Singular Value Decomposition

Geometric Algorithms
Lecture 26

Introduction

Recap Problem (+ Course Evaluations)

Find an orthogonal diagonalization of $\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
https://www.bu.edu/courseeval

Answer

Objectives

1. Finish up our discussion of quadratic forms.
2. Introduce the singular value decomposition (probably the most important matrix decomposition for computer science).
3. Talk very briefly about what to do after this course if you want (or have to) to see more linear algebra.

Quadratic Forms (Finishing Up)

Quadratic Forms

Definition. A quadratic form is an function of variables x_{1}, \ldots, x_{n} in which every term has degree two. Examples:

Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented as

$$
\mathbf{x}^{T} A \mathbf{x}
$$

where A is symmetric.
Example:

Example: Computing the Quadratic Form for a Matrix

$$
A=\left[\begin{array}{cc}
3 & -2 \\
-2 & 7
\end{array}\right]
$$

This means, given a symmetric matrix A, we can compute its corresponding quadratic form:

Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say

$$
\mathbf{x}^{T} A \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}=\sum_{i=1}^{n} A_{i i} x_{i}^{2}+\sum_{i \neq j}\left(A_{i j}+A_{j i}\right) x_{i} x_{j}
$$

Verify:

A Slightly more Complicated Example

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & 0 \\
-1 & 0 & 5
\end{array}\right]
$$

Let's expand $\mathbf{x}^{T} A \mathbf{x}$:

Matrices from Quadratic Forms

$$
Q(\mathbf{x})=5 x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}-x_{1} x_{2}+8 x_{2} x_{3}
$$

We can also go in the other direction. Let's express this as $\mathbf{x}^{T} A \mathbf{x}$:

How To: Matrices of Quadratic Forms

Problem. Given a quadratic form $Q(\mathbf{x})$, find the symmetric matrix A such that $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$.
Solution.
» if $Q(\mathbf{x})$ has the term αx_{i}^{2} then $A_{i i}=\alpha$
» if $Q(\mathbf{x})$ has the term $\alpha x_{i} x_{j}$, then $A_{i j}=A_{j i}=\frac{\alpha}{2}$

Example

$$
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+3 x_{2}^{2}-2 x_{3} x_{4}-6 x_{4}^{2}+7 x_{1} x_{3}
$$

Find the symmetric matrix A such that $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$.

Shapes of of Quadratic Forms

There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

Shapes of of Quadratic Forms

There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

Definiteness

For $\mathbf{x} \neq \mathbf{0}$, each of the above graphs satisfy the associated properties.

Definiteness

positive semidefinite

positive definite

For $\mathbf{x} \neq \mathbf{0}$, each of the above graphs satisfy the associated properties.

Definiteness and Eigenvectors

Theorem. For a symmetric matrix A, the quadratic form $\mathbf{x}^{T} A \mathbf{x}$
» positive definite $\quad \equiv$ all positive eigenvalues
» positive semidefinite \equiv all nonnegative eigenvalues
» indefinite \equiv positive and negative eigenvalues
» negative definite \equiv all negative eigenvalues

Definiteness

all nonneg. eigenvals positive semidefinite

positive definite all pos. eigenvals

$$
{ }^{x_{1}^{\prime}} \Omega(\mathbf{X})>0
$$

all neg. eigenvals negative definite

$Q(\mathbf{x})$ can be $+\&-Q(\mathbf{x})<0$ indefinite pos. and neg. eigenvals

Example

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}+x_{2}^{2}+4 x_{2} x_{3}+x_{3}^{2}
$$

Let's determine which case this is:

Constrained Optimization

In General

In General

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a set of vectors X from \mathbb{R}^{n} the constrained minimization problem for f over X is the problem of determining

$$
\min _{\mathbf{v} \in X} f(\mathbf{v})
$$

In General

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a set of vectors X from \mathbb{R}^{n} the constrained minimization problem for f over X is the problem of determining

$$
\min _{\mathbf{v} \in X} f(\mathbf{v})
$$

(analogously for maximization)

In General

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a set of vectors X from \mathbb{R}^{n} the constrained minimization problem for f over X is the problem of determining

$$
\min _{\mathbf{v} \in X} f(\mathbf{v})
$$

(analogously for maximization)
Find the smallest value of $f(\mathbf{v})$ subject to choosing a vector in X

Constrained Optimization for Quadratic Forms and Unit Vectors

mini/maximize $\mathbf{x}^{T} A \mathbf{x}$ subject to $\|\mathbf{x}\|=1$

It's common to constraint to unit vectors.

