To: Constrained Optimization

Problem. Find the maximum value of x'Ax subject
to |Ix|| =1.

Solution. Find the largest eigenvalue of A,
this will be the maximum value.



How To: Constrained Optimization

Problem. Find the maximum value of x'Ax subject
to |Ix|| =1.

Solution. Find the largest eigenvalue of A,
this will be the maximum value.

(Use NumPy)



Singular Value Decomposition



Question

What shape 1s a the unit sphere after a linear
transformation?

Multiplication
by A

7277




Ellipsoids

Ellipsoids are spheres
"stretched" 1in orthogonal
directions called the
axes of symmetry or the
principle axes.

Linear transformations maps
spheres to ellipsoids.

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg



Simple Example : Scaling Matrices

=[5



The Picture

Multiplication

by A
—




The Picture

Multiplication
by A

—




The Picture

X The longest end of the ellipse 1s the solution to
i a constrained optimization problem
— x| = 1 Multiplication X,
N by A
= — |Ax]| = max ||Ay||

lyll=1

%)




The Picture

T lAX]| = max [|Ay]|
[yll=1

This 1s not a quadratic form...



The Picture

2
A

2 2
T l1Ax||' = max [|Ay]||

=1 But this is.
(18, 6)

This 1s not a quadratic form...



A Quadratic Form

What does ||Ax||* look like?:



The Plcture

The largest
elgenvector of ATA

Multiplication X
by A

—

—

v, solves the constrained optimization problen.



The "Igfluence" of A

Multiplication X
by A

N

v, 1s "most affected"” by A and v, 1s "least affected"



Properties of A’ A
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Properties of A’ A

» It's symmetric.

» S0 1ts orthogonally diagonalizable.
» There 1s an orthogonal basis of eigenvectors.

» It's elgenvalues are nonnegative.



>

>

»

>

»

Properties of A’ A

It's symmetric.

So 1its orthogonally diagonalizable.

There 1s an orthogonal basis of eigenvectors.

It's eigenvalues are nonnegative.

It's positive semidefinite.



Singular Values

Definition. For an mxn matrix A, the singular
values of A are the n values

oy > 0y... 20, >0

l

where o,=4/4 and 4 is an eigenvalue of A"A.



Another picture

|AV3]| = /43 = o3

vV,,V,,v, are the
eigenvectors of A’A

a7 — |AV, || = \51 — 0]
//0 B \
[AV, || = \ﬁz = 0) i - /
The singular values are the lengths of

the axes of symmetry of the ellipsoid
aftter transforming the unit sphere.

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg




FEvery mxn matrix transforms the
unit m—-sphere into an n—ellipsoid.



S0 every mxn matrix has
n singular values.



What else can we say?

Let v,,...,v, be an orthogonal eigenbasis of R”
for A’A and suppose A has r nonzero singular
va lues.

Theorem. Av,...,Av. 1S an orthogonal basis of
Col(A).



What else can we say?

Let v,,...,v, be an orthogonal eigenbasis of R”
for A’A and suppose A has r nonzero singular
va lues.

Theorem. Av,...,Av. 1S an orthogonal basis of
Col(A).

This 1s the most important theorem for SVD.



Verifying it

Let's show Av,...,Av, are linearly 1ndependent:



Verifying it

Let's show Av,,...,Av,. span Col(A):



Putting it all together




Putting it all together

Let A be an mXxn matrix of rank r.

T (3, —9)
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What we Know:




Putting it all together

Let A be an mXxn matrix of rank r.

What we Know:

» We can find orthonormal vectors v, ....,v. 1n R"” such that
Av,,...,Av. 1n R™ form an orthogonal basis for Col(A).



Multiplication X
by A

Putting it all together

Let A be an mXxn matrix of rank r.

What we Know:

» We can find orthonormal vectors v, ....,v. 1n R"” such that
Av,,...,Av. 1n R™ form an orthogonal basis for Col(A).

Av.

l

|AV,||

» S0 1T we take u, = , we get an orthonormal basis of Col(A)



Multiplication X
by A

Putting it all together

Let A be an mXxn matrix of rank r.

What we Know:

» We can find orthonormal vectors v, ....,v. 1n R"” such that
Av,,...,Av. 1n R™ form an orthogonal basis for Col(A).

Av.

l

» S0 1T we take u, =
|AV;||

, we get an orthonormal basis of Col(A)

» And we can extend this to wu;,...,u, an orthonormal basis of
R™ (via Gram-Schmidt).



High Level View of the Decomposition

recall: Orthogonal
matrices preserves vi [/
lengths and angles

M=U-%-V'

https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg



The Important Equality

Av; = ||Av,|[u; = o,

AvV.
|AV;|]

l




The Important Equality ST AV
Av; = ||Av||lu; = o,

Remember that ¢,=4/4 is the singular value,
which 1s the Llength ||Av/|.



The Important Equality ST AV
Av; = ||Av||lu; = o,

l

which 1s the Llength ||Av/|.

Remember that ¢;,=./4, is the singular value,

What happens when we write this 1in matrix form?



The Important Equality

Remember that ¢,=4/4 is the singular value,
which 1s the Llength ||Av/|.



The Important Equality

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u | and

Remember that ¢;,=./4, is the singular value,



The Important Equality

Remember that ¢,=4/4 is the singular value,
which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u | and

m>n

o ... 0 m < n e

L o, 0 0 0 o,
s=|9Y = % orz=]|: S | or == :

R R s |



The Important Equality

Remember that ¢;,=./4, is the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u | and

m > n remember: U 1s orthonormal
°1 0 m<n
5 o, 0 0 0
= | °n| or =1 : ; or ¥ =
0 0 |o s 0 o} |



The Important Equality
AV =U2

Remember that ¢;,=./4, is the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u | and

m > n remember: U 1s orthonormal
o ... 0 m < n
T o 0 0 0
5 _ 0 ... o, or = | : S
0O .. O |O 6 0 0



The Important Equality
AV =U2

Remember that ¢;,=./4, is the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u | and

m > n remember: U 1s orthonormal
o ... 0 m < n
T o 0 0 0
5 _ 0 ... o, or = | : S
0O .. O |O 6 0 0



The Important Equality
AVV! = UZV!

Remember that ¢;,=./4, is the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u | and

m > n remember: U 1s orthonormal
°1 0 m<n
5 o 0 0 0
= | °n| or =1 : ; or ¥ =
0 0 |o s 0 o} |



The Important Equality
A=UxV'

Remember that ¢;,=./4, is the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u | and

m > n remember: U 1s orthonormal
°1 0 m<n
5 o 0 0 0
= | °n| or =1 : ; or ¥ =
0 0 |o s 0 o} |



The Important Equality

singular value decomposition

A=UxV!

Remember that ¢;,=./4, is the singular value,

l

which 1s the length |Av,

Let's take V=[v, ... v.] and U=[u, ... u | and

m > n remember: U 1s orthonormal
°l 0 m<n
’ o 0 0 0
$=|"Y “n| or £=|: s or ¥ =
0 0 |o 60 o} |



Singular Value Decomposition

Theorem. For a mxn matrix A, there are

orthogonal matrices U e R™™ and Ve R™" such
that

mxXxXm nXxn

A=UX V!

mXn

where diagonal entries* of X are oy,...,0, the
singular values of A.

* these are diagonal entries 1n a non-square matrix.




Singular Value Decomposition

Theorem. For a mxn matrix A, there are

orthogonal matrices U e R™ and Ve R™" such
that left singular vectors right singular vectors

mxXxXm nXxn

A=UX V!

mXn

where diagonal entries* of X are oy,...,0, the
singular values of A.

* these are diagonal entries 1n a non-square matrix.




The Picture (Again)

' 4

recall: Orthonormal
matrices preserves Vi [
lengths and angles

‘ll“|||||Iiiiii" EE)
e

M=UX -V

https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg




What's next?
A couple final thoughts




Applications of SVD 0796 Comressian
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Applications of SVD 279 Comression
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Applications of SVD oneression

100 100

e Reduced SVD, pseudoinverses and least
squares .