Example: $3 x_{1}^{2}+7 x_{2}^{2}$

What are the min/max values?:

Example: $3 x_{1}^{2}+7 x_{2}^{2}$

The minimum and maximum values are attained when the "weight" of the vector is distributed all on x_{1} or x_{2}.

Example: $3 x_{1}^{2}+7 x_{2}^{2}$

What is the matrix?:

Constrained Optimization and Eigenvalues

Theorem. For a symmetric matrix A, with largest eigenvalue λ_{1} and smallest eigenvalue λ_{n}

$$
\max _{\|\mathbf{x}\|=1} \mathbf{x}^{T} A \mathbf{x}=\lambda_{1} \quad \min _{\|\mathbf{x}\|=1} \mathbf{x}^{T} A \mathbf{x}=\lambda_{n}
$$

No matter the shape of A, this will hold.

How To: Constrained Optimization

How To: Constrained Optimization

Problem. Find the maximum value of $\mathbf{x}^{T} A \mathbf{x}$ subject to $\|\mathbf{x}\|=1$.

How To: Constrained Optimization

> Problem. Find the maximum value of $\mathbf{x}^{T} A \mathbf{x}$ subject to $\|\mathbf{x}\|=1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

How To: Constrained Optimization

> Problem. Find the maximum value of $\mathbf{x}^{T} A \mathbf{x}$ subject to $\|\mathbf{x}\|=1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.
(Use NumPy)

Singular Value Decomposition

Question

What shape is a the unit sphere after a linear transformation?

???

Ellipsoids

Ellipsoids are spheres "stretched" in orthogonal directions called the axes of symmetry or the principle axes.

Linear transformations maps spheres to ellipsoids.

Simple Example : Scaling Matrices

The Picture

The Picture

The Picture

The Picture

This is not a quadratic form...

The Picture

This is not a quadratic form...

A Quadratic Form

What does $\|A \mathbf{x}\|^{2}$ look like?:

The Picture

\mathbf{v}_{1} solves the constrained optimization problem.

The "Influence" of A

v_{1} is "most affected" by A and v_{2} is "least affected"

Properties of $A^{T} A$

Properties of $A^{T} A$

» It's symmetric.

Properties of $A^{T} A$

» It's symmetric.
» So its orthogonally diagonalizable.

Properties of $A^{T} A$

» It's symmetric.
» So its orthogonally diagonalizable.
» There is an orthogonal basis of eigenvectors.

Properties of $A^{T} A$

» It's symmetric.
» So its orthogonally diagonalizable.
» There is an orthogonal basis of eigenvectors.
» It's eigenvalues are nonnegative.

Properties of $A^{T} A$

» It's symmetric.
» So its orthogonally diagonalizable.
» There is an orthogonal basis of eigenvectors.
» It's eigenvalues are nonnegative.
» It's positive semidefinite.

Singular Values

Definition. For an $m \times n$ matrix A, the singular values of A are the n values

$$
\sigma_{1} \geq \sigma_{2} \ldots \geq \sigma_{n} \geq 0
$$

where $\sigma_{i}=\sqrt{\lambda_{i}}$ and λ_{i} is an eigenvalue of $A^{T} A$.

Another picture

$$
\left\|A \mathbf{v}_{3}\right\|=\sqrt{\lambda_{3}}=\sigma_{3}
$$

$\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are the eigenvectors of $A^{T} A$
$\left\|A \mathbf{v}_{2}\right\|=\sqrt{\lambda_{2}}=\sigma_{2}$

$$
\left\|A \mathbf{v}_{1}\right\|=\sqrt{\lambda_{1}}=\sigma_{1}
$$

The singular values are the lengths of the axes of symmetry of the ellipsoid after transforming the unit sphere.

Every $m \times n$ matrix transforms the unit m-sphere into an n-ellipsoid.

So every $m \times n$ matrix has n singular values.

What else can we say?

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be an orthogonal eigenbasis of \mathbb{R}^{n} for $A^{T} A$ and suppose A has r nonzero singular values.

Theorem. $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}$ is an orthogonal basis of $\operatorname{Col}(A)$.

What else can we say?

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be an orthogonal eigenbasis of \mathbb{R}^{n} for $A^{T} A$ and suppose A has r nonzero singular values.

Theorem. $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}$ is an orthogonal basis of $\operatorname{Col}(A)$.

This is the most important theorem for SVD.

Verifying it

Let's show $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}$ are linearly independent:

Verifying it

Let's show $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}$ span $\operatorname{Col}(A)$:

Putting it all together

Putting it all together

Let A be an $m \times n$ matrix of rank r.

Putting it all together

Let A be an $m \times n$ matrix of rank r.

What we know:

Putting it all together

Let A be an $m \times n$ matrix of rank r.

What we know:
» We can find orthonormal vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ in \mathbb{R}^{n} such that $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}$ in \mathbb{R}^{m} form an orthogonal basis for $\operatorname{Col}(A)$.

Putting it all together

Let A be an $m \times n$ matrix of rank r.

What we know:
» We can find orthonormal vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ in \mathbb{R}^{n} such that $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}$ in \mathbb{R}^{m} form an orthogonal basis for $\operatorname{Col}(A)$.
» So if we take $\mathbf{u}_{i}=\frac{A \mathbf{v}_{i}}{\left\|A \mathbf{v}_{i}\right\|}$, we get an orthonormal basis of $\operatorname{Col}(A)$

Putting it all together

Let A be an $m \times n$ matrix of rank r.
 What we know:
» We can find orthonormal vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ in \mathbb{R}^{n} such that $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}$ in \mathbb{R}^{m} form an orthogonal basis for $\operatorname{Col}(A)$.
» So if we take $\mathbf{u}_{i}=\frac{A \mathbf{v}_{i}}{\left\|A \mathbf{v}_{i}\right\|}$, we get an orthonormal basis of $\operatorname{Col}(A)$
» And we can extend this to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ an orthonormal basis of \mathbb{R}^{m} (via Gram-Schmidt).

High Level View of the Decomposition

The Important Equality

$$
\mathbf{u}_{i}=\frac{A \mathbf{v}_{i}}{\left\|A \mathbf{v}_{i}\right\|}
$$

$$
A \mathbf{v}_{i}=\left\|A \mathbf{v}_{i}\right\| \mathbf{u}_{i}=\sigma_{i} \mathbf{u}_{i}
$$

The Important Equality
 $\mathbf{u}_{i}=\frac{A \mathbf{v}_{i}}{\left\|A \mathbf{v}_{i}\right\|}$
 $$
A \mathbf{v}_{i}=\left\|A \mathbf{v}_{i}\right\| \mathbf{u}_{i}=\sigma_{i} \mathbf{u}_{i}
$$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A v_{i}\right\|$.

The Important Equality
 $$
\mathbf{u}_{i}=\frac{A \mathbf{v}_{i}}{\left\|A \mathbf{v}_{i}\right\|}
$$
 $$
A \mathbf{v}_{i}=\left\|A \mathbf{v}_{i}\right\| \mathbf{u}_{i}=\sigma_{i} \mathbf{u}_{i}
$$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A \mathbf{v}_{i}\right\|$.
What happens when we write this in matrix form?

The Important Equality

$$
A\left[\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\sigma_{1} \mathbf{u}_{1} & \ldots & \sigma_{n} \mathbf{u}_{n}
\end{array}\right]
$$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A v_{i}\right\|$.

The Important Equality

$$
A\left[\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\sigma_{1} \mathbf{u}_{1} & \ldots & \sigma_{n} \mathbf{u}_{n}
\end{array}\right]
$$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A v_{i}\right\|$.
Let's take $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{m}\end{array}\right]$ and

The Important Equality

$$
A\left[\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\sigma_{1} \mathbf{u}_{1} & \ldots & \sigma_{n} \mathbf{u}_{n}
\end{array}\right]
$$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A v_{i}\right\|$.
Let's take $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{m}\end{array}\right]$ and

$$
\Sigma=\left[\begin{array}{ccc}
m>n \\
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n} \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots
\end{array}\right] \quad \text { or } \Sigma=\left[\begin{array}{cccccc}
\sigma_{1} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{m} & 0 & \ldots & 0
\end{array}\right] \text { or } \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n}
\end{array}\right]
$$