200

e If At=VvXZ'U’, then A™b is a least
squares solution of minimum length

B
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o classification




Applications of SVD .ae compression |

100 100

* Reduced SVD, pseudoinverses and least R,
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Applications of SVD inage conpression

e Reduced SVD, pseudoinverses and least B,
squares o B T »
.
e If At=VvZ ly!, then A'b is a least

squares solution of minimum length

e Low Rank Approximation and Data Compression

e Replacing small singular values with zero o gy P ¢ i ST o (e
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- = 1lmage compression
Applicationsof SVD ™
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e Reduced SVD, pseudoinverses and least s
squares w1 =
e If AT=VvZlU?, then A'b is a least
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- - 1lmage compression
Applications of SVD

e Reduced SVD, pseudoinverses and least
squares

2004

e If At=VvXZ'U’, then A™b is a least
squares solution of minimum length
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- - 1mage compression
Applications of SVD v

e Reduced SVD, pseudoinverses and least
squares

o If AT=VvXZ U, then A*b is a least
squares solution of minimum Llength

e Low Rank Approximation and Data Compression
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- - 1mage compression
Applications of SVD ™ “"

e Reduced SVD, pseudoinverses and least
squares

o If AT=VvXZ U, then A*b is a least
squares solution of minimum Llength

e Low Rank Approximation and Data Compression

e Replacing small singular values with zero

1n ¥ gives a good approximation to A. 020 PCZOVisuaIizzooation L:;eledv:;oth Doc;o:nen:Spurcgloo
e This is used for image compression 0> s
e Principle Component Analysis 02
e Large singular vectors are "most ” |
affected."” document

classification

0.0 A

e These are good vectors to look at for
classifying data o




Neural Networks (Non-Linearity)

o B,
/ S~ .
Golgi apparatus

Cell body
Axon

7 /
v/

."\
Nucleus 4

@ —Axon hillock |

T Py

Endoplasmic
reticulum

Mitochondrion?XDendrite
|
/ \\k Dendritic branches

\

Hidden

Telodendria

- ~
” N

5 - './-\/Ss’ ﬁ
[/

e — A,/‘--»,k> e

Synaptic terminals

J(Bf(AX))

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Neural networks are models of
artificial neurons bundles.

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Neural networks are models of
artificial neurons bundles.

Given an 1nput vector x, 1t 1S
transformed into a hidden vector
Ax by a linear transformation, and
then an activation function f 1s
applied to the result.

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Neural networks are models of
artificial neurons bundles.

Given an 1nput vector x, 1t 1S
transformed into a hidden vector
Ax by a linear transformation, and
then an activation function f 1s
applied to the result.

Neural networks are just matrix
multiplications with i1intermediate
calls to a nonlinear function 7¥.

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Neural networks are models of
artificial neurons bundles.

Given an 1nput vector x, 1t 1S
transformed into a hidden vector
Ax by a linear transformation, and
then an activation function f 1s
applied to the result.

Neural networks are just matrix
multiplications with i1intermediate
calls to a nonlinear function 7¥.

NN(x) = f(A(f(Ay_;.. J(AX))

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Spectral/Algebraic Graph Theory

Graphs can be viewed as
matrices. . ?%m_m :

g 4)_

Drogo \
o | Daario Q~
a R(gl‘n BeAWaS “h‘\ 1‘ di
Lothar ™, / Jwkah [ [ /S g
. . - Y = o \\ [/ / Missandei
€ Tindlng elgenvalues Nl
/Wa&do,' 4 L Aegon
JonAmyn @ Daenerys -0
- ;
. x A igﬂgﬂ Arfyn Barristan v . l:(raznys
T Rhaegar e Worm
Petyr Lysa Rakharo
Meer ! N\ e > Cale,yn &
. » \ ot G - _' N o Viserys
bette C-LUSte l a d % Rnom A
I I I l I l Hodor; ‘ :
Br?:\ Ramsm // \ Balon S Tywin
o \<j( Roose K NN Mace
O ’ N P
n | Nan , NN ) . Pycelle Doran
@ / Rickon Edvafd_me-\r‘e _Sansaime, Renlyins Elia
u l l | Luwin ¥, ’\ E 2y AN B ' fyrion Varys
N o - \ > llar
Davos 7Arya \ Cersé Ellaria
\ \ Podrick Oberyn
Cressen \
toras % Kev:Shae
O ~— Chataya
Salladhor Walton JoffreMargaeryan, Amory
Shireen ju ThOf'Olér;agandor Myrcelia Gregor
- Bronn
Mery? o
llyn Lancel

https://medium.com/@n.rajadhyaksha/a—-gentle-introduction—-to—graph-spectral-filtering-df03ddc9d3f7/



Abstract Algebra f

U |4
v ~ Range(f)
Nul(H) ‘
U/Nul(f)

There's a lot of beautiful structure 1n the
algebra we've done 1n this course.

And there are lots of directions to go from here
(infinite dimensional spaces, less restrictive
settings like groups and modules,...)
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