The Important Equality

$$
A\left[\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\sigma_{1} \mathbf{u}_{1} & \ldots & \sigma_{n} \mathbf{u}_{n}
\end{array}\right]
$$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A v_{i}\right\|$.
Let's take $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{m}\end{array}\right]$ and

$$
\begin{aligned}
& m>n \quad \text { remember: } U \text { is orthonormal } \\
& \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n} \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots
\end{array}\right] \quad \text { or } \Sigma=\left[\begin{array}{cccccc}
\sigma_{1} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{m} & 0 & \ldots & 0
\end{array}\right] \text { or } \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n}
\end{array}\right]
\end{aligned}
$$

The Important Equality

$A V=U \Sigma$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A \mathbf{v}_{i}\right\|$.
Let's take $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{m}\end{array}\right]$ and

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n} \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots
\end{array}\right] \quad \text { or } \Sigma=\left[\begin{array}{cccccc}
\sigma_{1} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{m} & 0 & \ldots & 0
\end{array}\right] \text { or } \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n}
\end{array}\right]
$$

The Important Equality

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A \mathbf{v}_{i}\right\|$.
Let's take $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{m}\end{array}\right]$ and

$$
\Sigma=\left[\begin{array}{ccc}
m>n \\
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n} \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots
\end{array}\right] \quad \text { or } \Sigma=\left[\begin{array}{cccccc}
\sigma_{1} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{m} & 0 & \ldots & 0
\end{array}\right] \text { or } \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n}
\end{array}\right]
$$

The Important Equality

$A V V^{T}=U \Sigma V^{T}$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A \mathbf{v}_{i}\right\|$.
Let's take $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{m}\end{array}\right]$ and

$$
\Sigma=\left[\begin{array}{ccc}
m>n \\
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n} \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots
\end{array}\right] \quad \text { or } \Sigma=\left[\begin{array}{cccccc}
\sigma_{1} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{m} & 0 & \ldots & 0
\end{array}\right] \text { or } \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n}
\end{array}\right]
$$

The Important Equality

$A=U \Sigma V^{T}$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A v_{i}\right\|$.
Let's take $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{m}\end{array}\right]$ and

$$
\Sigma=\left[\right.
$$

The Important Equality

singular value decomposition

$A=U \Sigma V^{T}$

Remember that $\sigma_{i}=\sqrt{\lambda_{i}}$ is the singular value, which is the length $\left\|A \mathbf{v}_{i}\right\|$.
Let's take $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{m}\end{array}\right]$ and

$$
\begin{aligned}
& m>n \quad \text { remember: } U \text { is orthonormal } \\
& \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n} \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots
\end{array}\right] \quad \text { or } \Sigma=\left[\begin{array}{cccccc}
\sigma_{1} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{m} & 0 & \ldots & 0
\end{array}\right] \text { or } \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n}
\end{array}\right]
\end{aligned}
$$

Singular Value Decomposition

Theorem. For a $m \times n$ matrix A, there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
A=\underset{m \times n}{m \times \sum_{n}} \sum_{n \times n}^{n}
$$

where diagonal entries* of Σ are $\sigma_{1}, \ldots, \sigma_{n}$ the singular values of A.

Singular Value Decomposition

Theorem. For a $m \times n$ matrix A, there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that left singular vectors right singular vectors

$$
A=U_{m \times n}^{m \times m} \sum_{n}^{n \times n} V^{T}
$$

where diagonal entries* of Σ are $\sigma_{1}, \ldots, \sigma_{n}$ the singular values of A.

The Picture (Again)

What's next? A couple final thoughts

Applications of SVD

image compression

2D PCA Visualization Labeled with Document Source

document classification

Applications of SVD

- Reduced SVD, pseudoinverses and least squares
image compression

2D PCA Visualization Labeled with Document Source

document classification

Applications of SVD

- Reduced SVD, pseudoinverses and least squares
- If $A^{+}=V \Sigma^{-1} U^{T}$, then $A^{+} \mathbf{b}$ is a least squares solution of minimum length
image compression

2D PCA Visualization Labeled with Document Source

document classification

Applications of SVD

- Reduced SVD, pseudoinverses and least squares
- If $A^{+}=V \Sigma^{-1} U^{T}$, then $A^{+} \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression

 classification

Applications of SVD

- Reduced SVD, pseudoinverses and least squares
- If $A^{+}=V \Sigma^{-1} U^{T}$, then $A^{+} \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
- Replacing small singular values with zero in Σ gives a good approximation to A.
image compression

2D PCA Visualization Labeled with Document Source

Applications of SVD

- Reduced SVD, pseudoinverses and least squares
- If $A^{+}=V \Sigma^{-1} U^{T}$, then $A^{+} \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
- Replacing small singular values with zero in Σ gives a good approximation to A.
image compression

- This is used for image compression

Applications of SVD

- Reduced SVD, pseudoinverses and least squares
- If $A^{+}=V \Sigma^{-1} U^{T}$, then $A^{+} \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
- Replacing small singular values with zero in Σ gives a good approximation to A.
image compression

- This is used for image compression
- Principle Component Analysis

Applications of SVD

- Reduced SVD, pseudoinverses and least squares
- If $A^{+}=V \Sigma^{-1} U^{T}$, then $A^{+} \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
- Replacing small singular values with zero in Σ gives a good approximation to A.
image compression

Applications of SVD

- Reduced SVD, pseudoinverses and least squares
- If $A^{+}=V \Sigma^{-1} U^{T}$, then $A^{+} \mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
- Replacing small singular values with zero in Σ gives a good approximation to A.
- This is used for image compression
- Principle Component Analysis
- Large singular vectors are "most affected."
- These are good vectors to look at for classifying data
image compression

Neural Networks (Non-Linearity)

$$
f(A \mathbf{x})
$$

Neural Networks (Non-Linearity)

Neural networks are models of artificial neurons bundles.

Neural Networks (Non-Linearity)

Neural networks are models of artificial neurons bundles.

Given an input vector x, it is transformed into a hidden vector $A x$ by a linear transformation, and then an activation function f is applied to the result.

$f(A \mathbf{x})$

Neural Networks (Non-Linearity)

Neural networks are models of artificial neurons bundles.

Given an input vector x, it is transformed into a hidden vector Ax by a linear transformation, and then an activation function f is applied to the result.

Neural networks are just matrix multiplications with intermediate calls to a nonlinear function f.

$f(A \mathbf{x})$

Neural Networks (Non-Linearity)

Neural networks are models of artificial neurons bundles.

Given an input vector x, it is transformed into a hidden vector Ax by a linear transformation, and then an activation function f is applied to the result.

Neural networks are just matrix multiplications with intermediate calls to a nonlinear function f.

$f(A \mathbf{x})$

$$
\mathrm{NN}(\mathbf{x})=f\left(A _ { k } \left(f\left(A_{k-1} \ldots f\left(A_{1} \mathbf{x}\right)\right)\right.\right.
$$

Spectral/Algebraic Graph Theory

Graphs can be viewed as matrices.

The finding eigenvalues in graphs can gives use better clustering and cutting algorithms.

Abstract Algebra

$$
\frac{U}{\operatorname{Nul}(f)} \cong \operatorname{Range}(f)
$$

$U / \operatorname{Nul}(f)$

There's a lot of beautiful structure in the algebra we've done in this course.

And there are lots of directions to go from here (infinite dimensional spaces, less restrictive settings like groups and modules,...)

Course List

-CS 365 Foundations of Data Science
-CS 440 Intro to Artificial Intelligence
-CS 480 Intro to Computer Graphics
-CS 505 Intro to Natural Language Processing
-CS 506 Tools for Data Science
-CS 507 Intro to Optimization in ML
-CS 523 Deep Learning
-CS 530 Advanced Algorithms
-CS 531 Advanced Optimization Algorithms
-CS 542 Machine Learning
-CS 565 Algorithmic Data Mining
-CS 581 Computational Fabrication
-CS 583 Audio Computation

Appreciations

The Course Staff

I'd like to thank:
Rahul Mitra, Ryan Yu, Vishesh Jain, Jincheng Zhang, Reshab Chhabra, Rachel Du, Yi Du, Eugene Jung, Chris Min, Ieva Sagaitis, Aparna Singh, Kevin Wrenn

If you see them around you should thank them as well.

The CS Department Staff

If you're ever in the CS Department office, be kind to the people who work there. They work very hard to keep all our courses running.

The Students of CS132

Thanks for sticking with it.
For giving feedback.
For adjusting and re-adjusting.
fin

